ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2,084)
  • Lunar and Planetary Science and Exploration  (691)
  • Man/System Technology and Life Support  (639)
  • Meteorology and Climatology  (588)
  • Composite Materials  (166)
  • Statistical physics
  • 2015-2019  (457)
  • 2010-2014  (1,627)
  • 2019  (457)
  • 2012  (1,627)
Collection
Source
Keywords
Years
  • 2015-2019  (457)
  • 2010-2014  (1,627)
Year
  • 1
    Publication Date: 2013-06-19
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: M12-1634 , NASA Fault Management Workshop; 10-12 Apr. 2012; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-04-10
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: M12-1633 , NASA Fault Management Workshop; 10-12 Apr. 2012; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: There is a lack of data available for the stability of clathrate hydrates in the presence of ammonia for low-to-moderate pressures in the 0-10 MPa range. Providing such data will allow for a better understanding of natural mass transfer processes on celestial bodies like Titan and Enceladus, on which destabilization of clathrates may be responsible for replenishment of gases in the atmosphere. The experimental process utilizes a custom-built gas handling system (GHS) and a cryogenic calorimeter to allow for the efficient testing of samples under varying pressures and gas species.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: Cassini ISS observed multiple widespread changes in surface brightness in Titan's equatorial regions over the past three years. These brightness variations are attributed to rainfall from cloud systems that appear to form seasonally. Determining the composition of this rainfall is an important step in understanding the "methanological" cycle on Titan. I use data from Cassini VIMS to complete a spectroscopic investigation of multiple rain-wetted areas. I compute "before-and-after" spectral ratios of any areas that show either deposition or evaporation of rain. By comparing these spectral ratios to a model of liquid ethane, I find that the rain is most likely composed of liquid ethane. The spectrum of liquid ethane contains multiple absorption features that fall within the 2-micron and 5-micron spectral windows in Titan's atmosphere. I show that these features are visible in the spectra taken of Titan's surface and that they are characteristically different than those in the spectrum of liquid methane. Furthermore, just as ISS saw the surface brightness reverting to its original state after a period of time, I show that VIMS observations of later flybys show the surface composition in different stages of returning to its initial form.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-11
    Description: This project compares design and proposal elements from multiple proposals and presents conclusions and recommendations for sampling systems. Contributions from this project include a list of common evaluation themes, concept and proposal-related strengths and weaknesses and ways in which self-identified risks relate the evaluation of the mission.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-11
    Description: The Deployable Extra-Vehicular Activity Platform (DEVAP) is a staging platform for egress and ingress attached to a lunar, Mars, or planetary surface habitat airlock, suitlock, or port. The DEVAP folds up into a compact package for transport, and deploys manually from its attached location to provide a ramp and staging platform for extra-vehicular activities. This paper discusses the latest development of the DEVAP, from its beginnings as a portable platform attached to the Lunar Outpost Pressurized Excursion Module (PEM) in the Constellation Lunar Surface Systems scenarios, to the working prototype deployed at the2011 NASA Desert Research and Technology Studies (D-RATS) analog field tests in Arizona. The paper concludes with possible future applications and directions for the DEVAP.
    Keywords: Man/System Technology and Life Support
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-11
    Description: Sample return missions, including the proposed Mars Sample Return (MSR) mission, propose to collect core samples from scientifically valuable sites on Mars. These core samples would undergo extreme forces during the drilling process, and during the reentry process if the EEV (Earth Entry Vehicle) performed a hard landing on Earth. Because of the foreseen damage to the stratigraphy of the cores, it is important to evaluate each core for rock quality. However, because no core sample return mission has yet been conducted to another planetary body, it remains unclear as to how to assess the cores for rock quality. In this report, we describe the development of a metric designed to quantitatively assess the mechanical quality of any rock cores returned from Mars (or other planetary bodies). We report on the process by which we tested the metric on core samples of Mars analogue materials, and the effectiveness of the core assessment metric (CAM) in assessing rock core quality before and after the cores were subjected to shocking (g forces representative of an EEV landing).
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-11
    Description: This summer, we quantified the release, by cryogenic grinding at liquid nitrogen temperatures, of microbes present in 4 different spacecraft solids: epoxy 9309, epoxy 9394, epoxy 9396, and a silicone coating. Three different samples of each material were prepared: aseptically prepared solid material, powdered material inoculated with a known spore count of Bacillus atrophaeus, and solid material artificially embedded with a known spore count of Bacillus atrophaeus. Samples were cryogenically ground as needed, and the powders were directly cultured to determine the number of microbial survivors per gram of material. Recovery rates were found to be highly material-dependent, varying from 0.2 to 50% for inoculated material surfaces and 0.002 to 0.5% for embedded spores. A study of the spore survival rate versus total grinding time was also performed, with results indicating that longer grinding time decreases recovery rates of viable spores.
    Keywords: Man/System Technology and Life Support
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-11
    Description: The Martian missions of Spirit, Opportunity, and many others have sparked high interest in Mars which has led to Curiosity to answer questions that we have sought after for years. Has life ever existed on Mars? Through the collection and analyzation of samples, it will help to answer questions about the possibilities of life that may have existed on Mars, and we will gain valuable data about the planet Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-11
    Description: Climate models are deterministic, mathematical descriptions of the physics of climate. Confidence in predictions of future climate is increased if the physics are verifiably correct. A necessary, (but not sufficient) condition is that past and present climate be simulated well. Quantify the likelihood that a (summary statistic computed from a) set of observations arises from a physical system with the characteristics captured by a model generated time series. Given a prior on models, we can go further: posterior distribution of model given observations.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-11
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-11
    Description: The presentation is divided into three parts. Part I is an overview of early expeditions to the High Arctic, and their political consequences at the time. The focus then shifts to the Geological Survey of Canada s mapping program in the North (Operation Franklin), and to the Polar Continental Shelf Project (PCSP), a unique organization that resides within the Government of Canada s Department of Natural Resources, and supports mapping projects and science investigations. PCSP is highlighted throughout the presentation so a description of mandate, budgets, and support infrastructure is warranted. In Part II, the presenter describes the planning required in advance of scientific deployments carried out in the Canadian High Arctic from the perspective of government and university investigators. Field operations and challenges encountered while leading arctic field teams in fly camps are also described in this part of the presentation, with particular emphasis on the 2008 field season. Part III is a summary of preliminary results obtained from a Polar Survey questionnaire sent out to members of the Arctic research community in anticipation of the workshop. The last part of the talk is an update on the analog program at the Canadian Space Agency, specifically, the Canadian Analog Research Network (CARN) and current activities related to Analog missions, 2009-2010.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses; 20, 173-203; NASA/CP-2012-217355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: Aware of the increasing impact of human activities on the Earth system, Belgian Science Policy Office (Belspo) launched in 1997 a research programme in support of a sustainable development policy. This umbrella programme included the Belgian Scientific Programme on Antarctic Research. The International Polar Foundation, an organization led by the civil engineer and explorer Alain Hubert, was commissioned by the Belgian Federal government in 2004 to design, construct and operate a new Belgian Antarctic Research Station as an element under this umbrella programme. The station was to be designed as a central location for investigating the characteristic sequence of Antarctic geographical regions (polynia, coast, ice shelf, ice sheet, marginal mountain area and dry valleys, inland plateau) within a radius of 200 kilometers (approx.124 miles) of a selected site. The station was also to be designed as "state of the art" with respect to sustainable development, energy consumption, and waste disposal, with a minimum lifetime of 25 years. The goal of the project was to build a station and enable science. So first we needed some basic requirements, which I have listed here; plus we had to finance the station ourselves. Our most important requirement was that we decided to make it a zero emissions station. This was both a philosophical choice as we thought it more consistent with Antarctic Treaty obligations and it was also a logistical advantage. If you are using renewable energy sources, you do not have to bring in all the fuel.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses; 14, 238-292; NASA/CP-2012-217355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-11
    Description: Dr. Albert's current research is centered on transfer processes in porous media, including air-snow exchange in the Polar Regions and in soils in temperate areas. Her research includes field measurements, laboratory experiments, and theoretical modeling. Mary conducts field and laboratory measurements of the physical properties of natural terrain surfaces, including permeability, microstructure, and thermal conductivity. Mary uses the measurements to examine the processes of diffusion and advection of heat, mass, and chemical transport through snow and other porous media. She has developed numerical models for investigation of a variety of problems, from interstitial transport to freezing of flowing liquids. These models include a two-dimensional finite element code for air flow with heat, water vapor, and chemical transport in porous media, several multidimensional codes for diffusive transfer, as well as a computational fluid dynamics code for analysis of turbulent water flow in moving-boundary phase change problems.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses; 12, 204-228; NASA/CP-2012-217355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-11
    Description: The purpose for this workshop can be summed up by the question: Are there relevant analogs to planetary (meaning the Moon and Mars) to be found in polar exploration on Earth? The answer in my opinion is yes or else there would be no reason for this workshop. However, I think some background information would be useful to provide a context for my opinion on this matter. As all of you are probably aware, NASA has been set on a path that, in its current form, will eventually lead to putting human crews on the surface of the Moon and Mars for extended (months to years) in duration. For the past 50 V 60 years, starting not long after the end of World War II, exploration of the Antarctic has accumulated a significant body of experience that is highly analogous to our anticipated activities on the Moon and Mars. This relevant experience base includes: h Long duration (1 year and 2 year) continuous deployments by single crews, h Established a substantial outpost with a single deployment event to support these crews, h Carried out long distance (100 to 1000 kilometer) traverses, with and without intermediate support h Equipment and processes evolved based on lessons learned h International cooperative missions This is not a new or original thought; many people within NASA, including the most recent two NASA Administrators, have commented on the recognizable parallels between exploration in the Antarctic and on the Moon or Mars. But given that level of recognition, relatively little has been done, that I am aware of, to encourage these two exploration communities to collaborate in a significant way. [Slide 4] I will return to NASA s plans and the parallels with Antarctic traverses in a moment, but I want to spend a moment to explain the objective of this workshop and the anticipated products. We have two full days set aside for this workshop. This first day will be taken up with a series of presentations prepared by individuals with experience that extends back as far as the late 1940s and includes contemporary experience. The people presenting bring a variety of points of view, including not only U.S. but international, although most, if not all, have collaborated on international teams. The second day will consist of a series of small focused group interactions centered on those elements likely to be needed for traverse missions, such as mobility, habitation, and extravehicular activity (EVA, aka space suits). Our invited participants will be talking with people that specialize in these elements so that we can foster more direct interaction and exchange of experiences between these two exploration communities. After the workshop we will be preparing a report documenting these presentations and the essence of the focused interactions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses; 58-71; NASA/CP-2012-217355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-11
    Description: Slide 1] The Desert Research and Technology Studies (DRATS) include large scale field tests of manned lunar surface exploration systems; these tests are sponsored by the Director s Office of Integration (DOI) [sic, Directorate Integration Office (DIO)] within the Constellation Program and they include geological exploration objectives along well designed traverses. These traverses are designed by the Traverse Team, an ad hoc group of some 10 geologists form NASA and academia, as well as experts in mission operation who define the operational constraints applicable to specific simulation scenarios. [Slide 2] These DRATS/DOI tests focus on 1) the performance of major surface systems, such as rovers, mobile habitats, communication architecture, navigation tools, earth-moving equipment, unmanned reconnaissance robots etc. under realistic field conditions and 2) the development of operational concepts that integrate all of these systems into a single, optimized operation. The participation of science is currently concentrating on geological sciences, with the objective of developing suitable tools and documentation protocols to sample representative rocks for Earth return, and to generate some conceptual understanding of the ground support structure that will be needed for the real time science-support of a lunar surface crew. [Slide 3] Major surface systems exercised in the June 2008 analog tests at the Moses Lake site, WA. [Upper left] The Chariot Rover (developed at Johnson Space Center) is an unpressurized vehicle driven by fully suited crews. [Upper right] Mobile Habitat provided by the Jet Propulsion Laboratory. Chariot is the more nimble and mobile vehicle and the idea is to drive the habitat remotely to some rendezvous place where Chariot would catch up - after a lengthy traverse - at the end of the day. [Lower left] The K-10 remotely operated robot (provided by NASA Ames Research Center) conducting scientific/geologic reconnaissance of the prospective traverse region, locating specific sites for more detailed exploration by Chariot and its crew. [Lower right] This earth-moving equipment (provided by NASA KSC) can be attached to Chariot and is envisioned to, for example, level an outpost site or to mine lunar soi
    Keywords: Lunar and Planetary Science and Exploration
    Type: Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses; 17, 161-172; NASA/CP-2012-217355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-11
    Description: Objectives (Slides 2, 12, 21-22) To explore as much as possible of 1 million km2 of unexplored territory. We were the first expedition to winter in Antarctica between 95 E and 57 W - nearly half the coastline of Antarctica. It was understood that we must be self-sufficient in every respect for 2 years. There could be no firm or detailed plans for inland exploration until we found where it was possible to make a landing. Geology (Slide 20) Our two geologists traveled far from the Advance Base during both field seasons. Carrying fuel supplies (dog food) for a month, man food (dehydrated) and rock specimens acquired along the way, they covered a vast area. The surveyor drove his own dogs with the geophysicist as assistant. While the geologists were hacking away at rocks, the survey team lugged a theodolite up peaks to extend a triangulation network. Glaciology (Slides 21-22) The glaciologists each had an assistant from the support staff, so they could either travel together or divided into two parties to cover more ground. At each camp they dug a pit to determine the rate of snow accumulation, drilled (by hand) to a depth of 10 m to measure ice temperatures, and in places set up and surveyed ice-movement markers to be resurveyed the following season. Geophysics (Slides 33, 34-36, 38) The principal object was to determine the thickness of ice by seismic sounding the only means known at the time. After experiments as far as the Advance Base in the 1950-51 summer, both Weasels were devoted to a seismic sounding traverse in 1951-52 as far inland as supplies would allow. The party reached 620 km inland and found ice thicknesses of 2,500 m.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses; 19, 72-97; NASA/CP-2012-217355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: The science on Apollo missions was overseen by the Science Working Panel (SWP), but done by multiple PIs. There were two types of science, packages like the Apollo Lunar Surface Experiment Package (ALSEP) and traverse science. Traverses were designed on Earth for the astronauts to execute. These were under direction of the Lunar Surface PI, but the agreed traverse was a cooperation between the PI and SWP. The landing sites were selected by a different designated committee, not the SWP, and were based on science and safety.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses; 18, 153-160; NASA/CP-2012-217355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: Dr Charles Bentley is the A.P. Crary Professor Emeritus of Geophysics, Department of Geology and Geophysics, University of Wisconsin-Madison. Dr. Bentley joined the Arctic Institute of North America in 1956 to participate in International Geophysical Year (IGY)-related activities in the Antarctic. He wintered over consecutively in 1957 and 1958 at Byrd Station, a station in the interior of West Antarctica that housed 24 men each winter - 12 Navy support people and 12 civilian scientists/technicians. During the austral summers, he also participated in over-snow traverses, first as co-leader, then leader (the other coleader went home after the first year). These traverses consisted of six men and three vehicles, and lasted several months. These traverses covered more than 1609 kilometers (1000 miles) of largely unmapped and unphotographed terrain. During these traverses, connections to Byrd Station were by radio (daily, when the transmission conditions were good enough) and roughly every 2 weeks by resupply flight.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses; 13, 98-122; NASA/CP-2012-217355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-11
    Description: Mr. Gruener received an M.S. in physical science, with an emphasis in planetary geology, from the University of Houston-Clear Lake in 1994. He then began working with NASA JSC.s Solar System Exploration Division on the development of prototype planetary science instruments, the development of a mineral-based substrate for nutrient delivery to plant growth systems in bio-regenerative life support systems, and in support of the Mars Exploration Rover missions in rock and mineral identification. In 2004, Mr. Gruener again participated in a renewed effort to plan and design missions to the Moon, Mars, and beyond. He participated in many exploration planning activities, including NASA.s Exploration Systems Architecture Study (ESAS), Global Exploration Strategy Workshop, Lunar Architecture Team 1 and 2, Constellation Lunar Architecture Team, the Global Point of Departure Lunar Exploration Team, and the NASA Advisory Council (NAC) Workshop on Science Associated with the Lunar Exploration Architecture. Mr. Gruener has also been an active member of the science team supporting NASA.s Desert Research and Technology Studies (RATS).
    Keywords: Lunar and Planetary Science and Exploration
    Type: Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses; 16, 229-237; NASA/CP-2012-217355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: Dr. Cameron joined the Arctic Institute of North America in 1956 to participate in IGY-related activities in Antarctica. He served as Chief Glaciologist at Wilkes Station, on the coast of East Antarctica. This was a joint Navy-civilian operation consisting of 17 Navy personnel and 10 scientists. Specifically, his glaciological team consisted of two colleagues with whom he had worked before - Olav Loken in Norway in the summer of 1953, and John Molholm in Greenland in the summer of 1954. This team spent much of its time at a remote station established 80 kilometers (50 miles) inland, where they conducted both meteorological and glaciological studies. One of the glaciological studies entailed digging a 35-meter (approx.115-foot) vertical pit to study snow densification and stratigraphy. The assignment for the Navy Seabees was to first establish a joint US-NZ base at Cape Hallett and then go along the coast of East Antarctica and set up Wilkes Station.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Antarctic Exploration Parallels for Future Human Planetary Exploration: The Role and Utility of Long Range, Long Duration Traverses; 15, 123-152; NASA/CP-2012-217355
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-11
    Description: The next generation of missions in NASA's Human Space Flight program focuses on the development and deployment of highly complex systems (e.g., Orion Multi-Purpose Crew Vehicle, Space Launch System, 21st Century Ground System) that will enable astronauts to venture beyond low Earth orbit and explore the moon, near-Earth asteroids, and beyond. Architecting these highly complex system-of-systems requires formal systems engineering techniques for managing the evolution of the technical features in the information exchange domain (e.g., data exchanges, communication networks, ground software) and also, formal correlation of the technical architecture to stakeholders' programmatic concerns (e.g., budget, schedule, risk) and design development (e.g., assumptions, constraints, trades, tracking of unknowns). This paper will describe how the authors have applied System Modeling Language (SysML) to implement model-based systems engineering for managing the description of the End-to-End Information System (EEIS) architecture and associated development activities and ultimately enables stakeholders to understand, reason, and answer questions about the EEIS under design for proposed lunar Exploration Missions 1 and 2 (EM-1 and EM-2).
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-05
    Description: There is no convenient way to demonstrate mechanically, as an outreach (or inreach) topic, the angular momentum trade-offs and the conservation of angular momentum associated with gravityassist interplanetary trajectories. The mechanical concepts that underlie gravity assist are often misunderstood or confused, possibly because there is no mechanical analog to it in everyday experience. The Gravity Assist Mech - anical Simulator is a hands-on solution to this longstanding technical communications challenge. Users intuitively grasp the concepts, meeting specific educational objectives. A manually spun wheel with high angular mass and low-friction bearings supplies momentum to an attached spherical neodymium magnet that represents a planet orbiting the Sun. A steel bearing ball following a trajectory across a glass plate above the wheel and magnet undergoes an elastic collision with the revolving magnet, illustrating the gravitational elastic collision between spacecraft and planet on a gravity-assist interplanetary trajectory. Manually supplying the angular momentum for the elastic collision, rather than observing an animation, intuitively conveys the concepts, meeting nine specific educational objectives. Many NASA and JPL interplanetary missions are enabled by the gravity-assist technique.
    Keywords: Man/System Technology and Life Support
    Type: NASA Tech Briefs, November 2012; 17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-05-21
    Description: Transport from the Northern Hemisphere (NH) midlatitudes to the Arctic plays a crucial role in determining the abundance of trace gases and aerosols that are important to Arctic climate via impacts on radiation and chemistry. Here we examine this transport using an idealized tracer with a fixed lifetime and predominantly midlatitude land-based sources in models participating in the Chemistry Climate Model Initiative (CCMI). We show that there is a 25%-45% difference in the Arctic concentrations of this tracer among the models. This spread is correlated with the spread in the location of the Pacific jet, as well as the spread in the location of the Hadley Cell (HC) edge, which varies consistently with jet latitude. Our results suggest that it is likely that the HC-related zonal-mean meridional transport rather than the jet-related eddy mixing is the major contributor to the inter-model spread in the transport of land-based tracers into the Arctic. Specifically, in models with a more northern jet, the HC generally extends further north and the tracer source region is mostly covered by surface southward flow associated with the lower branch of the HC, resulting in less efficient transport poleward to the Arctic. During boreal summer, there are poleward biases in jet location in free-running models, and these models likely underestimate the rate of transport into the Arctic. Models using specified dynamics do not have biases in the jet location, but do have biases in the surface meridional flow, which may result in differences in transport into the Arctic. In addition to the land-based tracer, the midlatitude-to-Arctic transport is further examined by another idealized tracer with zonally uniform sources. With equal sources from both land and ocean, the inter-model spread of this zonally uniform tracer is more related to variations in parameterized convection over oceans rather than variations in HC extent, particularly during boreal winter. This suggests that transport of land-based and oceanic tracers or aerosols towards the Arctic differs in pathways and therefore their corresponding inter-model variabilities result from different physical processes.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68258 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 19; 8; 5511-5528
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-05-25
    Description: The solar tide in an ancient Venusian ocean is simulated using a dedicated numerical tidal model. Simulations with varying ocean depth and rotational periods ranging from minus 243 to 64 sidereal Earth days are used to calculate the tidal dissipation rates and associated tidal torque. The results show that the tidal dissipation could have varied by more than 5 orders of magnitude, from 0.001 to 780 gigawatts (GW), depending on rotational period and ocean depth. The associated tidal torque is about 2 orders of magnitude below the present day Venusian atmospheric torque, and could change the Venusian daylength by up to 72 days per million years depending on rotation rate. Consequently, an ocean tide on ancient Venus could have had significant effects on the rotational history of the planet. These calculations have implications for the rotational periods of similarly close-in exoplanetary worlds and the location of the inner edge of the liquid water habitable zone.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN68852 , The Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 876; 2; L22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-06-29
    Description: The habitable zone (HZ) is commonly defined as the range of distances from a host star within which liquid water, a key requirement for life, may exist on a planet's surface. Substantially more CO2 than present in Earth's modern atmosphere is required to maintain clement temperatures for most of the HZ, with several bars required at the outer edge. However, most complex aerobic life on Earth is limited by CO2 concentrations of just fractions of a bar. At the same time, most exoplanets in the traditional HZ reside in proximity to M dwarfs, which are more numerous than Sun-like G dwarfs but are predicted to promote greater abundances of gases that can be toxic in the atmospheres of orbiting planets, such as carbon monoxide (CO). Here we show that the HZ for complex aerobic life is likely limited relative to that for microbial life. We use a 1D radiative-convective climate and photochemical models to circumscribe a Habitable Zone for Complex Life (HZCL) based on known toxicity limits for a range of organisms as a proof of concept. We find that for CO2 tolerances of 0.01, 0.1, and 1 bar, the HZCL is only 21%, 32%, and 50% as wide as the conventional HZ for a Sun-like star, and that CO concentrations may limit some complex life throughout the entire HZ of the coolest M dwarfs. These results cast new light on the likely distribution of complex life in the universe and have important ramifications for the search for exoplanet biosignatures and technosignatures.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN70116 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 878; 1; 19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-06-29
    Description: Four, quasi-circular, positive Bouguer gravity anomalies (PBGAs) that are similar in diameter (~90-190 km) and gravitational amplitude (〉 140 mGal contrast) are identified within the central Oceanus Procellarum region of the Moon. These spatially associated PBGAs are located south of Aristarchus Plateau, north of Flamsteed crater, and two are within the Marius Hills volcanic complex (north and south). Each is characterized by distinct surface geologic features suggestive of ancient impact craters and/or volcanic/plutonic activity. Here, we combine geologic analyses with forward modeling of high-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission in order to constrain the subsurface structures that contribute to these four PBGAs. The GRAIL data presented here, at spherical harmonic degrees 6660, permit higher resolution analyses of these anomalies than previously reported, and reveal new information about subsurface structures. Specifically, we find that the amplitudes of the four PBGAs cannot be explained solely by mare-flooded craters, as suggested in previous work; an additional density contrast is required to explain the high-amplitude of the PBGAs. For Northern Flamsteed (190 km diameter), the additional density contrast may be provided by impact-related mantle uplift. If the local crust has a density ~2800 kg/cu.m, then ~7 km of uplift is required for this anomaly, although less uplift is required if the local crust has a lower mean density of ~2500 kg/cu.m. For the Northern and Southern Marius Hills anomalies, the additional density contrast is consistent with the presence of a crustal complex of vertical dikes that occupies up to ~50% of the regionally thin crust. The structure of Southern Aristarchus Plateau (90 km diameter), an anomaly with crater-related topographic structures, remains ambiguous. Based on the relatively small size of the anomaly, we do not favor mantle uplift; however, understanding mantle response in a region of especially thin crust needs to be better resolved. It is more likely that this anomaly is due to subsurface magmatic material given the abundance of volcanic material in the surrounding region. Overall, the four PBGAs analyzed here are important in understanding the impact and volcanic/plutonic history of the Moon, specifically in a region of thin crust and elevated temperatures characteristic of the Procellarum KREEP Terrane.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN69978 , Icarus (ISSN 0019-1035); 331; 192-208
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-02
    Description: While devoid of an active magnetic dynamo field today, Mars possesses a remanent magnetic field that may reach several thousand nanoteslas locally. The exact origin and the events that have shaped the crustal magnetization remain largely enigmatic. Three magnetic field data sets from two spacecraft collected over 13 cumulative years have sampled the Martian magnetic field over a range of altitudes from 90 up to 6,000 km: (a) Mars Global Surveyor (MGS) magnetometer (19972006), (b) MGS Electron Reflectometer (19992006), and (c) Mars Atmosphere and Volatile EvolutioN (MAVEN) magnetometer (2014 to today). In this paper we combine these complementary data sets for the first time to build a new model of the Martian internal magnetic field. This new model improves upon previous ones in several aspects: comprehensive data coverage, refined data selection scheme, modified modeling scheme, discrete-to-continuous transformation of the model, and increased model resolution. The new model has a spatial resolution of 160 km at the surface, corresponding to spherical harmonic degree 134. It shows small scales and well-defined features, which can now be associated with geological signatures.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN70068 , Journal of Geophysical Research: Planets
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-06-29
    Description: We analyze the atmospheric processes that explain the large changes in radiative feed-backs between the two latest climate configurations of the Hadley Centre Global Environmental model. We use a large set of atmosphere-only climate-change simulations (amip and amip-p4K) to separate the contributions to the differences in feedback parameter from all the atmospheric model developments between the two latest model configurations. We show that the differences are mostly driven by changes in the shortwave cloud radiative feedback in the midlatitudes, mainly over the Southern Ocean. Two new schemes explain most of the differences: the introduction of a new aerosol scheme; and the development of a new mixed-phase cloud scheme. Both schemes reduce the strength of the pre-existing shortwave negative cloud feedback in the midlatitudes. The new aerosol scheme dampens a strong aerosol-cloud interaction, and it also suppresses a negative clear-sky shortwave feedback. The mixed-phase scheme increases the amount of cloud liquid water path (LWP) in the present-day, thereby reducing the radiative effciency of the increase of LWP in the warmer climate. It also enhances a strong, pre-existing, positive cloud fraction feedback. We assess the realism of the changes by comparing present-day simulations against observations, and discuss avenues that could help constrain the relevant processes.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN70134 , Journal of Advances in Modeling Earth Systems (e-ISSN 1942-2466)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-05-15
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: M19-7317
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-05-25
    Description: The association between climate variability and episodic events, such as the antecedent moisture conditions prior to wildfire or the cooling following volcanic eruptions, is commonly assessed using Superposed Epoch Analysis (SEA). In SEA the epochal response is typically calculated as the average climate conditions prior to and following all event years or their deviation from climatology. However, the magnitude and significance of the inferred climate association may be sensitive to the selection or omission of individual key years, potentially resulting in a biased assessment of the relationship between these events and climate. Here we describe and test a modified double-bootstrap SEA that generates multiple unique draws of the key years and evaluates the sign, magnitude, and significance of event-climate relationships within a probabilistic framework. This multiple resampling helps quantify multiple uncertainties inherent in conventional applications of SEA within dendrochronology and paleoclimatology. We demonstrate our modified SEA by evaluating the volcanic cooling signal in a Northern Hemisphere tree-ring temperature reconstruction and the link between drought and wildfire events in the western United States. Finally, we make our Matlab and R code available to be adapted for future SEA applications.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68850 , Dendrochronologia (ISSN 1125-7865); 55; 119-124
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-05-18
    Description: Amorphous solid water (ASW) is found on icy dust grains in the interstellar medium (ISM), as well as on comets and other icy objects in the outer solar system. The optical properties of ASW are thus relevant for many astrophysical environments, but in the ultravioletvisible (UVvis), its refractive index is not well constrained. Here, we introduce a new method based on UVvis broadband interferometry to measure the wavelength dependent refractive index n() of amorphous water ice from 10 to 130 K, i.e., for different porosities, in the wavelength range of 210757 nm. We also present n() for crystalline water ice at 150 K, which allows us to compare our new method with literature data. Based on this, a method to calculate n(, ) as a function of wavelength and porosity is reported. This new approach carries much potential and is generally applicable to pure and mixed ice, both amorphous and crystalline. The astronomical and physicalchemical relevance and future potential of this work are discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN68160 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 875; 2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-05-18
    Description: The Compact Reconnaissance Imaging Spectral Mapper (CRISM) onboard the Mars Reconnaissance Orbiter (MRO) obtains pole-to-pole observations (i.e., full MRO orbits) of vertical profiles for visible/near-IR spectra (=0.44.0 m), which are ideally suited to identifying the composition and particle sizes of Mars ice and dust aerosols over 50100 km altitudes in the Mars mesosphere. Within the coverage limitations of the CRISM limb data set, a distinct compositional dichotomy is found in Mars mesospheric ice aerosols. CO2 ice clouds appear during the aphelion period of Mars orbit (Solar Longitudes, Ls0160) at low latitudes (20S10N) over specific longitude regions (Meridiani, Valles Marineris) and at typical altitudes of 5575 km. Apart from faint water ice hazes below 55 km, mesospheric H2O ice clouds are primarily restricted to the perihelion orbital range (Ls160 350) at northern and southern mid-to-low latitudes with less apparent longitudinal dependences. Mars mesospheric CO2 clouds are presented in CRISM spectra with a surprisingly large range of particle sizes (cross section weighted radii, Reff=0.3 to 2.2 m). The smaller particle sizes (Reff 1 m) appear concentrated near the spatial (latitude and altitude) boundaries of their global occurrences. CRISM spectra of mesospheric CO2 clouds also show evidence of iridescence, indicating very narrow particle size distributions (effective variance, Veff0.03) and so very abrupt CO2 cloud nucleation. Furthermore, these clouds are sometimes accompanied by altitude coincident peaks in 1.27 m O2 dayglow, which indicates very dry, cold regions of formation. Mesospheric water ice clouds generally exhibit small particle sizes (Reff=0.10.3 m), although larger particle sizes (Reff=0.40.7 m) appear infrequently. On average, water ice cloud particle sizes decrease with altitude over 5080 km in the perihelion mesosphere. Water ice mass appears similar in clouds over a large range of observed cloud particle sizes, with particle number densities increasing to 10 cm3 for Reff=0.2 m. Near coincident Mars Climate Sounder (MCS) temperature and aerosol profile measurements for a subset of CRISM mesospheric aerosol measurements indicate near saturation (H2O and CO2) conditions for ice clouds and distinct mesospheric temperature increases associated with mesospheric dust loading. Dayside (3 pm) mesospheric CO2 clouds with larger particle sizes (Reff 0.5 m) scatter surface infrared emission in MCS limb infrared radiances, as well as solar irradiance in the MCS solar band channel. Scattering of surface infrared emission is most strikingly presented in nighttime (3 am) MCS observations at 5560 km altitudes, indicating extensive mesospheric nighttime CO2 clouds with considerably larger particle sizes (Reff7 m). Mesospheric CO2 ice clouds present cirrus-like waveforms over extensive latitude and longitude regions (1010), as revealed in coincident Mars Color Imager (MARCI) nadir imaging. Solar tides, gravity waves, and the large orbital variation of the extended thermal structure of the Mars atmosphere influence all of these behaviors. Mesospheric dust aerosols appear infrequently over the non-global (planet encircling) dust storm era of the CRISM limb data set (20092016), and exhibit smaller particle sizes (Reff=0.20.7 m) relative to dust in the lower atmosphere. One isolated case of an aphelion (Ls=96) mesospheric dust layer with large dust particle sizes (Reff 2 m) over Syria Planum may reflect high altitude, non-local transport of dust over elevated regions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN68079 , Icarus (ISSN 0019-1035); 328; 246-273
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-06-27
    Description: Photometry from the Helios and STEREO spacecraft revealed regions of enhanced sky surface-brightness suggesting a narrow circumsolar ring of dust associated with Venus's orbit. We model this phenomenon by integrating the orbits of 10,000,000+ dust particles subject to gravitational and non-gravitational forces, considering several different kinds of plausible dust sources. We find that only particles from a hypothetical population of Venus co-orbital asteroids can produce enough signal in a narrow ring to match the observations. Previous works had suggested such objects would be dynamically unstable. However, we re-examined the stability of asteroids in 1:1 resonance with Venus and found that ~8% should survive for the age of the solar system, enough to supply the observed ring.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN67865 , The Astrophysical Journal Letters,; 2; 873; L16
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-06-27
    Description: Infrared excesses due to dusty disks have been observed orbiting white dwarfs with effective temperatures between 7200 and 25,000 K, suggesting that the rate of tidal disruption of minor bodies massive enough to create a coherent disk declines sharply beyond 1 Gyr after white dwarf formation. We report the discovery that the candidate white dwarf LSPM J0207+3331, via the Backyard Worlds: Planet 9 citizen science project and Keck Observatory follow-up spectroscopy, is hydrogen dominated with a luminous compact disk (L IR/L star = 14%) and an effective temperature nearly 1000 K cooler than any known white dwarf with an infrared excess. The discovery of this object places the latest time for large-scale tidal disruption events to occur at ~3 Gyr past the formation of the host white dwarf, making new demands of dynamical models for planetesimal perturbation and disruption around post-main-sequence planetary systems. Curiously, the mid-infrared photometry of the disk cannot be fully explained by a geometrically thin, optically thick dust disk as seen for other dusty white dwarfs, but requires a second ring of dust near the white dwarf's Roche radius. In the process of confirming this discovery, we found that careful measurements of WISE source positions can reveal when infrared excesses for white dwarfs are co-moving with their hosts, helping distinguish them from confusion noise.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN67863 , The Astrophysical Journal Letters; 2; 872; L25
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-02
    Description: GPM (Global Precipitation Measurement) Products. Includes information on these two programs that integrate GPM data: Multi-Radar/Multi-Sensor (MRMS) and Integrated Multi-satellitE Retrievals for GPM (IMERG).
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN71369 , Weather and Air Quality Forecasting Applications Workshop; Jul 22, 2019; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-31
    Description: Phenolic Impregnated Carbon Ablator (PICA) is a low-density ablator that has been used as the planetary entry heatshield for several NASA missions since 1999. Due to the obsolescence of the input fiber source, new PICA materials were developed using Lyocell, a domestic rayon fiber source. Results are presented from this effort. Manufacturing included fiber conversion, fabrication of tile component and near net shaped heatshield preforms, and conversion to PICA materials. Thermal, mechanical, and representative environment arc-jet testing have been conducted. Initial testing indicates comparable performance with respect to heritage PICA material, and likely "drop-in" replacement for future NASA mission needs.
    Keywords: Composite Materials
    Type: ARC-E-DAA-TN70190 , National Space and Missile Materials Symposium (NSMMS); Jun 24, 2019 - Jun 27, 2019; Henderson, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-27
    Description: Congress authorized NASA's Prometheus Project in February 2003, with the first Prometheus mission slated to explore the icy moons of Jupiter with the following main objectives: (1) Develop a nuclear reactor that would provide unprecedented levels of power and show that it could be processed safely and operated reliably in space for long-duration. (2) Explore the three icy moons of Jupiter -- Callisto, Ganymede, and Europa -- and return science data that would meet the scientific goals as set forth in the Decadal Survey Report of the National Academy of Sciences.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M12-2125 , 12th International Symposium on Materials in the Space Environment; 24-28 Sept. 20112; Noordwijk; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-27
    Description: We present a mission concept where a SpaceX Dragon capsule lands a payload on Mars that samples ground ice to search for evidence of life, assess hazards to future human missions, and demonstrate use of Martian resources.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN5365 , Concepts and Approaches for Mars Exploration; 12 Hyb, 2912; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-27
    Description: The El Nino-Southern Oscillation (ENSO) is the dominant mode of tropical variability on interannual time scales. ENSO appears to extend its influence into the chemical composition of the tropical troposphere. Recent work has revealed an ENSO-induced wave-1 anomaly in observed tropical tropospheric column ozone. This results in a dipole over the western and eastern tropical Pacific, whereby differencing the two regions produces an ozone anomaly with an extremely high correlation to the Nino 3.4 Index. We have successfully reproduced this feature using the Goddard Earth Observing System Version 5 (GEOS-5) general circulation model coupled to a comprehensive stratospheric and tropospheric chemical mechanism forced with observed sea surface temperatures over the past 25 years. An examination of the modeled ozone field reveals the vertical contributions of tropospheric ozone to the column over the western and eastern Pacific region. We will show composition sensitivity in observations from NASA s Aura satellite Microwave Limb Sounder (MLS) and the Tropospheric Emissions Spectrometer (TES) and a simulation to provide insight into the vertical structure of these ENSO-induced ozone changes. The ozone changes due to the Quasi-Biennial Oscillation (QBO) in the extra-polar upper troposphere and lower stratosphere in MLS measurements will also be discussed.
    Keywords: Meteorology and Climatology
    Type: GSFC.CPR.7383.2012 , Aura Science Team Meeting; 1--3 Oct. 2012; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-27
    Description: The In Situ Resource Utilization (ISRU) project has been developing technologies to produce oxygen from lunar regolith to provide consumables to a lunar outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloic and hydrofluoric acids are byproducts of the reduction processes, as halide minerals are also reduced at oxide reduction conditions. Because of the stringent water quality requirements for electrolysis, there is a need for a contaminant removal process. The Contaminant Removal from Oxygen Production Systems (CROPS) team has been developing a separation process to remove these contaminants in the gas and liquid phase that eliminates the need for consumables. CROPS has been using Nafion, a highly water selective polymeric proton exchange membrane, to recover pure water from the contaminated solution. Membrane thickness, product stream flow rate, and acid solution temperature and concentration were varied with the goal of maximizing water permeation and acid rejection. The results show that water permeation increases with increasing solution temperature and product stream flow rate, while acid rejection increases with decreasing solution temperature and concentration. Thinner membranes allowed for higher water flux and acid rejection than thicker ones. These results were used in the development of the hardware built for the most recent Mars ISRU demonstration project.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2012-229 , KSC-2012-229R , American Institute of Aeronautics and Astronautics SPACE 2012 Conference and Exposition; 11-13 Sept. 2012; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-27
    Description: No abstract available
    Keywords: Composite Materials
    Type: JSC-CN-26776
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-27
    Description: AIRS/AMSU is the state of the art infrared and microwave atmospheric sounding system flying aboard EOS Aqua. The Goddard DISC has analyzed AIRS/AMSU observations, covering the period September 2002 until the present, using the AIRS Science Team Version-S retrieval algorithm. These products have been used by many researchers to make significant advances in both climate and weather applications. The AIRS Science Team Version-6 Retrieval, which will become operation in mid-20l2, contains many significant theoretical and practical improvements compared to Version-5 which should further enhance the utility of AIRS products for both climate and weather applications. In particular, major changes have been made with regard to the algOrithms used to 1) derive surface skin temperature and surface spectral emissivity; 2) generate the initial state used to start the retrieval procedure; 3) compute Outgoing Longwave Radiation; and 4) determine Quality Control. This paper will describe these advances found in the AIRS Version-6 retrieval algorithm and demonstrate the improvement of AIRS Version-6 products compared to those obtained using Version-5,
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.6383.2012 , GSFC.CP.6786.2012 , GSFC.CPR.6944.2012 , SPIE Optics + Photonics 2012 Conference; Aug 08, 2012 - Aug 19, 2012; San Diego, CA; United States|SPIE Optics and Photonics 2012; 16-Dec; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-06-26
    Description: Found on all terrestrial planets, wrinkle ridges are anticlines formed by thrust faulting and folding resulting from crustal shortening. The MErcury Surface, Space Environment, Geochemistry, and Ranging (MESSENGER) spacecraft's orbital phase returned high resolution images and topographic data of the previously unimaged northern high latitudes of Mercury where there are large expanses of smooth plains deformed by wrinkle ridges. Concurrently, the Lunar Reconnaissance Orbiter (LRO) is obtaining high resolution images and topographic data covering lunar mare wrinkle ridges. These data allow quantitative comparison of the scale of wrinkle ridges in smooth plains volcanic units on Mercury with mare wrinkle ridges. We evaluate the topographic relief of 300 wrinkle ridges within and outside of mascon basins on the Moon and Mercury. Measured wrinkle ridges range from ~112 to 776 m in relief with a mean of ~350 m (median = ~340 m, n = 150) on Mercury and from ~47 to 678 m in relief with a mean of ~198 m (median = ~168 m, n = 150) on the Moon. Wrinkle ridges on Mercury thus are approximately twice as large in mean relief compared to their counterparts on the Moon. The larger scale of Mercury's wrinkle ridges suggests that their formation can be attributed, in part, to global contraction. As global contraction on the Moon is estimated to be an order of magnitude smaller than on Mercury, the smaller scale of lunar wrinkle ridges suggests they most likely form primarily by load induced subsidence of the mare basalt. Wrinkle ridges located in lunar mascon basins and in the Caloris mascon on Mercury are not statistically significantly different in relief than ridges in non-mascon regions, suggesting comparable levels of contractional strain. The fact that mascon basins do not host wrinkle ridges with greater structural relief relative to non-mascon units may indicate the critical role lithospheric thickness plays in controlling subsidence and contraction of thick volcanic sequences on the Moon and Mercury.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN70101 , Icarus (e-ISSN 0019-1035); 331; 226-237
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-06-23
    Description: The water vapor is a relevant greenhouse gas in the Earth's climate system, and satellite products become one of the most effective way to characterize and monitor the columnar water vapor (CWV) content at global scale. Recently, a new product (MCD19) was released as part of MODIS (Moderate Resolution Imaging Spectroradiometer) Collection 6 (C6). This operational product from the Multi-Angle Implementation for Atmospheric Correction (MAIAC) algorithm includes a high 1-kilometer resolution CWV retrievals. This study presents the first global validation of MAIAC C6 CWV obtained from MODIS MCD19A2 product. This evaluation was performed using Aerosol Robotic Network (AERONET) observations at 265 sites (2000-2017). Overall, the results show a good agreement between MAIAC/AERONET CWV retrievals, with correlation coefficient higher than 0.95 and RMS (Root Mean Square) error lower than 0.250 centimeters. The binned error analysis revealed an underestimation (approximately 10 percent) of Aqua CWV retrievals with negative bias for CWV higher than 3.0 centimeters. In contrast, Terra CWV retrievals show a slope of regression close to unity and a low mean bias of 0.075 centimeters. While the accuracy is relatively similar between 1.0 and 5.0 centimeters for both sensor products, Terra dataset is more reliable for applications in humid tropical areas (less than 5.0 centimeters). The expected error was defined as plus or minus 15 percent, with less than 68 percent of retrievals falling within this envelope. However, the accuracy is regionally dependent, and lower error should be expected in some regions, such as South America and Oceania. Since MODIS instruments have exceeded their design lifetime, time series analysis was also presented for both sensor products. The temporal analysis revealed a systematic offset of global average between Terra and Aqua CWV records. We also found an upward trend (approximately 0.2 centimeters per decade) in Terra CWV retrievals, while Aqua CWV retrievals remain stable over time. The sensor degradation influences the ability to detect climate signals, and this study indicates the need for revisiting calibration of the MODIS bands 17-19, mainly for Terra instrument, to assure the quality of the MODIS water vapor product. Finally, this study presents a comprehensive validation analysis of MAIAC CWV over land, raising the understanding of its overall quality.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68951 , Atmospheric Research (ISSN 0169-8095 ); 225; 181-192
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-06-20
    Description: This document describes the trajectory and atmosphere reconstruction of the Mars Phoenix Entry, Descent, and Landing using the New Statistical Trajectory Estimation Program. The approach utilizes a Kalman filter to blend inertial measurement unit data with initial conditions and radar altimetry to obtain the inertial trajectory of the entry vehicle. The nominal aerodynamic database is then used in combination with the sensed accelerations to obtain estimates of the atmosphere-relative state. The reconstructed atmosphere pro le is then blended with pre-flight models to construct an estimate of the as-flown atmosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA/TM–2019–220282 , L-21028 , NF1676L-33202
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-11
    Description: While the increase of computer power mobilizes a part of the community towards models with explicit convection or based on machine learning, we review the part of the literature dedicated to convective parameterization development for large-scale forecast and climate models. Recent findings: Many developments are underway to overcome endemic limitations of traditional convective parameterizations, either in unified or multi-object frameworks: scale-aware and stochastic approaches, new prognostic equations or representations of new components such as cold pools. Understanding their impact on the emergent properties of a model remains challenging, due to subsequent tuning of parameters and the limited understanding given by traditional metrics. Summary: Further effort still needs to be dedicated to the representation of the life cycle of convective systems, in particular their mesoscale organization and associated cloud cover. The development of more process-oriented metrics based on new observations is also needed to help quantify model improvement and better understand the mechanisms of climate change.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68302 , Current Climate Change Reports; 5; 2; 95-11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-27
    Description: Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System. With the U.S. Space Shuttle fleet retired, the supply of extremely high-quality water "super-Q" - required for the EMU Space suit cooling on this ISS - will become a significant operational hardware challenge in the very near future. A proposed potential solution is the use of a filtration system consisting of a semi-permeable membrane embedded with aquaporin proteins. Aquaporins are a special class of trans-membrane proteins that facilitate passive transport of water and other substances across a membrane. The specificity of these proteins is such that only water is allowed through the protein structure, and this novel property invites their adaptation for use in water filtration systems, specifically usage on the ISS for the EMU space suit system. These proteins are found in many living systems and have been developed for commercial use today.
    Keywords: Man/System Technology and Life Support
    Type: JSC-25164 , International Conference on Environmental Systems (ICES); 15019 Jul. 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-06-13
    Description: We scoured the full set of blue-wavelength Hubble Space Telescope images of Neptune, finding one additional dark spot in new Hubble data beyond those discovered in 1989, 1994, 1996, and 2015. We report the complete disappearance of the SDS-2015 dark spot, using new Hubble data taken on 2018 September 910, as part of the Outer Planet Atmospheres Legacy (OPAL) program. Overall, dark spots in the full Hubble data set have lifetimes of at least one to two years, and no more than six years. We modeled a set of dark spots randomly distributed in time over the latitude range on Neptune that is visible from Earth, finding that the cadence of archival Hubble images would have detected about 70% of these spots if their lifetimes are only one year, or about 85%95% of simulated spots with lifetimes of two or more years. Based on the Hubble data set, we conclude that dark spots have average occurrence rates of one dark spot every four to six years. Many numerical models to date have simulated much shorter vortex lifetimes, so our findings provide constraints that may lead to improved understanding of Neptunes wind field, stratification, and humidity.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN68800 , Astronomical Journal (ISSN 0004-6256) (e-ISSN 1538-3881); 157; 4; 152; April 2019
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-27
    Description: To communicate with each other or ground support, crew members on board the International Space Station (ISS) currently use the Audio Terminal Units (ATU), which are located in each ISS module. However, to use the ATU, crew members must stop their current activity, travel to a panel, and speak into a wall-mounted microphone, or use either a handheld microphone or a Crew Communication Headset that is connected to a panel. These actions unnecessarily may increase task times, lower productivity, create cable management issues, and thus increase crew frustration. Therefore, the Habitability and Human Factors and Human Interface Branches at the NASA Johnson Space Center (JSC) are currently investigating a commercial-off-the-shelf (COTS) wireless communication system, Vocera(C), as a near-term solution for ISS communication. The objectives of the acoustics and intelligibility testing of this system were to answer the following questions: 1. How intelligibly can a human hear the transmitted message from a Vocera(c) badge in three different noise environments (Baseline = 20 dB, US Lab Module = 58 dB, Russian Module = 70.6 dB)? 2. How accurate is the Vocera(C) badge at recognizing voice commands in three different noise environments? 3. What body location (chest, upper arm, or shoulder) is optimal for speech intelligibility and voice recognition accuracy of the Vocera(C) badge on a human in three different noise environments?
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-26451
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-27
    Description: Iron redox systematics of the high FeO shergottitic liquids are poorly known, yet have a fundamental control on stability of phases such as magnetite, ilmenite, and pyroxenes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-26749 , The Mantle of Mars Workshop; 10-12 Sept. 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-20
    Description: The Atmospheric Infrared Sounder (AIRS) is the hyperspectral infrared sounder onboard NASA's Aqua satellite, launched in 2002. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in collaboration with NASA Sounder Team at JPL, provides processing, archiving, and distribution services for NASA sounders: the Aqua AIRS mission and the subsequent Suomi-National Polar-orbiting Partnership Cross-track Infrared Sounder (CrIS) mission. The Planetary Boundary Layer (PBL) Height is a new variable added in the AIRS Version 6 support product. It is derived based on gradients of the retrieved atmospheric thermodynamic profile, and gives the pressure at the top of PBL over the ocean. The GES DISC also provides services for the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) product generated by the Goddard Earth Observing System Model, Version 5 (GEOS-5) data assimilation system. The monthly PBL Height variable has been available in the Giovanni system, which is a Web-based application developed by the GES DISC providing a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data. In this work, we will present the monthly PBL Height data from AIRS and MERRA-2 and the services to support data intercomparison, such as access, plotting, subsetting, re-gridding, and generation of a multi-year monthly mean. We will also show intercomparison results, and evaluate whether (over the ocean) AIRS can observe PBL features similar to the reanalysis product at monthly and longer-term scales.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65014 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-26
    Description: Following Z-2 space suit testing that occurred from 2016-2017, the Exploration Extravehicular Mobility Unit (xEMU) Project was tasked with building a demonstration unit of the xEMU space suit to test on the International Space Station (ISS) in 2023. This suit is called xEMU Demonstration Suit (xEMU Demo). Based on feedback from astronauts during the Z-2 NBL test series, design changes were made, resulting in a new prototype suit called the Z-2.5 space suit. The design of the Z-2.5 space suit with an exploration Portable Life Support Systems (xPLSS) mock-up represents the architecture of xEMU Demo. The team is testing Z-2.5 in the NBL to evaluate this architecture and validate changes made from Z-2. The results will inform the xEMU Demo design going forward to its Preliminary Design Review (PDR) in the summer of 2019. This Z-2.5 NBL test series focuses on evaluating the microgravity performance of the suit and the ability to complete ISS-related tasks. The series is comprised of 10 manned runs and an unmanned corn-man run. Six test subjects, including four astronauts, will participate. The test objective is to evaluate ability xEMU Demo architecture to perform ISS microgravity tasks. Each crew members will complete both a familiarization run and a nominal EMU EVA timeline run. Qualitative and quantitative data will be collected to aid the assessment of the suit. Preliminary feedback from astronauts who have completed the test series evaluate the xEMU Demo architecture as acceptable to complete a demonstration mission on the ISS.
    Keywords: Man/System Technology and Life Support
    Type: JSC-E-DAA-TN70593 , International Conference on Environmental Systems (ICES) 2019; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-20
    Description: Emission sources of trace gases and aerosol particles in the South American (SA)and African (Af) continents have a strong seasonal and space variability associated with the extensive vegetation fires activities. In both continents, during the austral winter, the fires affect mainly tropical forest and savannah-type biomes and are mostly associated with deforestation and agricultural/pasture land management. Smoke aerosol particles, on average, contribute to at least 90% of the total aerosol optical depth (AOD) in the visible spectrum in the case of the South America regional smoke. Smoke aerosols also act as cloud condensation nuclei affecting cloud microphysics properties and therefore, changing the radiation budget, hydrological cycle and global circulation patterns over disturbed areas (Kaufman, 1995; Rosenfeld, 1999; Andreae,et al., 2004; Koren et al., 2004, Zhang, 2008; Ott et al., 2010; Randles et al., 2013). This study aims to evaluate and quantify the impact of including a comprehensive emission field of biomass burning aerosol on the performance of a seasonal climate forecast system, not only regarding the AOD itself but mainly on the meteorological state variable (e.g., precipitation and temperature). To address the questions put above, we designed two numerical experiments: 1- named"AERO_CTL" which applies the Quick Fire Emissions Dataset (QFED) emissions estimated with intra-diurnal variation (hereafter, BBE), and 2- named "AERO_CLM" where the sourcee mission is based on a climatology of the QFED emissions, with only monthly variation(hereafter, BBCLIM). Hindcast simulations were produced using the Goddard Earth ObservingSystem global circulation model, version 5, sub-seasonal to seasonal (GEOS5-S2S) system with a nominal spatial resolution of 56km (Rienecker et al., 2008). In both experiments, the aerosol feedbacks from cloud developments and radiation interactions were accounted. The two experiments consisted of 4 members each and ran from June to November spanning over the years 2000 to 2015. Model performance was evaluated by calculating statistical metrics on the mean area of SA and Af. Our results demonstrated that the skill model in predicting AOD is significantly improve when BBE source emission is applied over SA, but not over the Afcontinent. Over SA, the correlation between the AERO_CTL model configuration and MERRA-2 is 0.93 (R2= 0.86, RMS=0.02, BIAS=0.01), while the AERO_CLM model presents a value of0.81 (R2= 0.65, RMS=0.04, BIAS=0.06). However, the AERO_CTL experiment better represents the inter-annual variability of the AOS in both regions. The gain of the skill in predicting the AOD by the AERO_CTL experiment is also seen in some meteorological variables. We observed an increase in the model skill in predicting the 2-meter temperature and precipitation of up to 0.3 for the AERO_CTL experiment in comparison to the AERO_CLM. AERO_CLM. According to the analyzed hindcast, we inferred that representing the BBE more realistically implies in a significant gain of skills in the seasonal climate forecasting over SA and Af continents.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64697 , American Meteorological Society (AMS) Annual Meeting 2019; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-20
    Description: Aerospace structures comprised of composite materials are traditionally certified empirically via the Building Block Approach (BBA). While this approach has been performed successfully in the past, it is expensive and time-consuming. One means to improve the overall efficiency of composite structural certification is to reduce the cost of the BBA by eliminating the need for some tests by incorporating damage analysis tools. For an analysis to replace a given test, the tool must first be validated using other similar test data. The subject of this paper is a description of an efficient analysis technique for simulating compression after damage strength of a solid laminate. The analysis technique is one that is practical for use in an applied engineering context due to efforts to minimize necessary computational resources and complexity of the model.
    Keywords: Composite Materials
    Type: JSC-E-DAA-TN64359 , AIAA SciTech Forum 2019; Jan 07, 2019 - Jan 11, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-25
    Description: This document is derived from the former National Aeronautics and Space Administration (NASA) Constellation Program (CxP) document CxP 70023, titled The Design Specification for Natural Environments (DSNE), Revision C. The original document has been modified to represent updated Design Reference Missions (DRMs) for the NASA Exploration Systems Development (ESD) Programs.
    Keywords: Lunar and Planetary Science and Exploration
    Type: SLS-SPEC-159 Revision F , M19-7505
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-20
    Description: We developed and implemented a simple representation of a cold pool in the Grell-Freitas (GF) convection parameterization. The cold pool parameterization is based on the observation that convective-scale downdrafts produce a local deficit of the moist static energy (MSE). This information is advected and becoming downwind available to trigger and intensify new convection. The cold pool is dissipated by a simple exponential decay using a lifetime of a few hours, or by interacting with the underneath surface by exchanging latent and sensible heat fluxes. Preliminary results show some improvement of the simulation of the diurnal cycle of the precipitation over the land, mainly during the nighttime.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64710 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-20
    Description: The Submillimeter Enceladus Life Fundamentals Instrument (SELFI) is a passive remote sensing submillimeter heterodyne spectrometer being developed at NASA GSFC under NASA's Maturation of Instruments for Solar System Exploration (MatISSE) program. SELFI will advance submillimeter receiver technology by 1) investigating the chemical and isotopic compositions and corresponding densities of Enceladus' plume material, their vertical thermal structures, and the transport mechanisms within the plumes, and 2) characterizing the source regions from which the plumes emerge. The Enceladus plumes are important in the context of life and habitability of its subsurface ocean environment. SELFI remote sensing measurements will 1) measure the spatial and temporal variabilities in the plume chemical compositions, 2) provide insight in to Enceladus' subsurface ocean environment by monitoring H2O, HDO, d18O, and d17O, 3) constrain the oxidation state of the subsurface ocean using H2O2 and O3, and 4) utilize the SO2 and H2S spectral signatures to constrain the impact arising from both the sea-floor volcanoes and pre-biotic molecules. Moreover, the detection of the remaining molecular species (14 in total) is vital to improving the current state of knowledge of Enceladus' subsurface ocean habitability this also permits us to explore the chemical alteration processes arising from primordial volatiles that have been observed in comets. Lastly, SELFI's continuum observations enable the correlation between observed variations in plume activity with surface temperatures.SELFI is currently being developed under a technology maturation program that will advance the RF-to-digital electronics of a submillimeter-wave heterodyne spectrometer to simultaneously observe fourteen molecular species with resonances between 530 GHz and 600 GHz. SELFI will have fine radiometric resolution, high spectral resolution (resolving power R 〉 106), multiple continuum channels and a high dynamical range, necessary to map Enceladus across its 30 K to 250 K temperature range. Under the MatISSE program, SELFI will advance from TRL 4 to 6 four key technologies of the RF-to-digital subsystem, which are: 1) the RF low noise amplifier design; 2) the single-sideband (SSB) mixer and local oscillator; 3) the IF assembly down-converter that maps the fourteen species to 2 x 500 MHz bandwidth; and 4) the digital spectrometer electronics.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN64627 , National Radio Science Meeting (NRSM); Jan 09, 2019 - Jan 12, 2019; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-17
    Description: Mars is a dusty planet. Wind often lifts dust from the surface into the air forming clouds of dust at different locations across Mars. These dust storms typically last up to a couple days and grow to a few hundred km in size. However, once in a long while when conditions are just right, localized dust storms can interact in a way that optically thick suspended dust covers nearly the entire planet remaining aloft for weeks to months. These global-scale dust storms are the most dramatic of all weather phenomena on Mars, greatly altering the thermal structure and dynamics of the Martian atmosphere and significantly changing the global distribution of surface dust. Such a global-scale dust storm occurred during the summer of 2018, the first such event since 2007. The global dust storm was observed by an international fleet of spacecraft in Mars orbit and on the surface of Mars providing an unprecedented view of the initiation, growth, and decay of the storm as well as the physical properties of the dust during the storm's evolution. The 2018 global-scale dust storm was observed to grow from several localized dust-lifting centers with wind-blown dust suspended in the atmosphere encircling Mars after about two weeks of activity. Dust column optical depths recorded by the Opportunity and Curiosity rovers on the surface were the highest ever recorded on Mars. Peak global intensity of the dust storm was reached in early July 2018. Over the next couple months, the dust settled out and the atmosphere returned to its climatological average. Only a small number of global-scale dust storms have been observed on Mars, and so detailed analysis of the observations of this storm will provide important new insight into how these events occur and their effect on the current Mars climate.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN69947 , International Conference on Environmental Systems; Jul 07, 2019 - Jul 11, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-17
    Description: The crystallographic orientations of chondrule minerals can provide important insights into their formation and deformational history. For example, the orientations of the olivine bars and surrounding rim in barred olivine chondrules provide information and on the conditions of crystallization and the orientations and shapes of olivines within porphritic chondrules can record the reactions with the surrounding nebular gas during chondrule formation. Later deformation on the parent body can cause crystal-plastic deformation of chondrule minerals that is evident through their intracrystalline lattice misorientations. Typically these crystal orientations and lattice misorientations are determined using electron backscatter diffraction (EBSD) on thin sections but this gives only a 2D picture for what is actually a 3D texture. While it is possible to combine EBSD with serial sectioning to build a 3D dataset of texture, this is a destructive, time-intensive process. A recent technological development that enables non-destructive, 3D crystallographic orientation measurement is X-ray diffraction contrast tomography (DCT), which uses the X-ray diffraction of the crystal lattice to determine orientation. Originally only possible using monochromatic X-ray beams at 3rd generation synchrotron light sources, DCT has been recently adapted to polychromatic sources of laboratory X-ray microscopes (referred to as Lab-DCT). Up to this point LabDCT has only been applied to large, well-formed crystals of high symmetry (i.e., metals), but we recently acquired DCT datasets for a pair Bjurble chondrules to determine the applicability of the technique to natural, mutlimineralic samples composed predominately of olivine (i.e., chondrules).
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN68323 , Annual Meeting of the Meteoritical Society; Jul 07, 2019 - Jul 12, 2019; Sapporo; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-19
    Description: Jim McBarron exhibits a wealth of knowledge gathered from more than 40 years of experience with NASA, EVA, and spacesuits. His biography, progression of work at NASA, impact on EVA and the U.S. spacesuit, and career accomplishments are of interest to many. Wright, from the JSC History Office, conducted a personal background interview with McBarron. This interview highlighted the influences and decision-making methods that impacted McBarron's technical and management contributions to the space program. Attendees gained insight on the external and internal NASA influences on career progression within the EVA and spacesuit, and the type of accomplishments and technical advances that committed individuals can make. He concluded the presentation with a question and answer period that included a brief discussion about close calls and Russian spacesuits.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-29307 , JSC Engineering Academy; Sep 28, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-19
    Description: The Single Habitat Module (SHM) concept approach to the infrastructure and conduct of exploration missions combines many of the new promising technologies with a central concept of mission architectures that use a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper provides a review of the SHM concept, the advantages it provides, trajectory assessments related to use of a high specific impulse space based propulsion system, advances in mission planning and new mass estimates.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-27203 , International Conference on Environmental Systems; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-19
    Description: Titan's thick atmosphere and volatile surface cause it to respond to big impacts like the one that produced the prominent Menrva impact basin in a somewhat Earth-like manner. Menrva was big enough to raise the surface temperature by 100 K. If methane in the regolith is generally as abundant as it was at the Huygens landing site, Menrva would have been big enough to double the amount of methane in the atmosphere. The extra methane would have drizzled out of the atmosphere over hundreds of years. Conditions may have been favorable for clathrating volatiles such as ethane. Impacts can also create local crater lakes set in warm ice but these quickly sink below the warm ice; whether the cryptic waters quickly freeze by mixing with the ice crust or whether they long endure under the ice remains a open question. Bigger impacts can create shallow liquid water oceans at the surface. If Titan's crust is made of water ice, the putative Hotei impact (a possible 800-1200 km diameter basin, Soderblom et al 2009) would have raised the average surface temperature to 350-400 K. Water rain would have fallen and global meltwaters would have averaged 50 m to as much as 500 m deep. The meltwaters may not have lasted more than a few decades or centuries at most, but are interesting to consider given Titan's organic wealth.
    Keywords: Meteorology and Climatology
    Type: ARC-E-DAA-TN6859 , American Geophysical Union Fall 2012 Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-19
    Description: The present study aims at assessing a possible new way to reveal the properties of lightning flash, using spectrophotometric data obtained by FORMOSAT-2/ISUAL which is the first spaceborne multicolor lightning detector. The ISUAL data was analyzed in conjunction with ground ]based electromagnetic data obtained by Duke magnetic field sensors, NLDN, North Alabama Lightning Mapping Array (LMA), and Kennedy Space Center (KSC) electric field antennas. We first classified the observed events into cloud ]to ]ground (CG) and intra ]cloud (IC) lightning based on the Duke and NLDN measurements and analyzed ISUAL data to clarify their optical characteristics. It was found that the ISUAL optical waveform of CG lightning was strongly correlated with the current moment waveform, suggesting that it is possible to evaluate the electrical properties of lightning from satellite optical measurement to some extent. The ISUAL data also indicated that the color of CG lightning turned to red at the time of return stroke while the color of IC pulses remained unchanged. Furthermore, in one CG event which was simultaneously detected by ISUAL and LMA, the observed optical emissions slowly turned red as the altitude of optical source gradually decreased. All of these results indicate that the color of lightning flash depends on the source altitude and suggest that spaceborne optical measurement could be a new tool to discriminate CG and IC lightning. In the presentation, we will also show results on the comparison between the ISUAL and KSC electric field data to clarify characteristics of each lightning process such as preliminary breakdown, return stroke, and subsequent upward illumination.
    Keywords: Meteorology and Climatology
    Type: M12-2058 , American Geophysical Union (AGU) 45th Annual Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-19
    Description: In order to understand the effect of the charging environment on and around structures on the lunar surface, we have exposed basic structural shapes to electrons and Vacuum Ultra-Violet (VUV) radiation. The objects were, in separate runs, isolated, grounded, and placed on dielectric surfaces. In this presentation, the effects of electron energy, VUV flux, and sample orientation, on the charging of the objects will be examined. The potential of each of the object surfaces was monitored in order to determine the magnitude of the ram and wake effects under different orientations relative to the incoming beams (solar wind). This is a part of, and complementary to, the study of the group at USC under Dr. J. Wang, the purpose of which is to model the effects of the charging environment on structures on the lunar surface.
    Keywords: Lunar and Planetary Science and Exploration
    Type: M12-2013 , American Geophysical Union Fall Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-19
    Description: An 8-10 station Lightning Mapping Array (LMA) network is being deployed in the vicinity of Sao Paulo to create the SP-LMA for total lightning measurements in association with the international CHUVA [Cloud processes of the main precipitation systems in Brazil: A contribution to cloud resolving modeling and to the GPM (Global Precipitation Measurement)] field campaign. Besides supporting CHUVA science/mission objectives and the Sao Luiz do Paraitinga intensive operation period (IOP) in November-December 2011, the SP-LMA will support the generation of unique proxy data for the Geostationary Lightning Mapper (GLM) and Advanced Baseline Imager (ABI), both sensors on the NOAA Geostationary Operational Environmental Satellite-R (GOES-R), presently under development and scheduled for a 2015 launch. The proxy data will be used to develop and validate operational algorithms so that they will be ready for use on "day1" following the launch of GOES-R. A preliminary survey of potential sites in the vicinity of Sao Paulo was conducted in December 2009 and January 2010, followed up by a detailed survey in July 2010, with initial network deployment scheduled for October 2010. However, due to a delay in the Sao Luiz do Paraitinga IOP, the SP-LMA will now be installed in July 2011 and operated for one year. Spacing between stations is on the order of 15-30 km, with the network "diameter" being on the order of 30-40 km, which provides good 3-D lightning mapping 150 km from the network center. Optionally, 1-3 additional stations may be deployed in the vicinity of Sao Jos dos Campos.
    Keywords: Meteorology and Climatology
    Type: M12-2060 , American Geophysical Union 45th Annual Meeting; Dec 03, 2012 - Dec 10, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-19
    Description: The lightning jump algorithm has a robust history in correlating upward trends in lightning to severe and hazardous weather occurrence. The algorithm uses the correlation between the physical principles that govern an updraft's ability to produce microphysical and kinematic conditions conducive for electrification and its role in the development of severe weather conditions. Recent work has demonstrated that the lightning jump algorithm concept holds significant promise in the operational realm, aiding in the identification of thunderstorms that have potential to produce severe or hazardous weather. However, a large amount of work still needs to be completed in spite of these positive results. The total lightning jump algorithm is not a stand-alone concept that can be used independent of other meteorological measurements, parameters, and techniques. For example, the algorithm is highly dependent upon thunderstorm tracking to build lightning histories on convective cells. Current tracking methods show that thunderstorm cell tracking is most reliable and cell histories are most accurate when radar information is incorporated with lightning data. In the absence of radar data, the cell tracking is a bit less reliable but the value added by the lightning information is much greater. For optimal application, the algorithm should be integrated with other measurements that assess storm scale properties (e.g., satellite, radar). Therefore, the recent focus of this research effort has been assessing the lightning jump's relation to thunderstorm tracking, meteorological parameters, and its potential uses in operational meteorology. Furthermore, the algorithm must be tailored for the optically-based GOES-R Geostationary Lightning Mapper (GLM), as what has been observed using Very High Frequency Lightning Mapping Array (VHF LMA) measurements will not exactly translate to what will be observed by GLM due to resolution and other instrument differences. Herein, we present some of the promising aspects and challenges encountered in utilizing objective tracking and GLM proxy data, as well as recent results that demonstrate the value added information gained by combining the lightning jump concept with traditional meteorological measurements.
    Keywords: Meteorology and Climatology
    Type: M12-2230 , 37th National Weather Association (NWA) Annual Meeting; Oct 06, 2012 - Oct 11, 2012; Madison, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-19
    Description: The International Space Station (ISS) is a closed environment wi~h rotations of crew and equipment each introducing their own microbial flora making it necessary to monitor the air, surfaces, and water for microbial contamination. Current microbial monitoring includes labor and time intensive methods to enumerate total bacterial and fungal cells with limited characterization during in-flight testing. Although this culture-based method has been sufficient for monitoring the ISS, future long duration missions will need to perform more comprehensive characterization in-flight, since sample return and ground characterization may not be available. A workshop was held in 2011 at the Johnson Space Center to discuss alternative methodologies and technologies suitable for microbial monitoring for these longterm exploration missions where molecular-based methodologies, such as polymerase chain reaction (PCR), were recommended. In response, a multi-center (Marshall Space Flight Center, Johnson Space Center, Jet Propulsion Laboratory, and Kennedy Space Center) collaborative research effort was initiated to explore novel commercial-off-the-shelf hardware options for spaceflight environmental monitoring. The goal was to evaluate quantitative/semi-quantitative PCR approaches to space applications for low cost in-flight rapid identification of microorganisms affecting crew safety. The initial phase of this project identified commercially available platforms that could be minimally modified to perform nominally in microgravity followed by proof-of-concept testing on the highest qualifying candidates with a universally available test organism, Salmonella enterica. The platforms evaluated during proof-of-concept testing included the iCubate 2.0(TradeMark) (iCubate, Huntsville, AL), RAZOR EX (BioFire Diagnostics; Salt Lake City, Utah) and SmartCycler(TradeMark) (Cepheid; Sunnyvale, CA). The analysis identified two potential technologies (iCubate 2.0 and RAZOR EX) that were able to perform sample-to-answer testing with cell sample concentrations between SO to 400 cells. In addition, the commercial systems were evaluated for initial flight safety and readiness, sample concentration needs were reviewed, and a competitive procurement of commercially available platforms was initiated.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2012-295 , 43rd International Conference on Environmental Systems (ICES); Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-19
    Description: The Short-term Prediction Research and Transition (SPoRT) Center is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service forecast offices. SPoRT provides real-time NASA products and capabilities to help its partners address specific operational forecast challenges. One challenge that forecasters face is using guidance from local and regional deterministic numerical models configured at convection-allowing resolution to help assess a variety of mesoscale/convective-scale phenomena such as sea-breezes, local wind circulations, and mesoscale convective weather potential on a given day. While guidance from convection-allowing models has proven valuable in many circumstances, the potential exists for model improvements by incorporating more representative land-water surface datasets, and by assimilating retrieved temperature and moisture profiles from hyper-spectral sounders. In order to help increase the accuracy of deterministic convection-allowing models, SPoRT produces real-time, 4-km CONUS forecasts using a configuration of the Weather Research and Forecasting (WRF) model (hereafter SPoRT-WRF) that includes unique NASA products and capabilities including 4-km resolution soil initialization data from the Land Information System (LIS), 2-km resolution SPoRT SST composites over oceans and large water bodies, high-resolution real-time Green Vegetation Fraction (GVF) composites derived from the Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and retrieved temperature and moisture profiles from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI). NCAR's Model Evaluation Tools (MET) verification package is used to generate statistics of model performance compared to in situ observations and rainfall analyses for three months during the summer of 2012 (June-August). Detailed analyses of specific severe weather outbreaks during the summer will be presented to assess the potential added-value of the SPoRT datasets and data assimilation methodology compared to a WRF configuration without the unique datasets and data assimilation.
    Keywords: Meteorology and Climatology
    Type: M12-1901 , 2012 American Meteorological Society (AMS), 26th Conference on Severe Local Storms; Nov 05, 2012 - Nov 08, 2012; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-19
    Description: Following successful science operations at Vesta, the Dawn spacecraft is headed for an encounter with Ceres in 2015. What have we learned at Vesta? And, what do we expect to learn by comparing Vesta and Ceres? We will address these questions from the standpoint of geochemistry. Dawn's Gamma Ray and Neutron Detector (GRaND) is sensitive to the elemental composition of surface materials to depths of a few decimeters [1]. Gamma rays and neutrons, produced by the steady bombardment of galactic cosmic rays and by the decay of naturally ]occurring radioisotopes (K, Th, U), provide a chemical fingerprint of the regolith. Analysis of planetary radiation emissions enables mapping of specific elements (such as Fe, Mg, Si, Cl, and H) and compositional parameters (such as average atomic mass), which provide information about processes that shaped the planet1s surface and interior. Dawn has exceeded operational goals for GRaND at Vesta, accumulating an abundance of nadir-pointed data during five months in a 210 km, low altitude mapping orbit around Vesta (265-km mean radius). Chemical information from gamma ray and neutron measurements was used to test the connection between Vesta and the howardite, eucrite, and diogenite (HED) meteorites [2]. Additionally, GRaND searched for evolved, igneous lithologies [3], mantle and upper crustal materials exposed in large impact basins, mesosiderite compositions, and hydrogen in Vesta1s bulk regolith. Results of our analyses and their implications for thermal evolution and regolith-processes will be presented. The possibility of a subcrustal ocean [4, 5] and lack of cerean meteorites makes water-rich Ceres a compelling target of exploration [6]. If Ceres underwent aqueous differentiation, then crustal overturn or gas driven volcanism may have significantly modified its primitive surface; and products of aqueous alteration (e.g. [7]) would detectable by GRaND [1]. For example, the presence of Cl in salts, associated with liquid-water-processes, would have a profound effect on the thermal neutron leakage flux. GRaND is sensitive to H and H-layering, which may be in the form of endogenic water ice or hydrous minerals on Ceres. Ammonia ice (e.g., from recent cryovolcanism) would produce a distinctly different neutron signature than water ice [1]. Prospective results for GRaND at Ceres will be presented in the context of what we have learned about Vesta.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-27224 , American Geophysical Union Fall Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-19
    Description: NASA is developing a Multi Mission Space Exploration Vehicle (MMSEV) for missions beyond Low Earth Orbit (LEO). The MMSEV is a pressurized vehicle used to extend the human exploration envelope for Lunar, Near Earth Object (NEO), and Deep Space missions. The Johnson Space Center is developing the Environmental Control and Life Support System (ECLSS) for the MMSEV. The MMSEV s intended use is to support longer sortie lengths with multiple Extra Vehicular Activities (EVAs) on a higher magnitude than any previous vehicle. This paper presents an analysis of a high pressure oxygen cascade storage and delivery system that will accommodate the crew during long duration Intra Vehicular Activity (IVA) and capable of multiple high pressure oxygen fills to the Portable Life Support System (PLSS) worn by the crew during EVAs. A cascade is a high pressure gas cylinder system used for the refilling of smaller compressed gas cylinders. Each of the large cylinders are filled by a compressor, but the cascade system allows small cylinders to be filled without the need of a compressor. In addition, the cascade system is useful as a "reservoir" to accommodate low pressure needs. A regression model was developed to provide the mechanism to size the cascade systems subject to constraints such as number of crew, extravehicular activity duration and frequency, and ullage gas requirements under contingency scenarios. The sizing routine employed a numerical integration scheme to determine gas compressibility changes during depressurization and compressibility effects were captured using the Soave-Redlich-Kwong (SRK) equation of state. A multi-dimensional nonlinear optimization routine was used to find the minimum cascade tank system mass that meets the mission requirements. The sizing algorithms developed in this analysis provide a powerful framework to assess cascade filling, compressor, and hybrid systems to design long duration vehicle ECLSS architecture. 1
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27534 , International Conference of Environmental Systems; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-19
    Description: The Next Generation Life Support Project is developing an Alternative Water Processor (AWP) as a candidate water recovery system for long duration exploration missions. The AWP consists of biological water processor (BWP) integrated with a forward osmosis secondary treatment system (FOST). The basis of the BWP is a membrane aerated biological reactor (MABR), developed in concert with Texas Tech University. Bacteria located within the MABR metabolize organic material in wastewater, converting approximately 90% of the total organic carbon to carbon dioxide. In addition, bacteria convert a portion of the ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrogen and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system is expected to produce water with a total organic carbon less than 50 mg/l and dissolved solids that meet potable water requirements for spaceflight. This paper describes the test definition, the design of the BWP and FOST subsystems, and plans for integrated testing.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27537 , International Conference on Environmental Systems (ICES); Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-19
    Description: The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation Portable Life Support System (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen (O2) channel using a vertical cavity surface emitting laser (VCSEL). Both prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Based on the results of the initial instrument development, further prototype development and testing of instruments leveraging the lessons learned were desired. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU. .
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27520 , ICES 2013; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-19
    Description: The Rapid Cycle Amine (RCA) system is a low power assembly capable of simultaneously removing carbon dioxide (CO2) and humidity from an influent air steam and subsequent regeneration when exposed to a vacuum source. Two solid amine sorbent beds are alternated between an uptake mode and a regeneration mode. During the uptake mode, the sorbent is exposed to an air steam (ventilation loop) to adsorb CO2 and water vapor, while during the regeneration mode, the sorbent rejects the adsorbed CO2 and water vapor to a vacuum source. The two beds operate such that while one bed is in the uptake mode, the other is in the regeneration mode, thus continuously providing an on-service sorbent bed by which CO2 and humidity may be removed. A novel valve assembly provides a simple means of diverting the process air flow through the uptake bed while simultaneously directing the vacuum source to the regeneration bed. Additionally, the valve assembly is designed to allow for switching between uptake and regeneration modes with only one moving part while minimizing gas volume losses to the vacuum source by means of an internal pressure equalization step during actuation. The process can be controlled by a compact, low power controller design with several modes of operation available to the user. Together with NASA, United Technologies Corporation Aerospace Systems has been developing RCA 2.0 based on performance and design feedback on several sorbent bed test articles and valve design concepts. A final design was selected in November 2011 and fabricated and assembled between March and August 2012, with delivery to NASA-JSC in September 2012. This paper will provide an overview on the RCA system design and results of pre-delivery testing.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27519 , ICES 2013; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-19
    Description: As part of an effort by the Lunar Data Node (LDN) we are restoring data returned by the Apollo Dust, Thermal, and Radiation Engineering Measurements (DTREM) packages emplaced on the lunar surface by the crews of Apollo 11, 12, 14, and 15. Also commonly known as the Dust Detector experiments, the DTREM packages measured the outputs of exposed solar cells and thermistors over time. They operated on the surface for up to nearly 8 years, returning data every 54 seconds. The Apollo 11 DTREM was part of the Early Apollo Surface Experiments Package (EASEP), and operated for a few months as planned following emplacement in July 1969. The Apollo 12, 14, and 15 DTREMs were mounted on the central station as part of the Apollo Lunar Surface Experiments Package (ALSEP) and operated from deployment until ALSEP shutdown in September 1977. The objective of the DTREM experiments was to determine the effects of lunar and meteoric dust, thermal stresses, and radiation exposure on solar cells. The LDN, part of the Geosciences Node of the Planetary Data System (PDS), operates out of the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. The goal of the LDN is to extract lunar data stored on older media and/or in obsolete formats, restore the data into a usable digital format, and archive the data with PDS and NSSDC. For the DTREM data we plan to recover the raw telemetry, translate the raw counts into appropriate output units, and then apply calibrations. The final archived data will include the raw, translated, and calibrated data and the associated conversion tables produced from the microfilm, as well as ancillary supporting data (metadata) packaged in PDS format.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.OVPR.6672.2012 , NASA Lunar Science Forum; Jul 16, 2012 - Jul 19, 2012; Mountain View, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-19
    Description: NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system's liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems, but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.6 lb. The water side and gas side pressure drops were 0.8 psid and 0.5 inches of water, respectively. Performance of the heat exchanger at the nominal pressure of 4.1 psia was measured at 94%, while a gas inlet pressure of 25 psia resulted in an effectiveness of 84%. These results compared well with the model, which was scaled for the small size. Modeling of certain phenomena that affect performance, such as flow distribution in the headers was particularly difficult due to the small size of the heat exchanger. Data from the tests has confirmed the correction factors that were used in these parts of the model.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27300 , 43rd International Conference on Environmental Systems (ICES); Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-19
    Description: The Gravity Recovery and Interior Laboratory (GRAIL) Mission is a component of the NASA Discovery Program. GRAIL is a twin-spacecraft lunar gravity mission that has two primary objectives: to determine the structure of the lunar interior, from crust to core; and to advance understanding of the thermal evolution of the Moon. GRAIL launched successfully from the Cape Canaveral Air Force Station on September 10, 2011, executed a low-energy trajectory to the Moon, and inserted the twin spacecraft into lunar orbit on December 31, 2011 and January 1, 2012. A series of maneuvers brought both spacecraft into low-altitude (55-km), near-circular, polar lunar orbits, from which they perform high-precision satellite-to-satellite ranging using a Ka-band payload along with an S-band link for time synchronization. Precise measurements of distance changes between the spacecraft are used to map the lunar gravity field. GRAIL completed its primary mapping mission on May 29, 2012, collecting and transmitting to Earth 〉99.99% of the possible data. Spacecraft and instrument performance were nominal and has led to the production of a high-resolution and high-accuracy global gravity field, improved over all previous models by two orders of magnitude on the nearside and nearly three orders of magnitude over the farside. The field is being used to understand the thickness, density and porosity of the lunar crust, the mechanics of formation and compensation states of lunar impact basins, and the structure of the mantle and core. GRAIL s three month-long-extended mission will initiate on August 30, 2012 and will consist of global gravity field mapping from an average altitude of 22 km.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.6785.2012 , 44th Annual Meeting Division for Planetary Sciences (DPS); Oct 14, 2012 - Oct 19, 2012; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-19
    Description: Observations of sinuous and branching channels on planets have long driven a debate about their origin, fluvial or volcanic processes. In some cases planetary conditions rule out fluvial activity (e.g. the Moon, Venus, Mercury). However, the geology of Mars leads to suggestions that liquid water existed on the surface in the past. As a result, some sinuous and branching channels on Mars are cited as evidence of fluvial erosion. Evidence for a fluvial history often focuses on channel morphologies that are unique from a typical lava channel, for instance, a lack of detectable flow margins and levees, islands and terraces. Although these features are typical, they are not necessarily diagnostic of a fluvial system. We conducted field studies in Hawaii to characterize similar features in lava flows to better define which characteristics might be diagnostic of fluvial or volcanic processes. Our martian example is a channel system that originates in the Ascraeus Mons SW rift zone from a fissure. The channel extends for approx.300 km to the SE/E. The proximal channel displays multiple branches, islands, terraces, and has no detectable levees or margins. We conducted field work on the 1859 and 1907 Mauna Loa flows, and the Pohue Bay flow. The 51-km-long 1859 Flow originates from a fissure and is an example of a paired a a and pahoehoe lava flow. We collected DGPS data across a 500 m long island. Here, the channel diverted around a pre-existing obstruction in the channel, building vertical walls up to 9 m in height above the current channel floor. The complicated emplacement history along this channel section, including an initial a a stage partially covered by pahoehoe overflows, resulted in an appearance of terraced channel walls, no levees and diffuse flow margins. The 1907 Mauna Loa flow extends 〉 20 km from the SW rift zone. The distal flow formed an a a channel. However the proximal flow field comprises a sheet that experienced drainage and sagging of the crust following the eruption. The lateral margins of the proximal sheet, past which all lava flowed to feed the extensive channel, currently display a thickness of 〈 20 cm. Were this area covered by a dust layer, as is the Tharsis region on Mars, the margins would be difficult to identify. The Pohue Bay flow forms a lava tube. Open roof sections experienced episodes of overflow and spill out. In several places the resultant surface flows appear to have moved as sheet flows that inundated the preexisting meter scale features. Here the flows developed pathways around topographic highs, and in so doing accreted lava onto those features. The results are small islands within the multiple branched channels that display steep, sometimes overhanging walls. None of these features alone proves that the martian channel networks are the result of volcanic processes, but analog studies such as these are the first step towards identifying which morphologies are truly diagnostic of fluvial and volcanic channels.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.6760.2012 , AGU Chapman Conference on Atmospheric Water Vapor and Its Role in Climate; Aug 20, 2012 - Aug 24, 2012; Kona, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-19
    Description: Past and present efforts by the authors to further understanding of the ceramic matrix composite (CMC) material used in the valve components of the Orion Launch Abort System (LAS) Attitude Control Motor (ACM) will be presented. The LAS is designed to quickly lift the Orion Crew Exploration Vehicle (CEV) away from its launch vehicle in emergency abort scenarios. The ACM is a solid rocket motor which utilizes eight throttleable nozzles to maintain proper orientation of the CEV during abort operations. Launch abort systems have not been available for use by NASA on manned launches since the last Apollo ]Saturn launch in 1975. The CMC material, carbon-carbon/silicon-carbide (C/C-SiC), is manufactured by Fiber Materials, Inc. and consists of a rigid 4-directional carbon-fiber tow weave reinforced with a mixed carbon plus SiC matrix. Several valve and full system (8-valve) static motor tests have been conducted by the motor vendor. The culmination of these tests was the successful flight test of the Orion LAS Pad Abort One (PA ]1) vehicle on May 6, 2010. Due to the fast pace of the LAS development program, NASA Marshall Space Flight Center assisted the LAS community by performing a series of material and component evaluations using fired hardware from valve and full ]system development motor tests, and from the PA-1 flight ACM motor. Information will be presented on the structure of the C/C-SiC material, as well as the efficacy of various non ]destructive evaluation (NDE) techniques, including but not limited to: radiography, computed tomography, nanofocus computed tomography, and X-ray transmission microscopy. Examinations of the microstructure of the material via scanning electron microscopy and energy dispersive spectroscopy will also be discussed. The findings resulting from the subject effort are assisting the LAS Project in risk assessments and in possible modifications to the final ACM operational design.
    Keywords: Composite Materials
    Type: M11-0243 , 2011 National Space and Missile Materials Symposium (NSMMS); Jun 27, 2011 - Jul 01, 2011; Madison, WI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-19
    Description: The International Space Station s (ISS) largest crew and cargo resupply vehicle, the Space Shuttle, retired in 2011. To help augment ISS resupply and return capability, NASA announced a project to promote the development of Commercial Orbital Transportation Services (COTS) for the ISS in January of 2006. By December of 2008, NASA entered into space act agreements with SpaceX and Orbital Sciences Corporation for COTS development and ISS Commercial Resupply Services (CRS). The intent of CRS is to fly multiple resupply missions each year to ISS with SpaceX s Dragon vehicle providing resupply and return capabilities and Orbital Science Corporation s Cygnus vehicle providing resupply capability to ISS. The ISS program launched an integration effort to ensure that these new commercial vehicles met the requirements of the ISS vehicle and ISS program needs. The Environmental Control and Life Support System (ECLSS) requirements cover basic cargo vehicle needs including maintaining atmosphere, providing atmosphere circulation, and fire detection and suppression. The ISS-COTS integration effort brought unique challenges combining NASA s established processes and design knowledge with the commercial companies new initiatives and limited experience with human space flight. This paper will discuss the ISS ECLS COTS integration effort including challenges, successes, and lessons learned.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27532 , 43rd International Conference on Environmental Systems; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-19
    Description: Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle program, there is a need to develop redundant biocide systems that do not require regular up ]mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that there is a wide variability with regards to efficacy in both concentration and exposure time of these disinfectants, therefore baseline efficacy values were established. This paper describes a series of tests performed in order to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on ISS.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27256 , International Conference on Environmental Systems (ICES); Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-19
    Description: The EMU (Extravehicular Mobility Unit) contains a semi-closed-loop re-circulating water circuit (Transport Loop) to absorb heat into a LCVG (Liquid Coolant and Ventilation Garment) worn by the astronaut. A second, single-pass water circuit (Feed-water Loop) provides water to a cooling device (Sublimator) containing porous plates, and that water sublimates through the porous plates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. The quality of the EMU Transport Loop water is maintained through the use of a water processing kit (ALCLR - Airlock Cooling Loop Remediation) that is used to periodically clean and disinfect the water circuit. Opportunities to reduce crew time associated with ALCLR operations include a detailed review of the historical water quality data for evidence to support an extension to the implementation cycle. Furthermore, an EMU returned after 2-years of use on the ISS (International Space Station) is being used as a test bed to evaluate the results of extended and repeated ALCLR implementation cycles. Finally, design, use and on-orbit location enhancements to the ALCLR kit components are being considered to allow the implementation cycle to occur in parallel with other EMU maintenance and check-out activities, and to extend the life of the ALCLR kit components. These efforts are undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post- Shuttle 6-year service life.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27390 , 43rd International Conference on Environmental Systems; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two -fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z -2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z -1 prototype and to suit testing techniques will be presented.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27258 , 43rd International Conference on Environmental Systems; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-19
    Description: Global Precipitation Measurement (GPM) is an international satellite mission to provide nextgeneration observations of rain and snow worldwide every three hours. NASA and the Japan Aerospace Exploration Agency (JAXA) will launch a "Core" satellite carrying advanced instruments that will set a new standard for precipitation measurements from space. The data they provide will be used to unify precipitation measurements made by an international network of partner satellites to quantify when, where, and how much it rains or snows around the world. The GPM mission will help advance our understanding of Earth's water and energy cycles, improve the forecasting of extreme events that cause natural disasters, and extend current capabilities of using satellite precipitation information to directly benefit society. Building upon the successful legacy of the Tropical Rainfall Measuring Mission (TRMM), GPM's next-generation global precipitation data will lead to scientific advances and societal benefits within a range of hydrologic fields including natural hazards, ecology, public health and water resources. This talk will highlight some examples from TRMM's IS-year history within these applications areas as well as discuss some existing challenges and present a look forward for GPM's contribution to applications in hydrology.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.7478.2012 , American Geophysical Union (AGU) Fall Meeting - Remote Sensing Application in Hydrology; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-19
    Description: The Orion Multi Purpose Crew Vehicle (MPCV) integrates the cabin and pressure suits with the core life support systems to provide life support during contingency depressurized cabin operations. To provide the multiple suit pressures between nominal pressurized cabin suited operations, suit leak checks, depressurized cabin suited operations, and elevated suit pressure for denitrification, a variable pressure regulator is needed. This paper documents the development of the suit loop regulator for Orion.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27524 , ICES; Jul 14, 2012 - Jul 18, 2012; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-19
    Description: The Potable Water Dispenser used on the International Space Station (ISS) interfaces with food and drink packages using the Beverage Adapter and Needle. Unexpected leakage has been seen in this interface. The Beverage Adapter used on ]orbit was returned to the ground for Test, Teardown, and Evaluation. The results of that investigation prompted a redesign of the Beverage Adapter and Needle. The Beverage Adapter materials were changed to be more corrosion resistant, and the Needle was redesigned to preclude leakage. The redesigns have been tested and proven.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27371 , 43rd International Conference on Environmental Systems; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-19
    Description: As NASA plans to send people beyond low Earth orbit, it is important to educate and inspire the next generation of astronauts, engineers, scientist, and general public. This is so important to NASA future that it is one of the agencies strategic goals. The Space Suits and Crew Survival Systems Branch at Johnson Space Center (JSC) is actively involved in helping to achieve this goal by sharing our hardware and technical experts with students, educators, and the general public and educating them about the challenges of human space flight, with Education and Public Outreach (EPO). This paper summarizes the Space Suit and Crew Survival Systems Branch EPO efforts throughout fiscal year 2012.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27303 , 43rd International Conference on Environmental Systems; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-19
    Description: Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle program, there is a need to develop redundant biocide systems that do not require regular up ]mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that there is a wide variability with regards to efficacy in both concentration and exposure time of these disinfectants, therefore baseline efficacy values were established. This paper describes a series of tests performed in order to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on ISS.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27254 , International Conference on Environmental Systems (ICES); Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-19
    Description: We report ongoing results of a program to measure the lunar sodium exospheric line profile from near the lunar limb out to two lunar radii (approx 3500 km). These observations are conducted from the National Solar Observatory McMath-Pierce telescope using a dual-etalon Fabry-Perot spectrometer with a resolving power of 180,600 (1.7 km/s) to measure line widths and velocity shifts of the Na D2 (5889 950 A) emission line in equatorial and polar regions at different lunar phases. The typical field of view (FOV) is 3 arcmin (approx 360 km) with an occasional smaller 1 arcmin FOV used right at the limb edge. The first data were obtained from full Moon to 3 days following full Moon (waning phase) in March 2009 as part of a demonstration run aimed at establishing techniques for a thorough study of temperatures and velocity variations in the lunar sodium exosphere. These data indicate velocity displacements from different locations off the lunar limb range between 150 and 600 m/s from the lunar rest velocity with a precision of +/- 20 to +/- 50 m/s depending on brightness. The measured Doppler line widths for observations within 10.5 arcmin of the east and south lunar limbs for observations between 5 deg and 40 deg lunar phase imply temperatures ranging decreasing from 3250 +/- 260K to 1175 +/- 150K. Additional data is now being collected on a quarterly basis since March 2011 and preliminary results will be reported.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.7441.2012 , Lunar Science Forum 2012; Jul 17, 2012 - Jul 19, 2012; Moffett Field, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-19
    Description: Sodium in the lunar exosphere is easily observed from the Earth's surface due to its strong resonance emission lines in the visible region of the spectrum. Although sodium is a trace element, it is easily ejected from the surface by a number of processes. The variation of this exospheric constituent both spatially and temporally can help to constrain these sources and the loss processes and their timescales. Due to a revival of interest in the Moon and its volatiles, observations of the lunar exosphere obtained at the McMath-Pierce solar telescope in 1998 and 1999 have recently been reduced and analyzed. In addition, observations of the lunar sodium exosphere obtained with the Mt. Lemmon Lunar Coronagraph on Mt. Lemmon, Arizona, have also been published. We combine these new data with data previously published and reanalyzed by Sarantos et al. This comprehensive data set will be modeled using both a simple Chamberlain exosphere model and a comprehensive Monte Carlo model.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.7443.2012 , Lunar Science Forum 2012; Jul 17, 2012 - Jul 19, 2012; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-19
    Description: We present an investigation on multi-decadal changes of atmospheric aerosols and their effects on surface radiation using a global chemistry transport model along with the near-term to long-term data records. We focus on a 28-year time period of satellite era from 1980 to 2007, during which a suite of aerosol data from satellite observations and ground-based remote sensing and in-situ measurements have become available. We analyze the long-term global and regional aerosol optical depth and concentration trends and their relationship to the changes of emissions" and assess the role aerosols play in the multi-decadal change of solar radiation reaching the surface (known as "dimming" or "brightening") at different regions of the world, including the major anthropogenic source regions (North America, Europe, Asia) that have been experiencing considerable changes of emissions, dust and biomass burning regions that have large interannual variabilities, downwind regions that are directly affected by the changes in the source area, and remote regions that are considered to representing "background" conditions.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.7358.2012 , IGAC 2012 Science Conference; Sep 17, 2012 - Sep 21, 2012; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-19
    Description: In August 2009 Titan passed through northern spring equinox, and the southern hemisphere passed into fall. Since then, the moon's atmosphere has been closely watched for evidence of the expected seasonal reversal of stratospheric circulation, with increased northern insolation leading to upwelling, and consequent downwelling at southern high latitudes. If the southern winter mirrors the northern winter, this circulation will be traced by increases in short-lived gas species advected downwards from the upper atmosphere to the stratosphere. The Cassini spacecraft in orbit around Saturn carries on board the Composite Infrared Spectrometer (CIRS), which has been actively monitoring the trace gas populations through measurement of the intensity of their infrared emission bands (7-1000 micron). In this presentation we will show fresh evidence from recent CIRS measurements in June 2012, that the shortest-lived and least abundant minor species (C3H4, C4H2, C6H6, HC3N) are indeed increasing dramatically southwards of 50S in the lower stratosphere. Intriguingly, the more stable gases (C2H2, HCN, CO2) have yet to show this trend, and continue to exhibit their 'summer' abundances, decreasing towards the south pole. Possible chemical and dynamical explanations of these results will be discussed , along with the potential of future CIRS measurements to monitor and elucidate these seasonal changes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.7310.2012 , 44th annual meeting of the Division for Planetary Sciences of the American Astronomical Society; Oct 14, 2012 - Oct 19, 2012; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-19
    Description: The Sample Analysis at Mars (SAM) suite of instruments on the Curiosity Rover of Mars Science Laboratory Mission is designed to provide chemical and isotopic analysis of organic and inorganic volatiles for both atmospheric and solid samples. The goals of the science investigation enabled by the gas chromatograph mass spectrometer and tunable laser spectrometer instruments of SAM are to work together with the other MSL investigations is to quantitatively assess habitability through a series of chemical and geological measurements. We describe the multi-column gas chromatograph system employed on SAM and the approach to extraction and analysis of organic compounds that might be preserved in ancient martian rocks.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.6684.2012 , 32nd Annual Minnesota Chromootography Forum (MCF) Spring Symposium; May 09, 2012 - May 10, 2012; Brooklyn Center, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-19
    Description: Continental-scale offline simulations with a land surface model are used to address two important issues in the forecasting of large-scale seasonal streamflow: (i) the extent to which errors in soil moisture initialization degrade streamflow forecasts, and (ii) the extent to which the downscaling of seasonal precipitation forecasts, if it could be done accurately, would improve streamflow forecasts. The reduction in streamflow forecast skill (with forecasted streamflow measured against observations) associated with adding noise to a soil moisture field is found to be, to first order, proportional to the average reduction in the accuracy of the soil moisture field itself. This result has implications for streamflow forecast improvement under satellite-based soil moisture measurement programs. In the second and more idealized ("perfect model") analysis, precipitation downscaling is found to have an impact on large-scale streamflow forecasts only if two conditions are met: (i) evaporation variance is significant relative to the precipitation variance, and (ii) the subgrid spatial variance of precipitation is adequately large. In the large-scale continental region studied (the conterminous United States), these two conditions are met in only a somewhat limited area.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.7320.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-19
    Description: Permanently shadowed regions (PSRs) of the Moon have been identified as unique environments of extreme cold and comprise a natural cold trap for sequestering volatiles [Paige et al. 2010]. The diverse chemical composition of the LCROSS impact plume provided evidence for a volatile-rich and chemically-complex PSR environment [Cola prete et al. 2010, Schultz et al. 2010]. Additionally, the polar electrostatic environment is highly complex, with the possibility of strong, localized electric fields that divert solar wind ions directly into polar cold traps [Farrell et al. 2010, Zimmerman et al. 2011]. Thus, regional plasma physics processes couple directly with volatile sequestration. In the present work, kinetic simulations show that recursive plasma wake structure arises in the presence of step-like topographic features (Le. doubly-shadowed craters). Combining the plasma code with a numerical sputtering model demonstrates that solar wind protons can be either a hydrogen source via implantation or a volatile loss mechanism via sputtering, depending on properties of the regolith and solar wind. The present model provides a novel theoretical pathway toward understanding the lunar surface/solar wind physical and chemical interactions for complex topography near the poles.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.7442.2012 , NASA Lunar Science Forum 2012; Jul 17, 2012 - Jul 19, 2012; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-19
    Description: Magnetospheric radiation drives surface and near-surface chemistry on Europa, but below a few meters Europa's chemistry is hidden from direct observation . As an example, surface radiation chemistry converts H2O and SO2 into H2O2 and (SO4)(sup 2-), respectively, and these species will be transported downward for possible thermally-driven reactions. However, while the infrared spectra and radiation chemistry of H2O2-containing ices are well documented, this molecule's thermally-induced solid-phase chemistry has seldom been studied. Here we report new results on thermal reactions in H2O + H2O2 + SO2 ices at 50 - 130 K. As an example of our results, we find that warming H2O + H2O2 + SO2 ices promotes SO2 oxidation to (SO4)(sup 2-). These results have implications for the survival of H2O2 as it descends, with modification, towards a subsurface ocean on Europa. We suspect that such redox chemistry may explain some of the observations related to the presence and distribution of H2O2 across Europa's surface as well as the lack of H2O2 on Ganymede and Callisto.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC.ABS.7312.2012 , 42nd Annual Meeting of the Division for Planetary Sciences (DPS) of the American Astronomical Society; Oct 14, 2012 - Oct 19, 2012; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-19
    Description: Research has shown that the snow season in the Northern Hemisphere has been getting shorter in recent decades, consistent with documented global temperature increases. Specifically, the snow is melting earlier in the spring allowing for a longer growing season and associated land-cover changes. Here we focus on North America. Using the Moderate-Resolution Imaging Radiometer (MODIS) cloud-gap-filled standard snow-cover data product we can detect a trend toward earlier spring snowmelt in the approx 12 years since the MODIS launch. However, not all areas in North America show earlier spring snowmelt over the study period. We show examples of springtime snowmelt over North America, beginning in March 2000 and extending through the winter of 2012 for all of North America, and for various specific areas such as the Wind River Range in Wyoming and in the Catskill Mountains in New York. We also compare our approx 12-year trends with trends derived from the Rutgers Global Snow Lab snow cover climate-data record.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.7286.2012 , 69th Eastern Snow Conference (ESC); Jun 05, 2012 - Jun 07, 2012; Claryville, NY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-19
    Description: Changes in rainfall characteristics induced by global warming are examined based on probability distribution function (PDF) analysis, from outputs of 14 IPCC (Intergovernmental Panel on Climate Change), CMIP (5th Coupled Model Intercomparison Project) models under various scenarios of increased CO2 emissions. Results show that collectively CMIP5 models project a robust and consistent global and regional rainfall response to CO2 warming. Globally, the models show a 1-3% increase in rainfall per degree rise in temperature, with a canonical response featuring large increase (100-250 %) in frequency of occurrence of very heavy rain, a reduction (5-10%) of moderate rain, and an increase (10-15%) of light rain events. Regionally, even though details vary among models, a majority of the models (〉10 out of 14) project a consistent large scale response with more heavy rain events in climatologically wet regions, most pronounced in the Pacific ITCZ and the Asian monsoon. Moderate rain events are found to decrease over extensive regions of the subtropical and extratropical oceans, but increases over the extratropical land regions, and the Southern Oceans. The spatial distribution of light rain resembles that of moderate rain, but mostly with opposite polarity. The majority of the models also show increase in the number of dry events (absence or only trace amount of rain) over subtropical and tropical land regions in both hemispheres. These results suggest that rainfall characteristics are changing and that increased extreme rainfall events and droughts occurrences are connected, as a consequent of a global adjustment of the large scale circulation to global warming.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.7242.2012 , National Taiwan University International Science Conference on Climate Change: Multidecadal and Beyond; Sep 17, 2012 - Sep 21, 2012; Taipei; Taiwan, Province of China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-19
    Description: This presentation discusses an approach to estimate model error using observation residuals. Based on the sequential fixed-lag smoother; we introduce a diagnostic procedure to allow estimating model error over a dense observing system. Optimality considerations are examined in light of the sequential results. The procedure is re-interpreted in the language of variational assimilation, such as 4d-Var. Illustrations of the approach are given by studying both identical-twin and fraternal-twin experimental settings for a system governed by Lorenz-type dynamics. Preliminary results by looking at observation residual statistics for the ECMWF data assimilation system are also shown. The presentation will be part of a series of discussions on issues related to four-dimensional data assimilation under weak-constraint and methodologies to estimate model error.
    Keywords: Meteorology and Climatology
    Type: GSFC.ABS.6075.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...