ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-06-19
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: M12-1634 , NASA Fault Management Workshop; 10-12 Apr. 2012; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-04-10
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: M12-1633 , NASA Fault Management Workshop; 10-12 Apr. 2012; New Orleans, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: NASA is interested in designing a spacecraft capable of visiting a Near Earth Object (NEO), performing experiments, and then returning safely. Certain periods of this mission will require the spacecraft to remain stationary relative to the NEO. Such situations require an anchoring mechanism that is compact, easy to deploy and upon mission completion, easily removed. The design philosophy used in the project relies on the simulation capability of a multibody dynamics physics engine. On Earth it is difficult to create low gravity conditions and testing in low gravity environments, whether artificial or in space is costly and therefore not feasible. Through simulation, gravity can be controlled with great accuracy, making it ideally suited to analyze the problem at hand. Using Chrono::Engine [1], a simulation package capable of utilizing massively parallel GPU hardware, several validation experiments will be performed. Once there is sufficient confidence, modeling of the NEO regolith interaction will begin after which the anchor tests will be performed and analyzed. The outcome of this task is a study with an analysis of several different anchor designs, along with a recommendation on which anchor is better suited to the task of anchoring. With the anchors tested against a range of parameters relating to soil, environment and anchor penetration angles/velocities on a NEO.
    Keywords: Man/System Technology and Life Support
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: The Deployable Extra-Vehicular Activity Platform (DEVAP) is a staging platform for egress and ingress attached to a lunar, Mars, or planetary surface habitat airlock, suitlock, or port. The DEVAP folds up into a compact package for transport, and deploys manually from its attached location to provide a ramp and staging platform for extra-vehicular activities. This paper discusses the latest development of the DEVAP, from its beginnings as a portable platform attached to the Lunar Outpost Pressurized Excursion Module (PEM) in the Constellation Lunar Surface Systems scenarios, to the working prototype deployed at the2011 NASA Desert Research and Technology Studies (D-RATS) analog field tests in Arizona. The paper concludes with possible future applications and directions for the DEVAP.
    Keywords: Man/System Technology and Life Support
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-11
    Description: This summer, we quantified the release, by cryogenic grinding at liquid nitrogen temperatures, of microbes present in 4 different spacecraft solids: epoxy 9309, epoxy 9394, epoxy 9396, and a silicone coating. Three different samples of each material were prepared: aseptically prepared solid material, powdered material inoculated with a known spore count of Bacillus atrophaeus, and solid material artificially embedded with a known spore count of Bacillus atrophaeus. Samples were cryogenically ground as needed, and the powders were directly cultured to determine the number of microbial survivors per gram of material. Recovery rates were found to be highly material-dependent, varying from 0.2 to 50% for inoculated material surfaces and 0.002 to 0.5% for embedded spores. A study of the spore survival rate versus total grinding time was also performed, with results indicating that longer grinding time decreases recovery rates of viable spores.
    Keywords: Man/System Technology and Life Support
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-05
    Description: There is no convenient way to demonstrate mechanically, as an outreach (or inreach) topic, the angular momentum trade-offs and the conservation of angular momentum associated with gravityassist interplanetary trajectories. The mechanical concepts that underlie gravity assist are often misunderstood or confused, possibly because there is no mechanical analog to it in everyday experience. The Gravity Assist Mech - anical Simulator is a hands-on solution to this longstanding technical communications challenge. Users intuitively grasp the concepts, meeting specific educational objectives. A manually spun wheel with high angular mass and low-friction bearings supplies momentum to an attached spherical neodymium magnet that represents a planet orbiting the Sun. A steel bearing ball following a trajectory across a glass plate above the wheel and magnet undergoes an elastic collision with the revolving magnet, illustrating the gravitational elastic collision between spacecraft and planet on a gravity-assist interplanetary trajectory. Manually supplying the angular momentum for the elastic collision, rather than observing an animation, intuitively conveys the concepts, meeting nine specific educational objectives. Many NASA and JPL interplanetary missions are enabled by the gravity-assist technique.
    Keywords: Man/System Technology and Life Support
    Type: NASA Tech Briefs, November 2012; 17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-02
    Description: Photocatalytic materials are being used to purify air, to kill microbes, and to keep surfaces clean. A wide variety of materials are being developed, many of which have different abilities to absorb various wavelengths of light. Material variability, combined with both spectral illumination intensity and spectral distribution variability, will produce a wide range of performance results. The proposed technology estimates photocatalytic active radiation (PcAR), a unit of radiation that normalizes the amount of light based on its spectral distribution and on the ability of the material to absorb that radiation. Photocatalytic reactions depend upon the number of electron-hole pairs generated at the photocatalytic surface. The number of electron-hole pairs produced depends on the number of photons per unit area per second striking the surface that can be absorbed and whose energy exceeds the bandgap of the photocatalytic material. A convenient parameter to describe the number of useful photons is the number of moles of photons striking the surface per unit area per second. The unit of micro-einsteins (or micromoles) of photons per m2 per sec is commonly used for photochemical and photoelectric-like phenomena. This type of parameter is used in photochemistry, such as in the conversion of light energy for photosynthesis. Photosynthetic response correlates with the number of photons rather than by energy because, in this photochemical process, each molecule is activated by the absorption of one photon. In photosynthesis, the number of photons absorbed in the 400 700 nm spectral range is estimated and is referred to as photosynthetic active radiation (PAR). PAR is defined in terms of the photosynthetic photon flux density measured in micro-einsteins of photons per m2 per sec. PcAR is an equivalent, similarly modeled parameter that has been defined for the photocatalytic processes. Two methods to measure the PcAR level are being proposed. In the first method, a calibrated spectrometer with a cosine receptor is used to measure the spectral irradiance. This measurement, in conjunction with the photocatalytic response as a function of wavelength, is used to estimate the PcAR. The photocatalytic response function is determined by measuring photocatalytic reactivity as a function of wavelength. In the second method, simple shaped photocatalytic response functions can be simulated with a broad-band detector with a cosine receptor appropriately filtered to represent the spectral response of the photocatalytic material. This second method can be less expensive than using a calibrated spectrometer.
    Keywords: Man/System Technology and Life Support
    Type: NASA Tech Briefs, February 2011; 6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-05
    Description: The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called "tissue microfluidics" because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets.
    Keywords: Man/System Technology and Life Support
    Type: NASA Tech Briefs, August 2011; 20-21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-27
    Description: The In Situ Resource Utilization (ISRU) project has been developing technologies to produce oxygen from lunar regolith to provide consumables to a lunar outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloic and hydrofluoric acids are byproducts of the reduction processes, as halide minerals are also reduced at oxide reduction conditions. Because of the stringent water quality requirements for electrolysis, there is a need for a contaminant removal process. The Contaminant Removal from Oxygen Production Systems (CROPS) team has been developing a separation process to remove these contaminants in the gas and liquid phase that eliminates the need for consumables. CROPS has been using Nafion, a highly water selective polymeric proton exchange membrane, to recover pure water from the contaminated solution. Membrane thickness, product stream flow rate, and acid solution temperature and concentration were varied with the goal of maximizing water permeation and acid rejection. The results show that water permeation increases with increasing solution temperature and product stream flow rate, while acid rejection increases with decreasing solution temperature and concentration. Thinner membranes allowed for higher water flux and acid rejection than thicker ones. These results were used in the development of the hardware built for the most recent Mars ISRU demonstration project.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2012-229 , KSC-2012-229R , American Institute of Aeronautics and Astronautics SPACE 2012 Conference and Exposition; 11-13 Sept. 2012; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-27
    Description: Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System. With the U.S. Space Shuttle fleet retired, the supply of extremely high-quality water "super-Q" - required for the EMU Space suit cooling on this ISS - will become a significant operational hardware challenge in the very near future. A proposed potential solution is the use of a filtration system consisting of a semi-permeable membrane embedded with aquaporin proteins. Aquaporins are a special class of trans-membrane proteins that facilitate passive transport of water and other substances across a membrane. The specificity of these proteins is such that only water is allowed through the protein structure, and this novel property invites their adaptation for use in water filtration systems, specifically usage on the ISS for the EMU space suit system. These proteins are found in many living systems and have been developed for commercial use today.
    Keywords: Man/System Technology and Life Support
    Type: JSC-25164 , International Conference on Environmental Systems (ICES); 15019 Jul. 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-27
    Description: To communicate with each other or ground support, crew members on board the International Space Station (ISS) currently use the Audio Terminal Units (ATU), which are located in each ISS module. However, to use the ATU, crew members must stop their current activity, travel to a panel, and speak into a wall-mounted microphone, or use either a handheld microphone or a Crew Communication Headset that is connected to a panel. These actions unnecessarily may increase task times, lower productivity, create cable management issues, and thus increase crew frustration. Therefore, the Habitability and Human Factors and Human Interface Branches at the NASA Johnson Space Center (JSC) are currently investigating a commercial-off-the-shelf (COTS) wireless communication system, Vocera(C), as a near-term solution for ISS communication. The objectives of the acoustics and intelligibility testing of this system were to answer the following questions: 1. How intelligibly can a human hear the transmitted message from a Vocera(c) badge in three different noise environments (Baseline = 20 dB, US Lab Module = 58 dB, Russian Module = 70.6 dB)? 2. How accurate is the Vocera(C) badge at recognizing voice commands in three different noise environments? 3. What body location (chest, upper arm, or shoulder) is optimal for speech intelligibility and voice recognition accuracy of the Vocera(C) badge on a human in three different noise environments?
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-26451
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-19
    Description: Jim McBarron exhibits a wealth of knowledge gathered from more than 40 years of experience with NASA, EVA, and spacesuits. His biography, progression of work at NASA, impact on EVA and the U.S. spacesuit, and career accomplishments are of interest to many. Wright, from the JSC History Office, conducted a personal background interview with McBarron. This interview highlighted the influences and decision-making methods that impacted McBarron's technical and management contributions to the space program. Attendees gained insight on the external and internal NASA influences on career progression within the EVA and spacesuit, and the type of accomplishments and technical advances that committed individuals can make. He concluded the presentation with a question and answer period that included a brief discussion about close calls and Russian spacesuits.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-29307 , JSC Engineering Academy; Sep 28, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-19
    Description: The International Space Station (ISS) is a closed environment wi~h rotations of crew and equipment each introducing their own microbial flora making it necessary to monitor the air, surfaces, and water for microbial contamination. Current microbial monitoring includes labor and time intensive methods to enumerate total bacterial and fungal cells with limited characterization during in-flight testing. Although this culture-based method has been sufficient for monitoring the ISS, future long duration missions will need to perform more comprehensive characterization in-flight, since sample return and ground characterization may not be available. A workshop was held in 2011 at the Johnson Space Center to discuss alternative methodologies and technologies suitable for microbial monitoring for these longterm exploration missions where molecular-based methodologies, such as polymerase chain reaction (PCR), were recommended. In response, a multi-center (Marshall Space Flight Center, Johnson Space Center, Jet Propulsion Laboratory, and Kennedy Space Center) collaborative research effort was initiated to explore novel commercial-off-the-shelf hardware options for spaceflight environmental monitoring. The goal was to evaluate quantitative/semi-quantitative PCR approaches to space applications for low cost in-flight rapid identification of microorganisms affecting crew safety. The initial phase of this project identified commercially available platforms that could be minimally modified to perform nominally in microgravity followed by proof-of-concept testing on the highest qualifying candidates with a universally available test organism, Salmonella enterica. The platforms evaluated during proof-of-concept testing included the iCubate 2.0(TradeMark) (iCubate, Huntsville, AL), RAZOR EX (BioFire Diagnostics; Salt Lake City, Utah) and SmartCycler(TradeMark) (Cepheid; Sunnyvale, CA). The analysis identified two potential technologies (iCubate 2.0 and RAZOR EX) that were able to perform sample-to-answer testing with cell sample concentrations between SO to 400 cells. In addition, the commercial systems were evaluated for initial flight safety and readiness, sample concentration needs were reviewed, and a competitive procurement of commercially available platforms was initiated.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2012-295 , 43rd International Conference on Environmental Systems (ICES); Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-19
    Description: NASA is developing a Multi Mission Space Exploration Vehicle (MMSEV) for missions beyond Low Earth Orbit (LEO). The MMSEV is a pressurized vehicle used to extend the human exploration envelope for Lunar, Near Earth Object (NEO), and Deep Space missions. The Johnson Space Center is developing the Environmental Control and Life Support System (ECLSS) for the MMSEV. The MMSEV s intended use is to support longer sortie lengths with multiple Extra Vehicular Activities (EVAs) on a higher magnitude than any previous vehicle. This paper presents an analysis of a high pressure oxygen cascade storage and delivery system that will accommodate the crew during long duration Intra Vehicular Activity (IVA) and capable of multiple high pressure oxygen fills to the Portable Life Support System (PLSS) worn by the crew during EVAs. A cascade is a high pressure gas cylinder system used for the refilling of smaller compressed gas cylinders. Each of the large cylinders are filled by a compressor, but the cascade system allows small cylinders to be filled without the need of a compressor. In addition, the cascade system is useful as a "reservoir" to accommodate low pressure needs. A regression model was developed to provide the mechanism to size the cascade systems subject to constraints such as number of crew, extravehicular activity duration and frequency, and ullage gas requirements under contingency scenarios. The sizing routine employed a numerical integration scheme to determine gas compressibility changes during depressurization and compressibility effects were captured using the Soave-Redlich-Kwong (SRK) equation of state. A multi-dimensional nonlinear optimization routine was used to find the minimum cascade tank system mass that meets the mission requirements. The sizing algorithms developed in this analysis provide a powerful framework to assess cascade filling, compressor, and hybrid systems to design long duration vehicle ECLSS architecture. 1
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27534 , International Conference of Environmental Systems; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-19
    Description: The Next Generation Life Support Project is developing an Alternative Water Processor (AWP) as a candidate water recovery system for long duration exploration missions. The AWP consists of biological water processor (BWP) integrated with a forward osmosis secondary treatment system (FOST). The basis of the BWP is a membrane aerated biological reactor (MABR), developed in concert with Texas Tech University. Bacteria located within the MABR metabolize organic material in wastewater, converting approximately 90% of the total organic carbon to carbon dioxide. In addition, bacteria convert a portion of the ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrogen and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system is expected to produce water with a total organic carbon less than 50 mg/l and dissolved solids that meet potable water requirements for spaceflight. This paper describes the test definition, the design of the BWP and FOST subsystems, and plans for integrated testing.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27537 , International Conference on Environmental Systems (ICES); Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-19
    Description: The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation Portable Life Support System (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) spectrometer based on wavelength modulation spectroscopy (WMS) is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen (O2) channel using a vertical cavity surface emitting laser (VCSEL). Both prototypes are controlled digitally with a field-programmable gate array (FPGA)/microcontroller architecture. Based on the results of the initial instrument development, further prototype development and testing of instruments leveraging the lessons learned were desired. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU. .
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27520 , ICES 2013; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-19
    Description: The Rapid Cycle Amine (RCA) system is a low power assembly capable of simultaneously removing carbon dioxide (CO2) and humidity from an influent air steam and subsequent regeneration when exposed to a vacuum source. Two solid amine sorbent beds are alternated between an uptake mode and a regeneration mode. During the uptake mode, the sorbent is exposed to an air steam (ventilation loop) to adsorb CO2 and water vapor, while during the regeneration mode, the sorbent rejects the adsorbed CO2 and water vapor to a vacuum source. The two beds operate such that while one bed is in the uptake mode, the other is in the regeneration mode, thus continuously providing an on-service sorbent bed by which CO2 and humidity may be removed. A novel valve assembly provides a simple means of diverting the process air flow through the uptake bed while simultaneously directing the vacuum source to the regeneration bed. Additionally, the valve assembly is designed to allow for switching between uptake and regeneration modes with only one moving part while minimizing gas volume losses to the vacuum source by means of an internal pressure equalization step during actuation. The process can be controlled by a compact, low power controller design with several modes of operation available to the user. Together with NASA, United Technologies Corporation Aerospace Systems has been developing RCA 2.0 based on performance and design feedback on several sorbent bed test articles and valve design concepts. A final design was selected in November 2011 and fabricated and assembled between March and August 2012, with delivery to NASA-JSC in September 2012. This paper will provide an overview on the RCA system design and results of pre-delivery testing.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27519 , ICES 2013; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-19
    Description: NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system's liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems, but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.6 lb. The water side and gas side pressure drops were 0.8 psid and 0.5 inches of water, respectively. Performance of the heat exchanger at the nominal pressure of 4.1 psia was measured at 94%, while a gas inlet pressure of 25 psia resulted in an effectiveness of 84%. These results compared well with the model, which was scaled for the small size. Modeling of certain phenomena that affect performance, such as flow distribution in the headers was particularly difficult due to the small size of the heat exchanger. Data from the tests has confirmed the correction factors that were used in these parts of the model.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27300 , 43rd International Conference on Environmental Systems (ICES); Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-19
    Description: The International Space Station s (ISS) largest crew and cargo resupply vehicle, the Space Shuttle, retired in 2011. To help augment ISS resupply and return capability, NASA announced a project to promote the development of Commercial Orbital Transportation Services (COTS) for the ISS in January of 2006. By December of 2008, NASA entered into space act agreements with SpaceX and Orbital Sciences Corporation for COTS development and ISS Commercial Resupply Services (CRS). The intent of CRS is to fly multiple resupply missions each year to ISS with SpaceX s Dragon vehicle providing resupply and return capabilities and Orbital Science Corporation s Cygnus vehicle providing resupply capability to ISS. The ISS program launched an integration effort to ensure that these new commercial vehicles met the requirements of the ISS vehicle and ISS program needs. The Environmental Control and Life Support System (ECLSS) requirements cover basic cargo vehicle needs including maintaining atmosphere, providing atmosphere circulation, and fire detection and suppression. The ISS-COTS integration effort brought unique challenges combining NASA s established processes and design knowledge with the commercial companies new initiatives and limited experience with human space flight. This paper will discuss the ISS ECLS COTS integration effort including challenges, successes, and lessons learned.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27532 , 43rd International Conference on Environmental Systems; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-19
    Description: Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle program, there is a need to develop redundant biocide systems that do not require regular up ]mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that there is a wide variability with regards to efficacy in both concentration and exposure time of these disinfectants, therefore baseline efficacy values were established. This paper describes a series of tests performed in order to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on ISS.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27256 , International Conference on Environmental Systems (ICES); Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-19
    Description: The EMU (Extravehicular Mobility Unit) contains a semi-closed-loop re-circulating water circuit (Transport Loop) to absorb heat into a LCVG (Liquid Coolant and Ventilation Garment) worn by the astronaut. A second, single-pass water circuit (Feed-water Loop) provides water to a cooling device (Sublimator) containing porous plates, and that water sublimates through the porous plates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. The quality of the EMU Transport Loop water is maintained through the use of a water processing kit (ALCLR - Airlock Cooling Loop Remediation) that is used to periodically clean and disinfect the water circuit. Opportunities to reduce crew time associated with ALCLR operations include a detailed review of the historical water quality data for evidence to support an extension to the implementation cycle. Furthermore, an EMU returned after 2-years of use on the ISS (International Space Station) is being used as a test bed to evaluate the results of extended and repeated ALCLR implementation cycles. Finally, design, use and on-orbit location enhancements to the ALCLR kit components are being considered to allow the implementation cycle to occur in parallel with other EMU maintenance and check-out activities, and to extend the life of the ALCLR kit components. These efforts are undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post- Shuttle 6-year service life.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27390 , 43rd International Conference on Environmental Systems; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: The Advanced Space Suit team of the NASA-Johnson Space Center performed a series of test with the Z-1 prototype space suit in 2012. This paper discusses, at a summary level, the tests performed and results from those tests. The purpose of the tests were two -fold: 1) characterize the suit performance so that the data could be used in the downselection of components for the Z -2 Space Suit and 2) develop interfaces with the suitport and exploration vehicles through pressurized suit evaluations. Tests performed included isolated and functional range of motion data capture, Z-1 waist and hip testing, joint torque testing, CO2 washout testing, fit checks and subject familiarizations, an exploration vehicle aft deck and suitport controls interface evaluation, delta pressure suitport tests including pressurized suit don and doff, and gross mobility and suitport ingress and egress demonstrations in reduced gravity. Lessons learned specific to the Z -1 prototype and to suit testing techniques will be presented.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27258 , 43rd International Conference on Environmental Systems; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-19
    Description: The Orion Multi Purpose Crew Vehicle (MPCV) integrates the cabin and pressure suits with the core life support systems to provide life support during contingency depressurized cabin operations. To provide the multiple suit pressures between nominal pressurized cabin suited operations, suit leak checks, depressurized cabin suited operations, and elevated suit pressure for denitrification, a variable pressure regulator is needed. This paper documents the development of the suit loop regulator for Orion.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27524 , ICES; Jul 14, 2012 - Jul 18, 2012; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-19
    Description: The Potable Water Dispenser used on the International Space Station (ISS) interfaces with food and drink packages using the Beverage Adapter and Needle. Unexpected leakage has been seen in this interface. The Beverage Adapter used on ]orbit was returned to the ground for Test, Teardown, and Evaluation. The results of that investigation prompted a redesign of the Beverage Adapter and Needle. The Beverage Adapter materials were changed to be more corrosion resistant, and the Needle was redesigned to preclude leakage. The redesigns have been tested and proven.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27371 , 43rd International Conference on Environmental Systems; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-19
    Description: As NASA plans to send people beyond low Earth orbit, it is important to educate and inspire the next generation of astronauts, engineers, scientist, and general public. This is so important to NASA future that it is one of the agencies strategic goals. The Space Suits and Crew Survival Systems Branch at Johnson Space Center (JSC) is actively involved in helping to achieve this goal by sharing our hardware and technical experts with students, educators, and the general public and educating them about the challenges of human space flight, with Education and Public Outreach (EPO). This paper summarizes the Space Suit and Crew Survival Systems Branch EPO efforts throughout fiscal year 2012.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27303 , 43rd International Conference on Environmental Systems; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-19
    Description: Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle program, there is a need to develop redundant biocide systems that do not require regular up ]mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that there is a wide variability with regards to efficacy in both concentration and exposure time of these disinfectants, therefore baseline efficacy values were established. This paper describes a series of tests performed in order to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on ISS.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27254 , International Conference on Environmental Systems (ICES); Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-19
    Description: VEGGIE is a prototype vegetable production unit for space designed by Orbital Technologies Corporation that is being developed to fly on the International Space Station. A modular plant rooting system "pillow" is being designed to support plant growth in VEGGIE under microgravity conditions. VEGGIE pillows are small self-contained packets of media with time-release fertilizer that can wick water passively from a root mat reservoir. Seeds are planted in pillows and the entire root system of a plant is contained as the crop develops, preventing loss into the spacecraft cabin. This study compared five media types and three lettuce cultivars in pillows growing in a VEGGIE analog environment.. Media consisted of a peat-based potting mix (Fafard #2,Conrad Fafard Inc., Agawam, MA), and a calcined clay, (arcillite, 1-2 mm sifted, Turface Proleague, Profile LLC, Buffalo Grove IL) as well as three different blends of the two, 70:30, 50:50, and 30:70. Lettuce cultivars tested were 'Sierra', a bi-colored French crisp Batavia lettuce, 'Outredgeous', a red romaine lettuce and 'Flandria', a green butter head variety. Plants were grown for 28 days, harvested, biometric data was obtained, and tissue mineral analysis was performed. For all cultivars, lettuce plants grown in the media blends were more productive than those in the individual media types. All cultivars showed bell-shaped curves in response to increases in arcillite / decreases in Fafard #2 for leaf area, fresh, and dry mass. Plants in 100% Fafard #2 and in 100% arcillite were stunted, but only those in higher levels of Fafard #2 (70% and 100%) had reduced shoot percent moisture, possibly indicating that mechanisms causing stunting differed. Variation in tissue nutrient content are consistent with this, with Mg and Mn highest in plants grown in 100% Fafard and decreasing as the concentration of arcillite increased. Color also varied with media, especially in the 'Sierra' lettuce, with plants grown in increasing levels of Fafard #2 being much more red and those in 100% arcillite almost completely green. The red-leaf cultivar 'Outredgeous' showed increasing chlorophyll (SPAD values) with increasing percentage of arcillite. In all cultivars tested it appears that a mixture of media types, usually 50:50 or 30:70 Fafard #2: arcillite, sustained healthier, more productive plants. Smaller, less productive plants in either of the individual media may indicate stress issues, however more work is needed to understand the reasons for this sub-optimal growth. This work was supported by NASA
    Keywords: Man/System Technology and Life Support
    Type: KSC-2012-055 , American Society for Horitcultural Science; Jul 31, 2012 - Aug 03, 2012; Miami, FL; Yemen, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-19
    Description: The research purpose of the project was to determine the fate of microorganisms in space-generated solid wastes after processing by a Heat Melt Compactor (HMC), which is a candidate solid waste treatment technology. Five HMC product disks were generated at Ames Research Center (ARC), Waste Management Systems element. The feed for two was simulated space-generated trash and feed for three was Volume F compartment wet waste returned on STS 130. Conventional microbiological methods were used to detect and enumerate microorganisms in HMC disks and in surface swab samples of HMC hardware before and after operation. Also, biological indicator test strips were added to the STS trash prior to compaction to test if HMC processing conditions, 150 C for approx 3 hr and dehydration, were sufficient to eliminate the test bacteria on the strips. During sample acquisition at KSC, the HMC disk surfaces were sanitized with 70% alcohol to prevent contamination of disk interiors. Results from microbiological assays indicated that numbers of microbes were greatly reduced but not eliminated by the 70% alcohol. Ten 1.25 cm diameter cores were aseptically cut from each disk to sample the disk interior. The core material was run through the microbial characterization analyses after dispersal in sterile diluent. Low counts of viable bacteria (5 to 50 per core) were found but total direct counts were 6 to 8 orders of magnitude greater. These results indicate that the HMC operating conditions might not be sufficient for complete waste sterilization, but the vast majority of microbes present in the wastes were dead or non-cultivable after HMC treatment. The results obtained from analyses of the commercial spore test strips that had been added fo the wastes prior to HMC operation further indicated that the HMC was sterilizing the wastes. Nearly all strips were recovered from the HMC disks and all of these were negative for spore growth when run through the manufacturer's protocol. The 10(exp 6) or so spores impregnated into the strips were no longer viable. Control test strips, i.e., not exposed to the HMC conditions, were all strongly positive. All isolates from the cultivable counts were identified, leading to one concern: several were identified as Staphylococcus aureus, a human pathogen. The project reported here provides microbial characterization support to the Waste Management Systems element of the Life Support and Habitation Systems program.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2011-303 , 42nd International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-19
    Description: As NASA looks forward to sending humans farther away from Earth, we will have to develop a transportation architecture that is highly reliable and that can sustain life for long durations without the benefit of Earth s proximity for continuous resupply or even operational guidance. NASA has consistently been challenged with performing great feats of innovation, but particularly in this time of economic stress, we are challenged to go farther with less. The Advanced Exploration Systems (AES) projects were implemented to address both of these needs by not only developing innovative technologies, but by incorporating innovative management styles and processes that foster the needed technical innovation given a small amount of resources. This presentation explains how the AES Water Recovery Project is exhibiting innovation on both fronts; technical and process. The AES Water Recovery Project (WRP) is actively engineering innovative technologies in order to maximize the efficiency of water recovery. The development of reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support (ECLS) is critical to enable long-duration human missions outside of low-Earth orbit. Recycling of life support consumables is necessary to reduce resupply mass and provide for vehicle autonomy. To address this, the WRP is working on a rotary distiller that has shown enhanced performance over the state-of-the-art (SOA). Additionally, the WRP is looking at innovative ways to address issues present in the state-of-the-art (SOA) systems pertaining to toxicity and calcium scale buildup. As an AES project, the WRP has a more streamlined Skunk Works like approach to technology development intended to reduce overhead but achieve a more refined end product. The project has incorporated key partnerships between NASA centers as well as between NASA and industry. A minimal project management style has been implemented such that risks are managed and milestones tracked without overburdening the team with reporting demands that take them away from their work. A lean Systems Engineering (SE) approach has been implemented where project objectives are defined and vetted early without overprescribing the process or limiting the ability to innovate. Finally, we are working with existing flight hardware support organizations like operations, safety, materials and others to impact the system design at the breadboard level. This type of early input is a key to ensuring that the technologies are developed on the right track to becoming space flight worthy.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-26362 , AIAA Houston Technical Symposium; May 18, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-19
    Description: Over the past several years, NASA has realized tremendous progress in Extravehicular Activity (EVA) technology development. This has been evidenced by the progressive development of a new Rapic Cycle Amine (RCA) system for the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support Subsystem (PLSS). The PLSS is responsible for the life support of the crew member in the spacesuit. The RCA technology is responsible for carbon dioxide (CO2) and humidity control. Another aspect of the RCA is that it is on-back vacuum-regenerable, efficient, and reliable. The RCA also simplifies the PLSS schematic by eliminating the need for a condensing heat exchanger for humidity control in the current EMU. As development progresses on the RCA, it is important that the sizing be optimized so that the demand on the PLSS battery is minimized. As well, maintaining the CO2 washout at adequate levels during an EVA is an absolute requirement of the RCA and associated ventilation system. Testing has been underway in-house at NASA Johnson Space Center and analysis has been initiated to evaluate whether the technology provides exemplary performance in ensuring that the CO2 is removed sufficiently enough and the ventilation flow is adequate enough to maintain CO2 1 Project Engineer, Space Suit and Crew Survival Systems Branch, Crew and Thermal Systems Division, 2101 NASA Parkway, Houston, TX 77058/EC5. washout in the AEMU spacesuit helmet of the crew member during an EVA. This paper will review the recent developments of the RCA unit, the testing results performed in-house with a spacesuit simulator, and the associated analytical work along with insights from the medical aspect on the testing.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25300 , International Conference on Environmental Systems (ICES); Jul 15, 2011 - Jul 19, 2011; San DIego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-19
    Description: The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners activities on them, covering the period of time between March 2011 and February 2012. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to no later than 2028. 1
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25282 , 42nd International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-19
    Description: In support of the Urine Processor Assembly Precipitation Prevention Project (UPA PPP), multiple technologies were explored to prevent CaSO4 dot 2H2O (gypsum) precipitation during the on-orbit distillation process. Gypsum precipitation currently limits the water recovery rate onboard the International Space Station (ISS) to 70% versus the planned 85% target water recovery rate. Due to its advanced performance in removing calcium cations in pretreated augmented urine (PTAU), ion exchange was selected as one of the technologies for further development by the PPP team. A total of 12 ion exchange resins were evaluated in various equilibrium and dynamic column tests with solutions of dissolved gypsum, urine ersatz, PTAU, and PTAU brine at 85% water recovery. While initial evaluations indicated that the Purolite SST60 resin had the highest calcium capacity in PTAU (0.30 meq/mL average), later tests showed that the Dowex G26 and Amberlite FPC12H resins had the highest capacity (0.5 meq/mL average). Further dynamic column testing proved that G26 performance is +/- 10% of that value at flow rates of 0.45 and 0.79 Lph under continuous flow, and 10.45 Lph under pulsed flow. Testing at the Marshall Spaceflight Center (MSFC) integrates the ion exchange technology with a UPA ground article under flight-like pulsed flow conditions with PTAU. To date, no gypsum precipitation has taken place in any of the initial evaluations.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25303 , International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-19
    Description: The International Space Station (ISS) Urine Processor Assembly (UPA) experienced a hardware failure in the Distillation Assembly (DA) in October 2010. Initially the UPA was operated to recover 85% of the water from urine through distillation, concentrating the contaminants in the remaining urine. The DA failed due to precipitation of calcium sulfate (gypsum) which caused a loss of UPA function. The ISS UPA operations have been modified to only recover 70% of the water minimizing gypsum precipitation risk but substantially increasing water resupply needs. This paper describes the feasibility assessment of several technologies (ion exchange, chelating agents, threshold inhibitors, and Lorentz devices) to prevent gypsum precipitation. The feasibility assessment includes the development of assessment methods, chemical modeling, bench top testing, and validation testing in a flight-like ground UPA unit. Ion exchange technology has been successfully demonstrated and has been recommended for further development. The incorporation of the selected technology will enable water recovery to be increased from 70% back to the original 85% and improve the ISS water balance.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25233 , 42nd International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-19
    Description: The International Space Station (ISS) Crew Quarters (CQ) is a permanent personal space for crewmembers to sleep, perform personal recreation and communication, as well as provide on-orbit stowage of personal belongings. The CQs provide visual, light, and acoustic isolation for the crewmember. Over a two year period, four CQs were launched to the ISS and currently reside in Node 2. Since their deployment, all CQs have been occupied and continue to be utilized. After four years on-orbit, this paper will review failures that have occurred and the investigations that have resulted in successful on-orbit operations. This paper documents the on-orbit performance and sustaining activities that have been performed to maintain the integrity and utilization of the CQs.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25201 , International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-19
    Description: The International Space Station (ISS) has been designed as a laboratory for demonstrating technologies in a microgravity environment, benefitting exploration programs by reducing the overall risk of implementing such technologies in new spacecraft. At the beginning of fiscal year 2010, the ISS program manager requested that the amine-based, pressure-swing carbon dioxide and humidity absorption technology (designed by Hamilton Sundstrand, baselined for the ORION Multi-Purpose Crew Vehicle, and tested at the Johnson Space Center in relevant environments, including with humans, since 2005) be developed into a payload for ISS Utilization. In addition to evaluating the amine technology in a flight environment before the first launch of the ORION vehicle, the ISS program wanted to determine the capability of the amine technology to remove carbon dioxide from the ISS cabin environment at the metabolic rate of the full 6-person crew. Because the amine technology vents the absorbed carbon dioxide and water vapor to space vacuum (open loop), additional hardware needed to be developed to minimize the amount of air and water resources lost overboard. Additionally, the payload system would be launched on two separate Space Shuttle flights, with the heart of the payload the swingbed unit itself launching a full year before the remainder of the payload. This paper discusses the project management and challenges of developing the amine swingbed payload in order to accomplish the technology objectives of both the open-loop ORION application as well as the closed-loop ISS application.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25173 , International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego,CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-19
    Description: Equivalent System Mass (ESM) and reliability estimates were performed for different life support architectures based primarily on International Space Station (ISS) technologies. The analysis was applied to a hypothetical 1-year deep-space mission. High-level fault trees were initially developed relating loss of life support functionality to the Loss of Crew (LOC) top event. System reliability was then expressed as the complement (nonoccurrence) this event and was increased through the addition of redundancy and spares, which added to the ESM. The reliability analysis assumed constant failure rates and used current projected values of the Mean Time Between Failures (MTBF) from an ISS database where available. Results were obtained showing the dependence of ESM on system reliability for each architecture. Although the analysis employed numerous simplifications and many of the input parameters are considered to have high uncertainty, the results strongly suggest that achieving necessary reliabilities for deep-space missions will add substantially to the life support system mass. As a point of reference, the reliability for a single-string architecture using the most regenerative combination of ISS technologies without unscheduled replacement spares was estimated to be less than 1%. The results also demonstrate how adding technologies in a serial manner to increase system closure forces the reliability of other life support technologies to increase in order to meet the system reliability requirement. This increase in reliability results in increased mass for multiple technologies through the need for additional spares. Alternative parallel architecture approaches and approaches with the potential to do more with less are discussed. The tall poles in life support ESM are also reexamined in light of estimated reliability impacts.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25165 , International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-19
    Description: An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle. In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight program computer model predictions with specific operating conditions.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25158 , International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-19
    Description: ABSTRACT Many physiological factors, such as spinal elongation, fluid shifts, bone atrophy, and muscle loss, occur during an exposure to a microgravity environment. Spinal elongation is just one of the factors that can also affect the safety and performance of a crewmember while in space. Spinal elongation occurs due to the lack of gravity/compression on the spinal column. This allows for the straightening of the natural spinal curve. There is a possible fluid shift in the inter-vertebral disks that may also result in changes in height. This study aims at collecting the overall change in seated height for crewmembers exposed to a microgravity environment. During previous Programs, Apollo-Soyuz Test Project (ASTP) and Skylab, spinal elongation data was collected from a small number of subjects in a standing posture but were limited in scope. Data from these studies indicated a quick increase in stature during the first few days of weightlessness, after which stature growth reached a plateau resulting in up to a 3% increase of the original measurement [1-5]. However, this data was collected only for crewmembers in standing posture and not in a seated posture. Seated height may have a different effect than standing height due to a change in posture as well as due to a compounded effect of wearing restraints and a potential compression of the gluteal area. Seated height was deemed as a critical measurement in the design of the Constellation Program s (CxP) Crew Exploration Vehicle (CEV), called Orion which is now the point-of-departure vehicle for the Multi-Purpose Crew Vehicle (MPCV) Program; therefore a better understanding of the effects of microgravity on seated height is necessary. Potential changes in seated height that may not have impacted crew accommodation in previous Programs will have significant effects on crew accommodation due to the layout of seats in the Orion.. The current and existing configuration is such that the four crewmembers are stacked two by two with the commander and pilot seats on the top and the two remaining seats underneath, thereby limiting the amount of clearance for the crewmembers seated in the bottom seat. The inner mold line of these types of vehicles are fixed due to other design constraints; therefore, it is essential that all seats incorporate additional clearance to account for adequate spinal growth thereby ensuring that the crew can safely ingress the seat and be strapped in prior to its return to earth. If there is not enough clearance to account for spinal growth deltas between seats then there is the potential that crewmembers will not be able to comfortably and safely fit into their seats. The crewmember in the bottom stacked seat may even have negative clearance with the seat above him or her which could lead to potential ingress/egress issues or potentially injury of the crewmember during landing. These impacts are specific to these types of vehicles with stacked seat configuration. Without proper knowledge of the amount of spinal elongation, or growth, which occurs due to microgravity and space flight, the design of future vehicle(s) or suits may cause injury, discomfort, and limit crew accommodation and crew complements. The experiment primarily aimed to collect seated height data for subjects exposed to microgravity environments, and feed new information regarding the effect of elongation of the spine forward into the design of the Orion. The data collected during the experiment included, two seated height measurement and two digital pictures of seated height pre-, in-, and post-flight. In addition to seated height, crewmembers had an optional task of collecting stature , standing height. Seated height data was obtained from 29 crewmembers that included 8 ISS increment crew (2 females and 6 males) and 21 Shuttle crew (1 female, 20 males), and whose mean age was 48 years ( 4 years). This study utilized the last six Shuttle flights, STS-128 to STS-134. The results show that partipating crewmembers experienced growth up to 6% in seated height and up to 3% in stature. Based on the worst case statistical analysis of the subject data, the recommended seated height growth of 6% will be provided to the designers as the necessary seated height adjustment.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25133 , NASA Human Research Program Investigators'' Workshop; Feb 14, 2012 - Feb 16, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-19
    Description: Through the Advanced Exploration Systems Program, NASA is attempting to use the vast collection of space suit mobility data from 50 years worth of space suit testing to build predictive analysis tools to aid in early architecture decisions for future missions and exploration programs. However, the design engineers must first understand if and how data generated by different methodologies can be compared directly and used in an essentially interchangeable manner. To address this question, the isolated joint range of motion data from two different test series were compared. Both data sets were generated from participants wearing the Mark III Space Suit Technology Demonstrator (MK-III), Waist Entry I-suit (WEI), and minimal clothing. Additionally the two tests shared a common test subject that allowed for within subject comparisons of the methods that greatly reduced the number of variables in play. The tests varied in their methodologies: the Space Suit Comparative Technologies Evaluation used 2D photogrammetry to analyze isolated ranges of motion while the Constellation space suit benchmarking and requirements development used 3D motion capture to evaluate both isolated and functional joint ranges of motion. The isolated data from both test series were compared graphically, as percent differences, and by simple statistical analysis. The results indicated that while the methods generate results that are statistically the same (significance level p= 0.01), the differences are significant enough in the practical sense to make direct comparisons ill advised. The concluding recommendations propose direction for how to bridge the data gaps and address future mobility data collection to allow for backward compatibility.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25038 , 42nd International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-19
    Description: Crowd sourcing may be defined as the act of outsourcing tasks that are traditionally performed by an employee or contractor to an undefined, generally large group of people or community (a crowd) in the form of an open call. The open call may be issued by an organization wishing to find a solution to a particular problem or complete a task, or by an open innovation service provider on behalf of that organization. In 2008, the Space Life Sciences Directorate (SLSD), with the support of Wyle Integrated Science and Engineering, established and implemented pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical challenges. These unsolved technical problems were converted to problem statements, also called "Challenges" or "Technical Needs" by the various open innovation service providers, and were then posted externally to seek solutions. In addition, an open call was issued internally to NASA employees Agency wide (10 Field Centers and NASA HQ) using an open innovation service provider crowd sourcing platform to post NASA challenges from each Center for the others to propose solutions). From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external problems or challenges were posted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive crowd sourcing platform designed for internal use by an organization. This platform was customized for NASA use and promoted as NASA@Work. The results were significant. Of the seven InnoCentive external challenges, two full and five partial awards were made in complex technical areas such as predicting solar flares and long-duration food packaging. Similarly, the TopCoder challenge yielded an optimization algorithm for designing a lunar medical kit. The Yet2.com challenges yielded many new industry and academic contacts in bone imaging, microbial detection and even the use of pharmaceuticals for radiation protection. The internal challenges through NASA@Work drew over 6000 participants across all NASA centers. Challenges conducted by each NASA center elicited ideas and solutions from several other NASA centers and demonstrated rapid and efficient participation from employees at multiple centers to contribute to problem solving. Finally, on January 19, 2011, the SLSD conducted a workshop on open collaboration and innovation strategies and best practices through the newly established NASA Human Health and Performance Center (NHHPC). Initial projects will be described leading to a new business model for SLSD.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-22956 , 62nd International Astronautical Congress; Oct 03, 2011 - Oct 07, 2011; Capt Town,; South Africa
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-19
    Description: Several candidate advanced pressure bladder membrane materials have been developed for NASA Johnson Space Center by DSM Biomedical for selective permeability of carbon dioxide and water vapor. These materials were elasthane and two other formulations of thermoplastic polyether polyurethane. Each material was tested in two thicknesses for permeability to carbon dioxide, oxygen and water vapor. Although oxygen leaks through the suit bladder would amount to only about 60 cc/hr in a full size suit, significant amounts of carbon dioxide would not be rejected by the system to justify its use. While the ratio of carbon dioxide to oxygen permeability is about 48 to 1, this is offset by the small partial pressure of carbon dioxide in acceptable breathing atmospheres of the suit. Humidity management remains a possible use of the membranes depending on the degree to which the water permeability is inhibited by cations in the sweat. Tests are underway to explore cation fouling from sweat.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-22044 , 41st International Conference on Environmental Systems (ICES); Jul 17, 2011 - Jul 21, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: Ice Sheet System Model (ISSM) 2011 Workshop; Dec 12, 2011 - Dec 13, 2011; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: NASA Engineers design spacesuits for ultimate protection and functionality in the extreme environment of space. The spacesuit is often referred to as a "personal spacecraft" because it provides the astronaut with everything he or she needs to survive and work in space outside of the vehicle or habitat. The systems within the spacesuit include the pressure garment system (PGS), the Portable Life Support System (PLSS), and the power, avionics, and software (PAS) system. These elements are necessary to protect crewmembers and allow them to work effectively in the pressure and temperature extremes of space environments. Development of the spacesuit system is necessary to support future human extravehicular exploration activities to Lunar, Martian, microgravity, and possibly other space destinations. Although all the systems that makeup the space suit are important, the PLSS is one of the most complex. The PLSS provides the life support needed by the astronaut and consists of the oxygen (O2) subsystem, ventilation subsystem, and thermal control subsystem. Within each subsystem, there are many different components, a few of which are explained as follows. The oxygen tanks hold the oxygen that the crewmember uses to breath and pressurizes the suit. The primary oxygen tank is responsible during normal operations and the secondary oxygen tank kicks on in the case of an emergency. The Rapid Cycle Amine (RCA) canister is used to remove the carbon dioxide (CO2) and extra humidity in the crewmember's ventilation/breathing gas. The fan moves the oxygen around the suit. Suit Water Membrane Evaporator (SWME) is used within the thermal control loop to cool the water that is used to maintain a comfortable temperature for both the crew member and the other equipment inside the suit. Another component is the battery, which supplies the power needed to operate all these and the many other pieces. The battery is one of the biggest and heavies components within the PLSS. These are just a few of the components that encompass the PLSS. Each component has a weight and a certain volume that the NASA Engineers must take into account when building the PLSS, because the weight and volumes affect the crewmembers center of gravity (CG). [See the Notes Section for the link to an Apollo video that demonstrates the issues some of the crewmembers had picking up tools and dealing with center of gravity/tools on the surface of the Moon.] In this activity, students will simulate engineering design techniques that NASA Engineers and Designers are currently implementing to configuring the components within the PLSS. Through testing, students will consider the comfort, mobility, and center of gravity for their test subjects and how that changes after adjusting the placement of their simulated PLSS components.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-29489 , JSC Engineering Academy; Oct 20, 2011; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-29360 , JSC Engineering Academy; Jun 25, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: A NASA spacesuit under the EVA Technology Domain consists of a suit system; a PLSS; and a Power, Avionics, and Software (PAS) system. Ross described the basic functions, components, and interfaces of the PLSS, which consists of oxygen, ventilation, and thermal control subsystems; electronics; and interfaces. Design challenges were reviewed from a packaging perspective. Ross also discussed the development of the PLSS over the last two decades.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-29672 , JSC Engineering Academy; Jan 25, 2011; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: Human space missions have critical needs for monitoring and control for life support systems. These systems have monitoring needs that include feedback for closed loop processes and quality control for environmental factors. Sensors and monitoring technologies assure that the air environment and water supply for the astronaut crew habitat fall within acceptable limits, and that the life support system is functioning properly and efficiently. The longer the flight duration and the more distant the destination, the more critical it becomes to have carefully monitored and automated control systems for life support. Past experiments with the JPL ENose have demonstrated a lifetime of the sensor array, with the software, of around 18 months. The lifetime of the calibration, for some analytes, was as long as 24 months. We are working on a sensor array and new algorithms that will include sensor response time in the analysis. The preliminary array analysis for two analytes shows that the analysis time, of an event, can be dropped from 45 minutes to less than10 minutes and array training time can be cut substantially. We will describe the lifetime testing of an array and show lifetime data on individual sensors. This progress will lead to more rapid identification of analytes, and faster training time of the array.
    Keywords: Man/System Technology and Life Support
    Type: 42nd International Conference on Environmental Systems; Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a space suit while the space suit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. Two second generation suitports were designed and tested. The previously reported second generation Marman Clamp suitport and a newer concept, the Pneumatic Flipper Suitport. These second generation suitports demonstrated human donning and doffing of the Z1 spacesuit with an 8.3 psi pressure differential across the spacesuit. Testing was performed using the JSC B32 Chamber B, a human rated vacuum chamber. The test included human rated suitports, the suitport compatible prototype suit, and chamber modifications. This test brought these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents the results of the testing, including unexpected difficulties with doffing, and engineering solutions implemented to ease the difficulties. A review of suitport functions, including a discussion of the need to doff a pressurized suit in earth gravity, is included. Recommendations for future design and testing are documented.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27334 , International Conference on Environmental Systems; Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: A test was conducted to evaluate three factors influencing the thermal performance of liquid cooling garments (LCG): (1) the comparable thermal performance of an Oceaneering developed engineering evaluation unit (EEU) prototype LDG, (2) the effect of the thermal comfort undergarment (TCU), and (3) the performance of a torso or upper body only LCG configuration. To evaluate the thermal performance of each configuration a metabolic test was conducted, utilizing suited subjects to generate the metabolic heat. For this study three (3) test subjects of similar health and weight produced a metabolic load on the LDG configuration by either resting (300-600 BTU/hr), walking at a slow pace (1200 BRU/hr), and walking at a brisk pace (2200 BTU/hr), as outlined in Figure 1, the metabolic profile. During the test, oxygen consumption, heart rate, relative humidity, air flow, inlet and outlet air pressure, inlet and outlet air temperature, delta air temperature, water flow (100 lb/hr), inlet water temperature (64 F), delta water temperature, water pressure, core body temperature, skin temperature, and sweat loss data was recorded. Four different test configurations were tested, with one configuration tested twice, as outlined in Table 1. The test was conducted with the suit subjects wearing the Demonstrator Suit, pressurized to vent pressure (approximately 0.5 psig). The demonstrator suit has an integrated ventilation duct system and was used to create a relevant environment with a captured ventilation return, an integrated vent tree, and thermal insulation from the environment.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27396 , International Conference on Environmental Systems (ICES 2012); Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-26958 , Human Systems Integration (HSI) at NASA; Sep 11, 2012 - Sep 12, 2012; Springfield, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: With the retirement of the U.S. Space Shuttle fleet, the supply of extremely high quality water required for the Extravehicular Mobility Unit (EMU) space suit cooling on the International Space Station (ISS) will become a significant operational hardware challenge in the very near future. One proposed solution is the use of a filtration system consisting of a semipermeable membrane embedded with aquaporin proteins, a special class of transmembrane proteins that facilitate passive, selective transport of water in vivo. The specificity of aquaporins is such that only water is allowed through the protein structure, and it is this novel property that invites their adaptation for use in water filtration systems, specifically those onboard the ISS for the EMU space suit system. These proteins are also currently being developed for use in terrestrial filtration systems.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-26629 , International Conference on Environmental Systems (ICES); Jul 15, 2011 - Jul 19, 2011; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: The Human Powered Centrifuge (HPC) is a facility that is planned to be installed on board the International Space Station (ISS) to enable crew exercises under the artificial gravity conditions. The HPC equipment includes a "bicycle" for long-term exercises of a crewmember that provides power for rotation of HPC at a speed of 30 rpm. The crewmember exercising vigorously on the centrifuge generates the amount of carbon dioxide of about two times higher than a crewmember in ordinary conditions. The goal of the study is to analyze the airflow and carbon dioxide distribution within Pressurized Multipurpose Module (PMM) cabin when HPC is operating. A full unsteady formulation is used for airflow and CO2 transport CFD-based modeling with the so-called sliding mesh concept when the HPC equipment with the adjacent Bay 4 cabin volume is considered in the rotating reference frame while the rest of the cabin volume is considered in the stationary reference frame. The rotating part of the computational domain includes also a human body model. Localized effects of carbon dioxide dispersion are examined. Strong influence of the rotating HPC equipment on the CO2 distribution detected is discussed.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-26311 , International Conference on Environmental Systems; Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: Function allocation assigns work functions to all agents in a team, both human and automation. Efforts to guide function allocation systematically have been studied in many fields such as engineering, human factors, team and organization design, management science, cognitive systems engineering. Each field focuses on certain aspects of function allocation, but not all; thus, an independent discussion of each does not address all necessary aspects of function allocation. Four distinctive perspectives have emerged from this comprehensive review of literature on those fields: the technology-centered, human-centered, team-oriented, and work-oriented perspectives. Each perspective focuses on different aspects of function allocation: capabilities and characteristics of agents (automation or human), structure and strategy of a team, and work structure and environment. This report offers eight issues with function allocation that can be used to assess the extent to which each of issues exist on a given function allocation. A modeling framework using formal models and simulation was developed to model work as described by the environment, agents, their inherent dynamics, and relationships among them. Finally, to validate the framework and metrics, a case study modeled four different function allocations between a pilot and flight deck automation during the arrival and approach phases of flight.
    Keywords: Man/System Technology and Life Support
    Type: NF1676L-13143
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: One possible next leap in human space exploration for the National Aeronautics and Space Administration (NASA) is a mission to a near Earth asteroid (NEA). In order to achieve such an ambitious goal, a space habitat will need to accommodate a crew of four for the 380-day round trip. The Human Spaceflight Architecture Team (HAT) developed a conceptual design for such a habitat. The team identified activities that would be performed inside a long-duration, deep space habitat, and the capabilities needed to support such a mission. A list of seven functional activities/capabilities was developed: individual and group crew care, spacecraft and mission operations, subsystem equipment, logistics and resupply, and contingency operations. The volume for each activity was determined using NASA STD-3001 and the companion Human Integration Design Handbook (HIDH). Although, the sum of these volumes produced an over-sized spacecraft, the team evaluated activity frequency and duration to identify functions that could share a common volume without conflict, reducing the total volume by 24%. After adding 10% for growth, the resulting functional pressurized volume was calculated to be a minimum of 268 m3 (9,464 ft3) distributed over the functions. The work was validated through comparison to Mir, Skylab, the International Space Station (ISS), Bigelow Aerospace s proposed habitat module, and NASA s Trans-Hab concept. Using HIDH guidelines, the team developed an internal layout that (a) minimized the transit time between related crew stations, (b) accommodated expected levels of activity at each station, (c) isolated stations when necessary for health, safety, performance, and privacy, and (d) provided a safe, efficient, and comfortable work and living environment.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-26469 , Global Space Exploration Conference; May 22, 2012 - May 24, 2012; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: Under the direction of NASA's Exploration Systems Mission Directorate (ESMD), Directorate Integration Office (DIO), The Tauri Group with NASA's Technology Assessment and Integration Team (TAIT) completed several studies and white papers that identify novel technologies for human exploration. These studies provide technical inputs to space exploration roadmaps, identify potential organizations for exploration partnerships, and detail crosscutting technologies that may meet some of NASA's critical needs. These studies are supported by a relational database of more than 400 externally funded technologies relevant to current exploration challenges. The identified technologies can be integrated into existing and developing roadmaps to leverage external resources, thereby reducing the cost of space exploration. This approach to identifying potential spin-in technologies and partnerships could apply to other national space programs, as well as international and multi-government activities. This paper highlights innovative technologies and potential partnerships from economic sectors that historically are less connected to space exploration. It includes breakthrough concepts that could have a significant impact on space exploration and discusses the role of breakthrough concepts in technology planning. Technologies and partnerships are from NASA's Technology Horizons and Technology Frontiers game-changing and breakthrough technology reports as well as the External Government Technology Dataset, briefly described in the paper. The paper highlights example novel technologies that could be spun-in from government and commercial sources, including virtual worlds, synthetic biology, and human augmentation. It will consider how these technologies can impact space exploration and will discuss ongoing activities for planning and preparing them.
    Keywords: Man/System Technology and Life Support
    Type: IAC-11.D1.2.1 , NF1676L-14663 , Global Space Exploration Conference; May 22, 2012 - May 24, 2012; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: In order to be able to adapt to differing vehicle interfaces such as suitport and airlock, adjust to varying vehicle pressure schedules, tolerate lower quality working fluids, and adapt to differing suit architectures as dictated by a range of mission architectures, the next generation space suit requires more adaptability and robustness over that of the current Shuttle/ISS Extra-vehicular Mobility Unit (EMU). While some features have been added to facilitate interfaces to differing vehicle and suit architectures, the key performance gains have been made via incorporation of new technologies such as the variable pressure regulators, Rapid Cycle Amine swing-bed, and Suit Water Membrane Evaporator. This paper performs a comparison between the Shuttle/ISS EMU PLSS schematic and the Advanced EMU PLSS schematic complete with a discussion for each difference.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-26332 , 42 International Conference on Environmental Systems; Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: In this study, three different mineral acids were substituted for sulfuric acid (H2SO4) in the urine stabilizer solution to eliminate the excess of sulfate ions in pretreated urine and assess the impact on maximum water recovery to avoid precipitation of minerals during distillation. The study evaluated replacing 98% sulfuric acid with 85% phosphoric acid (H3PO4), 37% hydrochloric acid (HCl), or 70% nitric acid (HNO3). The effect of lowering the oxidizer concentration in the pretreatment formulation also was studied. This paper summarizes the test results, defines candidate formulations for further study, and specifies the injection masses required to stabilize urine and minimize the risk of mineral precipitation during distillation. In the first test with a brine ersatz acidified with different acids, the solubility of calcium in gypsum saturated solutions was measured. The solubility of gypsum was doubled in the brines acidified with the alternative acids compared to sulfuric acid. In a second series of tests, the alternative acid pretreatment concentrations were effective at preventing precipitation of gypsum and other minerals up to 85% water recovery from 95th-percentile pretreated, augmented urine. Based on test results, phosphoric acid is recommended as the safest alternative to sulfuric acid. It also is recommended that the injected mass concentration of chromium trioxide solution be reduced by 75% to minimize liquid resupply mass by about 50%, reduce toxicity of brines, and reduce the concentration of organic acids in distillate. The new stabilizer solution formulations and required doses to stabilize urine and prevent precipitation of minerals up to 85% water recovery are given. The formulations in this study were tested on a limited number of artificially augmented urine batches collected from employees at the Johnson Space Center (JSC). This study successfully demonstrated that the desired physical and chemical stability of pretreated urine and brines can be achieved using alternate pretreatment formulations under laboratory conditions. Additional testing and hazard assessments will be required to determine the feasibility of utilizing the proposed urine pretreatment formulations on ISS.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-26099 , ICES 2012; Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: KSC-2012-087 , AgroSpace 2012; May 24, 2012 - May 25, 2012; Sperlonga; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: The on going purpose of the project efforts was to characterize and determine the fate of microorganisms in space-generated solid wastes before and after processing by candidate solid waste processing. For FY 11, the candidate technology that was assessed was the Heat Melt Compactor (HMC). The scope included five HMC. product disks produced at ARC from either simulated space-generated trash or from actual space trash, Volume F compartment wet waste, returned on STS 130. This project used conventional microbiological methods to detect and enumerate microorganisms in heat melt compaction (HMC) product disks as well as surface swab samples of the HMC hardware before and after operation. In addition, biological indicators were added to the STS trash prior to compaction in order to determine if these spore-forming bacteria could survive the HMC processing conditions, i.e., high temperature (160 C) over a long duration (3 hrs). To ensure that surface dwelling microbes did not contaminate HMC product disk interiors, the disk surfaces were sanitized with 70% alcohol. Microbiological assays were run before and after sanitization and found that sanitization greatly reduced the number of identified isolates but did not totally eliminate them. To characterize the interior of the disks, ten 1.25 cm diameter core samples were aseptically obtained for each disk. These were run through the microbial characterization analyses. Low counts of bacteria, on the order of 5 to 50 per core, were found, indicating that the HMC operating conditions might not be sufficient for waste sterilization. However, the direct counts were 6 to 8 orders of magnitude greater, indicating that the vast majority of microbes present in the wastes were dead or non-cultivable. An additional indication that the HMC was sterilizing the wastes was the results from the added commercial spore test strips to the wastes prior to HMC operation. Nearly all could be recovered from the HMC disks post-operation and all were showed negative growth when run through the manufacturer's protocol, meaning that the 106 or so spores impregnated into the strips were dead. Control test strips, i.e., not exposed to the HMC conditions were all strongly positive. One area of concern is that the identities of isolates from the cultivable counts included several human pathogens, namely Staphylococcus aureus. The project reported here provides microbial characterization support to the Waste Management Systems element of the Life Support and Habitation Systems program.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2012-071 , 42nd International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: One possible next leap in human space exploration for the National Aeronautics and Space Administration (NASA) is a mission to a near Earth asteroid (NEA). In order to achieve such an ambitious goal, a space habitat will need to accommodate a crew of four for the 380-day round trip. The Human Spaceflight Architecture Team (HAT) developed a conceptual design for such a habitat. The team identified activities that would be performed inside a long-duration, deep space habitat, and the capabilities needed to support such a mission. A list of seven functional activities/capabilities was developed: individual and group crew care, spacecraft and mission operations, subsystem equipment, logistics and resupply, and contingency operations. The volume for each activity was determined using NASA STD-3001 and the companion Human Integration Design Handbook (HIDH). Although, the sum of these volumes produced an over-sized spacecraft, the team evaluated activity frequency and duration to identify functions that could share a common volume without conflict, reducing the total volume by 24%. After adding 10% for growth, the resulting functional pressurized volume was calculated to be a minimum of 268 cu m (9,464 cu ft) distributed over the functions. The work was validated through comparison to Mir, Skylab, the International Space Station (ISS), Bigelow Aerospace s proposed habitat module, and NASA s Trans-Hab concept. Using HIDH guidelines, the team developed an internal layout that (a) minimized the transit time between related crew stations, (b) accommodated expected levels of activity at each station, (c) isolated stations when necessary for health, safety, performance, and privacy, and (d) provided a safe, efficient, and comfortable work and living environment.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-26326 , Global Exploration 2012 Conference; May 22, 2012 - May 24, 2012; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: Life support is vital to human spaceflight, and most current life support systems employ single-use hardware or regenerable technologies that throw away the waste products, relying on resupply to make up the consumables lost in the process. Because the long-term goal of the National Aeronautics and Space Administration is to expand human presence beyond low-earth orbit, life support systems must become self-sustaining for missions where resupply is not practical. From May through October 2011, the life support team at the Johnson Space Center was challenged to define requirements, develop a system concept, and create a preliminary life support system design for a non-planetary Deep Space Habitat that could sustain a crew of four in near earth orbit for a duration of 388 days. Some of the preferred technology choices to support this architecture were passed over because the mission definition has an unmanned portion lasting 825 days. The main portion of the architecture was derived from technologies currently integrated on the International Space Station as well as upcoming technologies with moderate Technology Readiness Levels. The final architecture concept contains only partially-closed air and water systems, as the breakeven point for some of the closure technologies was not achieved with the mission duration.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-26219 , 42nd International Conference on Environmental Systems; Jul 15, 2010 - Jul 19, 2010; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25848 , HRP Investigators'' Workshop; Feb 14, 2012 - Feb 16, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25760 , Human Research Program Investigator Workshop; Feb 15, 2012; Houston, TX`; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: Developing technologies that would enable NASA to sample rock, soil, and ice by coring, drilling or abrading at a significant depth is of great importance for a large number of in-situ exploration missions as well as for earth applications. Proven techniques to sample Mars subsurface will be critical for future NASA astrobiology missions that will search for records of past and present life on the planet, as well as, the search for water and other resources. A deep corer, called Auto-Gopher, is currently being developed as a joint effort of the JPL's NDEAA laboratory and Honeybee Robotics Corp. The Auto-Gopher is a wire-line rotary-hammer drill that combines rock breaking by hammering using an ultrasonic actuator and cuttings removal by rotating a fluted bit. The hammering mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) that has been developed as an adaptable tool for many of drilling and coring applications. The USDC uses an intermediate free-flying mass to transform the high frequency vibrations of the horn tip into a sonic hammering of a drill bit. The USDC concept was used in a previous task to develop an Ultrasonic/Sonic Ice Gopher. The lessons learned from testing the ice gopher were implemented into the design of the Auto-Gopher by inducing a rotary motion onto the fluted coring bit. A wire-line version of such a system would allow penetration of significant depth without a large increase in mass. A laboratory version of the corer was developed in the NDEAA lab to determine the design and drive parameters of the integrated system. The design configuration lab version of the design and fabrication and preliminary testing results are presented in this paper
    Keywords: Man/System Technology and Life Support
    Type: ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems; May 07, 2011 - May 11, 2011; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: A multi-year effort has been carried out at NASA-JSC to develop an advanced extra-vehicular activity Portable Life Support System (PLSS) design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. Previous efforts have focused on modeling and analyzing the advanced PLSS architecture, as well as developing key enabling technologies. Like the current International Space Station Extra-vehicular Mobility Unit PLSS, the advanced PLSS comprises three subsystems required to sustain the crew during extra-vehicular activity including the Thermal, Ventilation, and Oxygen Subsystems. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test bed that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off the shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, Ventilation Subsystem fan, Rapid Cycle Amine swingbed carbon dioxide and water vapor removal device, and Spacesuit Water Membrane Evaporator heat rejection device. The overall PLSS 1.0 test objective was to demonstrate the capability of the Advanced PLSS to provide key life support functions including suit pressure regulation, carbon dioxide and water vapor removal, thermal control and contingency purge operations. Supplying oxygen was not one of the specific life support functions because the PLSS 1.0 test was not oxygen rated. Nitrogen was used for the working gas. Additional test objectives were to confirm PLSS technology development components performance within an integrated test bed, identify unexpected system level interactions, and map the PLSS 1.0 performance with respect to key variables such as crewmember metabolic rate and suit pressure. Successful PLSS 1.0 testing completed 168 test points over 44 days of testing and produced a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected; furthermore, many system responses trended in accordance with pre-test predictions.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-26247 , 42nd International Conference on Environmental Systems; Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA). These dynamic models were developed using the Aspen Custom Modeler (Registered TradeMark) and Aspen Plus(Registered TradeMark) process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25787 , 42nd International Conference on Environmental Systems; Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: This paper describes a glove with which users enter input by tapping fingertips with the thumb or by rubbing the thumb over the palmar surfaces of the middle and index fingers. The glove has been informally tested as the controller for two semi-autonomous robots in a a 3D simulation environment. A preliminary evaluation of the glove s performance is presented.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Intelligent User Interfaces; Feb 14, 2012 - Feb 17, 2012; Lisbon; Portugal
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: The transition from low earth orbit Extravehicular Activity (EVA) for construction and maintenance activities to planetary surface EVA on asteroids, moons, and, ultimately, Mars demands a new spacesuit system. NASA's development of that system has resulted in dramatically different pumping requirements from those in the current spacesuit system. Hamilton Sundstrand, Cascon, and NASA are collaborating to develop and mature a pump that will reliably meet those new requirements in space environments and within the design constraints imposed by spacesuit system integration. That collaboration, which began in the NASA purchase of a pump prototype for test evaluation, is now entering a new phase of development. A second generation pump reflecting the lessons learned in NASA's testing of the original prototype will be developed under Hamilton Sundstrand internal research funding and ultimately tested in an integrated Advanced Portable Life Support System (APLSS) in NASA laboratories at the Johnson Space Center. This partnership is providing benefit to both industry and NASA by supplying a custom component for EVA integrated testing at no cost to the government while providing test data for industry that would otherwise be difficult or impossible to duplicate in industry laboratories. This paper discusses the evolving collaborative process, component requirements and design development based on early NASA test experience, component stand alone test results, and near term plans for integrated testing at JSCs.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-26074 , International Conference on Environmental Systems; Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: The maturation of Molten Regolith Electrolysis (MRE) as a viable technology for oxygen and metals production on explored planets relies on the realization of the self-heating mode for the reactor. Joule heat generated during regolith electrolysis creates thermal energy that should be able to maintain the molten phase (similar to electrolytic Hall-Heroult process for aluminum production). Self-heating via Joule heating offers many advantages: (1) The regolith itself is the crucible material, it protects the vessel walls (2) Simplifies the engineering of the reactor (3) Reduces power consumption (no external heating) (4) Extends the longevity of the reactor. Predictive modeling is a tool chosen to perform dimensional analysis of a self-heating reactor: (1) Multiphysics modeling (COMSOL) was selected for Joule heat generation and heat transfer (2) Objective is to identify critical dimensions for first reactor prototype.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2012-006RR , KSC-2012-006R , KSC-2011-305 , 50th AIAA Aerospace Sciences Meeting; Jan 09, 2012 - Jan 12, 2012; Nashville, TN; United States|42nd International Conference on Environmental Systems (ICES); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: In 2009 and early 2010, a test method was developed and performed to quantify the torque required to manipulate joints in several existing operational and prototype space suits. This was done in an effort to develop joint torque requirements appropriate for a new Constellation Program space suit system. The same test method was levied on the Constellation space suit contractors to verify that their suit design met the requirements. However, because the original test was set up and conducted by a single test operator there was some question as to whether this method was repeatable enough to be considered a standard verification method for Constellation or other future development programs. In order to validate the method itself, a representative subset of the previous test was repeated, using the same information that would be available to space suit contractors, but set up and conducted by someone not familiar with the previous test. The resultant data was compared using graphical and statistical analysis; the results indicated a significant variance in values reported for a subset of the re-tested joints. Potential variables that could have affected the data were identified and a third round of testing was conducted in an attempt to eliminate and/or quantify the effects of these variables. The results of the third test effort will be used to determine whether or not the proposed joint torque methodology can be applied to future space suit development contracts.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-26077 , International Conference on Environmental Systems; Jul 16, 2012 - Jul 20, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: M11-0937 , American Institute of Chemical Engineers (AICHE) Annual Meeting; Oct 14, 2011 - Oct 17, 2011; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: We have developed a dry-electrode harness that permits easy, rapid, and unsupervised self-acquisition of resting 12-lead ECGs without the use of any disposables. Various other advantageous features of the harness include: 1) padded or inflatable cushions at the lateral sides of the torso that function to press the left arm (LA) and right arm (RA) dry electrodes mounted on cushions against sideward (as shown in the Figure below) or downward-rested arms of the subject; 2) sufficient distal placement of the arm electrodes with good abutment and without the need for adhesives, straps, bands, bracelets, or gloves on the arms; 3) padding over the sternum to avoid "tenting" in the V1 through V3 (and V3R, when present) electrode positions; 4) easy-to-don, one-piece design with an adjustable single point of connection and an adjustable shoulder strap; and 5) Lund or "modified Lund" placement of the dry electrodes, the results of which more effectively reproduce results from "standard" 12-lead ECG placements than do results from Mason-Likar lead placements.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25230 , 2012 NASA Human Research Program Investigators'' Workshop; Feb 14, 2012 - Feb 16, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: Our goal is to develop a unique, miniaturized, solute analyzer based on microfluidics technology. The analyzer consists of an integrated microfluidics High Performance Liquid Chromatographic chip / Differential Mobility Spectrometer (?HPLCchip/ DMS) detection system
    Keywords: Man/System Technology and Life Support
    Type: 42nd Lunar and Planetary Science Conference; Mar 07, 2011 - Mar 11, 2011; The Woodlands, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: In-Situ Resource Utilization (ISRU) and lunar science share similar objectives with respect to analyzing and characterizing the physical, mineral, and volatile materials and resources at sites of robotic and human exploration. To help mature and stress instruments, technologies, and hardware and to evaluate operations and procedures, space agencies have utilized demonstrations at analog sites on Earth before use in future missions. The US National Aeronautics and Space Administration (NASA), the Canadian Space Agency (CSA), and the German Space Agency (DLR) have utilized an analog site on the slope of Mauna Kea on the Big Island of Hawaii to test ISRU and lunar science hardware and operations in two previously held analog field tests. NASA and CSA are currently planning on a 3rd analog field test to be held in June, 2012 in Hawaii that will expand upon the successes from the previous two field tests.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-24415 , 2011 European Planetary Science Congress (EPSC) and the American Astronomical Society''s Division of Planetary Sciences (DPS)(EPSC-DPS 2011); Oct 03, 2011 - Oct 07, 2011; Nantes; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: An analog mission is an activity that maps multiple features of the target mission in an integrated fashion to gain an understanding of system-level interactions and integrated operations.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-24658 , First Community Workshop: Capabilities for Human Habitation and Operations in CIS-Lunar Space: What''s Necessary Now?; Sep 21, 2011 - Sep 22, 2011; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: Beginning in June of 2010 an environmental mystery was unfolding on the International Space Station (ISS). The U.S. Water Processor Assembly (WPA) began to produce water with increasing levels of total organic carbon (TOC). A surprisingly consistent upward TOC trend was observed through weekly in-flight total organic carbon analyzer (TOCA) monitoring. As TOC is a general organics indicator, return of water archive samples was needed to make better-informed crew health decisions and to aid in WPA troubleshooting. TOCA-measured TOC was more than halfway to its health-based screening limit before archive samples could be returned on Soyuz 22 and analyzed. Although TOC was confirmed to be elevated, somewhat surprisingly, none of the typical target compounds were the source. After some solid detective work, it was confirmed that the TOC was associated with a compound known as dimethylsilanediol (DMSD). DMSD is believed to be a breakdown product of silicon-containing compounds present on ISS. A toxicological limit was set for DMSD and a forward plan developed for operations given this new understanding of the source of the TOC. This required extensive coordination with ISS stakeholders and innovative use of available in-flight and archive monitoring resources. Behind the numbers and scientific detail surrounding this anomaly, there exists a compelling story of multi-disciplinary awareness, teamwork, and important environmental lessons learned.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-24010 , 41st International Conference on Environmental Systems; Jul 17, 2011 - Jul 21, 2011; Portland,OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: Life support systems are a critical part of human exploration beyond low earth orbit. NASA s Altair Lunar Lander team is pursuing efficient solutions to the technical challenges of human spaceflight. Life support design efforts up through Design Analysis Cycle (DAC) 4 focused on finding lightweight and reliable solutions for the Sortie and Outpost missions within the Constellation Program. In DAC-4 and later follow on work, changes were made to add functionality for new requirements accepted by the Altair project, and to update the design as knowledge about certain issues or hardware matured. In DAC-5, the Altair project began to consider mission architectures outside the Constellation baseline. Selecting the optimal life support system design is very sensitive to mission duration. When the mission goals and architecture change several trade studies must be conducted to determine the appropriate design. Finally, several areas of work developed through the Altair project may be applicable to other vehicle concepts for microgravity missions. Maturing the Altair life support system related analysis, design, and requirements can provide important information for developers of a wide range of other human vehicles.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-23319 , 41st International Conference on Environmental Systems (ICES); Jul 17, 2011 - Jul 21, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: An EMU water processing kit (Airlock Coolant Loop Recovery -- A/L CLR) was developed as a corrective action to Extravehicular Mobility Unit (EMU) coolant flow disruptions experienced on the International Space Station (ISS) in May of 2004 and thereafter. A conservative duty cycle and set of use parameters for A/L CLR use and component life were initially developed and implemented based on prior analysis results and analytical modeling. Several initiatives were undertaken to optimize the duty cycle and use parameters of the hardware. Examination of post-flight samples and EMU Coolant Loop hardware provided invaluable information on the performance of the A/L CLR and has allowed for an optimization of the process. The intent of this paper is to detail the evolution of the A/L CLR hardware, efforts to optimize the duty cycle and use parameters, and the final recommendations for implementation in the post-Shuttle retirement era.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-23329 , 41st International Conference on Environmental Systems (ICES); Jul 17, 2010 - Jul 21, 2010; Portland, OR
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: Long-term spaceflight is characterized by extraordinary challenges to maintain the life-supporting instrumentation free from microbial contamination and the crew healthy. The methodology currently employed for microbial monitoring in space stations or short spaceflights within the orbit of Earth have been instrumental in safeguarding the success of the missions, but suffers certain shortcomings that are critical for long spaceflights. This workshop addressed current practices and methodologies for microbial monitoring in space systems, and identified and discussed promising alternative methodologies and cutting-edge technologies for pursuit in the microbial monitoring that hold promise for supporting future NASA long-duration space missions.
    Keywords: Man/System Technology and Life Support
    Type: NASA/CP-2012-217460 , M-1336 , NASA Microbiology Workshop; Apr 19, 2011; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: The eXploration Habitat (X-Hab) Academic Innovation Challenge follows a non-typical format for university student competitions. Rather than provide a realistic simulated mission for the students to perform, the X-Hab Challenge puts the student teams in the critical path of NASA's human space flight Exploration systems research and development, and expects them to deliver a product that will likely become heritage for eventual flight systems in the years to come. The added responsibility has two major benefits: the university teams are given real ownership in the NASA vision; students are given Principal Investigator (PI) status for their contribution and are looked upon as peers in the development process. This paper introduces the X-Hab Challenge and discusses the successes behind the program.
    Keywords: Man/System Technology and Life Support
    Type: Global Space Exploration Conference; May 22, 2012 - May 24, 2012; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: The NASA Dust Management Project (DMP) was established to provide technologies (to Technology Readiness Level (TRL) 6) required to address adverse effects of lunar dust to humans and to exploration systems and equipment, to reduce life cycle cost and risk, and to increase the probability of sustainable and successful lunar missions. The technology portfolio of DMP consisted of different categories of technologies whose final product was either a technology solution in itself, or one that contributes toward a dust mitigation strategy for a particular application. A Decision Gate Process (DGP) was developed to assess and validate the achievement and priority of the dust mitigation technologies as the technologies progress through the development cycle. The DGP was part of continuous technology assessment and was a critical element of DMP risk management. At the core of the process were technology-specific criteria developed to measure the success of each DMP technology in attaining the technology readiness levels assigned to each decision gate. The DGP accounts for both categories of technologies and qualifies the technology progression from technology development tasks to application areas. The process provided opportunities to validate performance, as well as to identify non-performance in time to adjust resources and direction. This paper describes the overall philosophy of the DGP and the methodology for implementation for DMP, and describes the method for defining the technology evaluation criteria. The process is illustrated by example of an application to a specific DMP technology.
    Keywords: Man/System Technology and Life Support
    Type: E-18604 , GRC-E-DAA-TN7282 , Space 2012; Sep 11, 2012 - Sep 13, 2012; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: M12-2240 , COMSOL Conference 2012; Oct 03, 2012 - Oct 05, 2012; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: The next step in human exploration of space is beyond low Earth orbit and possibly to sites such as the Moon and Mars. Resupply of critical life support components for missions such as these are difficult or impossible. Life support processes for closing the loop of water, oxygen and carbon have to be identified .. Currently, there are many technologies proposed for terrestrial missions for waste, water, air processing and the creation of consumables. There are a variety of different approaches, but few address all of these issues simultaneously. One candidate is pyrolysis; a method where waste streams can be heated in the absence of oxygen to undergo a thermochemical conversion producing a series of bioproducts. Bioproducts like biochar made from non-edible biomass and human solid waste can possibly provide valuable benefits such as waste reduction, regolith fertilization for increased food production, and become a consumable for water processing and air revitalization systems. Syngas containing hydrogen, carbon monoxide and c~bon dioxide, can be converted to methane and dimethyl ether to create propellants. Bio-oils can be utilized as a heating fuel or fed to bioreactors that utilize oil-eating microbes. Issues such as carbon sequestration and subsequent carbon balance of the closed system and identifying ideal process methods to achieve the highest quality products, whilst being energy friendly, will also be addressed.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2012-314 , 43 International Conference on Environmental Systems (ICES); Jul 14, 2012 - Jul 18, 2012; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: KSC-2012-230R , American Society for Gravitational and Space Research; Nov 28, 2012 - Dec 02, 2012; New Orlean, LA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: The Mark III planetary technology demonstrator space suit can be tailored to an individual by swapping the modular components of the suit, such as the arms, legs, and gloves, as well as adding or removing sizing inserts in key areas. A method was sought to identify the transition from an ideal suit fit to a bad fit and how to quantify this breakdown using a metric of mobility-based human performance data. To this end, the degradation of the range of motion of the elbow and wrist of the suit as a function of suit sizing modifications was investigated to attempt to improve suit fit. The sizing range tested spanned optimal and poor fit and was adjusted incrementally in order to compare each joint angle across five different sizing configurations. Suited range of motion data were collected using a motion capture system for nine isolated and functional tasks utilizing the elbow and wrist joints. A total of four subjects were tested with motions involving both arms simultaneously as well as the right arm by itself. Findings indicated that no single joint drives the performance of the arm as a function of suit size; instead it is based on the interaction of multiple joints along a limb. To determine a size adjustment range where an individual can operate the suit at an acceptable level, a performance detriment limit was set. This user-selected limit reveals the task-dependent tolerance of the suit fit around optimal size. For example, the isolated joint motion indicated that the suit can deviate from optimal by as little as -0.6 in to -2.6 in before experiencing a 10% performance drop in the wrist or elbow joint. The study identified a preliminary method to quantify the impact of size on performance and developed a new way to gauge tolerances around optimal size.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25960 , 42nd International Conference on Environmental Systems; Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: With the advent of the latest human spaceflight objectives, a series of prototype architectures for a new launch and reentry spacesuit that would be suited to the new mission goals. Four prototype suits were evaluated to compare their performance and enable the selection of the preferred suit components and designs. A consolidated approach to testing was taken: concurrently collecting suit mobility data, seat-suit-vehicle interface clearances, and qualitative assessments of suit performance within the volume of a Multi-Purpose Crew Vehicle mockup. It was necessary to maintain high fidelity in a mockup and use advanced motion-capture technologies in order to achieve the objectives of the study. These seemingly mutually exclusive goals were accommodated with the construction of an optically transparent and fully adjustable frame mockup. The construction of the mockup was such that it could be dimensionally validated rapidly with the motioncapture system. This paper describes the method used to create a space vehicle mockup compatible with use of an optical motion-capture system, the consolidated approach for evaluating spacesuits in action, and a way to use the complex data set resulting from a limited number of test subjects to generate hardware requirements for an entire population. Kinematics, hardware clearance, anthropometry (suited and unsuited), and subjective feedback data were recorded on 15 unsuited and 5 suited subjects. Unsuited subjects were selected chiefly based on their anthropometry in an attempt to find subjects who fell within predefined criteria for medium male, large male, and small female subjects. The suited subjects were selected as a subset of the unsuited medium male subjects and were tested in both unpressurized and pressurized conditions. The prototype spacesuits were each fabricated in a single size to accommodate an approximately average-sized male, so select findings from the suit testing were systematically extrapolated to the extremes of the population to anticipate likely problem areas. This extrapolation was achieved by first comparing suited subjects performance with their unsuited performance, and then applying the results to the entire range of the population. The use of a transparent space vehicle mockup enabled the collection of large amounts of data during human-in-the-loop testing. Mobility data revealed that most of the tested spacesuits had sufficient ranges of motion for the selected tasks to be performed successfully. A suited subject's inability to perform a task most often stemmed from a combination of poor field of view in a seated position, poor dexterity of the pressurized gloves, or from suit/vehicle interface issues. Seat ingress and egress testing showed that problems with anthropometric accommodation did not exclusively occur with the largest or smallest subjects, but also with specific combinations of measurements that led to narrower seat ingress/egress clearance.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25791 , 4th International Conference on Applied Human Factors and Ergonomics; Jul 21, 2012 - Jul 25, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: NASA's AES is pioneering new approaches for future human missions beyond Earth orbit. All spacecraft systems must be minimized with respect to mass, power, and volume. Here, we show work related to improving system efficiency and reliability for water separation systems on crewed vehicles and the initial development of COMSOL simulations in support of the Atmosphere Revitalization Recovery and Environmental Monitoring (ARREM) project
    Keywords: Man/System Technology and Life Support
    Type: M12-2180 , COMSOL Boston; Oct 03, 2012 - Oct 05, 2012; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: The method of photocatalysis utilizing titanium dioxide, TiO2, as the catalyst has been widely studied for trace contaminant control for both air and water applications because of its low energy consumption and use of a regenerable catalyst. Titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors and are a setback for the technology for space application due to the possibility of Hg contamination. The development of a visible light responsive (VLR) TiO2-based catalyst could lead to the use of solar energy in the visible region (approx.45% of the solar spectrum lies in the visible region; 〉 400 nm) or highly efficient LEDs (with wavelengths 〉 400 nm) to make PCO approaches more efficient, economical, and safe. Though VLR catalyst development has been an active area of research for the past two decades, there are few commercially available VLR catalysts; those that are available still have poor activity in the visible region compared to that in the UV region. Thus, this study was aimed at the further development of VLR catalysts by a new method - coupling of quantum dots (QD) of a narrow band gap semiconductor (e.g., CdS, CdSe, PbS, ZnSe, etc.) to the TiO2 by two preparation methods: 1) photodeposition and 2) mechanical alloying using a high-speed ball mill. A library of catalysts was developed and screened for gas and aqueous phase applications, using ethanol and 4-chlorophenol as the target contaminants, respectively. Both target compounds are well studied in photocatalytic systems serve as model contaminants for this research. Synthesized catalysts were compared in terms of preparation method, type of quantum dots, and dosage of quantum dots.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2012-293 , 43rd Internatoinal Conferene on Environmental Systems (ICES); Jul 14, 2013 - Jul 18, 2013; Vail, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: Designing a space suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. During the development period of the suit numerous design iterations need to occur before the hardware meets human performance requirements. Using computer models early in the design phase of hardware development is advantageous, by allowing virtual prototyping to take place. A virtual design environment allows designers to think creatively, exhaust design possibilities, and study design impacts on suit and human performance. A model of the rigid components of the Mark III Technology Demonstrator Suit (planetary-type space suit) and a human manikin were created and tested in a virtual environment. The performance of the Mark III hip bearing model was first developed and evaluated virtually by comparing the differences in mobility performance between the nominal bearing configurations and modified bearing configurations. Suited human performance was then simulated with the model and compared to actual suited human performance data using the same bearing configurations. The Mark III hip bearing model was able to visually represent complex bearing rotations and the theoretical volumetric ranges of motion in three dimensions. The model was also able to predict suited human hip flexion and abduction maximums to within 10% of the actual suited human subject data, except for one modified bearing condition in hip flexion which was off by 24%. Differences between the model predictions and the human subject performance data were attributed to the lack of joint moment limits in the model, human subject fitting issues, and the limited suit experience of some of the subjects. The results demonstrate that modeling space suit rigid segments is a feasible design tool for evaluating and optimizing suited human performance. Keywords: space suit, design, modeling, performance
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25948 , 4th International Conference on Applied Human Factors and Ergonomics (AHFE); Jul 21, 2012 - Jul 25, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: Through evolution, nature came up with many effective solutions to its challenges and continually improving them. By mimicking, coping and being inspired, humans have been using Nature's solutions to address their own challenges. In recent years, the implementation of nature's capabilities has intensified with our growing understanding of the various biological and nastic mechanisms and processes. Successes include even the making of humanlike robots that perform such lifelike tasks as walking, talking, making eye-contact, interpreting speech and facial expressions, as well as many other humanlike functions. Generally, once humans are able to implement a function then, thru rapid advances in technology, capabilities are developed that can significantly exceed the original source of inspiration in Nature. Examples include flight where there is no species that can fly as high, carry so much mass, has so large dimensions and fly so fast, and operate at as such extreme conditions as our aircraft and other aerospace systems. However, using the capabilities of today's technology, there are many challenges that are not feasible to address in mimicking characteristics of species and plants. In this manuscript, state-of-the-art of biomimetic capabilities, potentials and challenges are reviewed.
    Keywords: Man/System Technology and Life Support
    Type: SPIE Photonic Innovations and Solutions for Complex Environments and Systems (PISCES); Aug 12, 2012; San DIego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-27219 , External Meeting with Prospective Partners; Oct 23, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: Engineered structured (ES) sorbents are being developed to meet the technical challenges of future crewed space exploration missions. ES sorbents offer the inherent performance and safety attributes of zeolite and other physical adsorbents but with greater structural integrity and process control to improve durability and efficiency over packed beds. ES sorbent techniques that are explored include thermally linked and pressure-swing adsorption beds for water-save dehumidification and sorbent-coated metal meshes for residual drying, trace contaminant control, and carbon dioxide control. Results from sub-scale performance evaluations of a thermally linked pressure-swing adsorbent bed and an integrated sub-scale ES sorbent system are discussed.
    Keywords: Man/System Technology and Life Support
    Type: M11-0687 , 41st International Conference on Environmental Systems; Jul 17, 2011 - Jul 21, 2011; Portland, OR; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: Technologies that reduce logistical needs are a key to long term space missions. Currently, trash and waste generated during a mission is carried during the entire roundtrip mission or stored inside a logistic module which is de-orbited into Earth's atmosphere for destruction. The goal of the Trash to Supply Gas (TtSG) project is to develop space technology alternatives for converting trash and other waste materials from human spaceflight into high-value products that might include propellants or power system fuels in addition to life support oxygen and water. In addition to producing a useful product from waste, TtSG will decrease the volume needed to store waste on long term space missions. This paper presents an overview of the TtSG technologies and future plans for the project.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2012-242 , AIAA Space 2012 Conference and Exposition; Sep 11, 2012 - Sep 13, 2012; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: KSC-2012-196 , JH Morrison Lecture, ASHS Annual Meeting; Aug 03, 2012; Miami, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.
    Keywords: Man/System Technology and Life Support
    Type: M12-1807 , 42nd International Conference on Environmental Systems; Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: In August 2011, the Environmental Control and Life Support Systems (ECLSS) technical community, along with associated stakeholders, held a workshop to review NASA s plans for Exploration missions and vehicles with two objectives: revisit the Exploration Atmospheres Working Group (EAWG) findings from 2006, and discuss preliminary ECLSS architecture concepts and technology choices for Exploration vehicles, identifying areas for potential common hardware or technologies to be utilized. Key considerations for selection of vehicle design total pressure and percent oxygen include operational concepts for extravehicular activity (EVA) and prebreathe protocols, materials flammability, and controllability within pressure and oxygen ranges. New data for these areas since the 2006 study were presented and discussed, and the community reached consensus on conclusions and recommendations for target design pressures for each Exploration vehicle concept. For the commonality study, the workshop identified many areas of potential commonality across the Exploration vehicles as well as with heritage International Space Station (ISS) and Shuttle hardware. Of the 36 ECLSS functions reviewed, 16 were considered to have strong potential for commonality, 13 were considered to have some potential commonality, and 7 were considered to have limited potential for commonality due to unique requirements or lack of sufficient heritage hardware. These findings, which will be utilized in architecture studies and budget exercises going forward, are presented in detail.
    Keywords: Man/System Technology and Life Support
    Type: M12-1718 , M12-1935 , 42nd International Conference on Environmental Systems; Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: State-of-the-art (SOA) carbon dioxide (CO2) reduction technology for the International Space Station produces methane as a byproduct. This methane is subsequently vented overboard. The associated loss of hydrogen ultimately reduces the mass of oxygen that can be recovered from CO2 in a closed-loop life support system. As an alternative to SOA CO2 reduction technology, NASA is exploring a Series-Bosch system capable of reducing CO2 with hydrogen to form water and solid carbon. This results in 100% theoretical recovery of oxygen from metabolic CO2. In the past, Bosch-based technology did not trade favorably against SOA technology due to a high power demand, low reaction efficiencies, concerns with carbon containment, and large resupply requirements necessary to replace expended catalyst cartridges. An alternative approach to Bosch technology, labeled "Series-Bosch," employs a new system design with optimized multi-stage reactors and a membrane-based separation and recycle capability. Multi-physics modeling of the first stage reactor, along with chemical process modeling of the integrated system, has resulted in a design with potential to trade significantly better than previous Bosch technology. The modeling process and resulting system architecture selection are discussed.
    Keywords: Man/System Technology and Life Support
    Type: M11-1308 , M12-1657 , 42nd International Conference on Environmental Systems; Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the prior year, covering the period of time between March 2010 and February 2011. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the last of the Phase 3 pressurized elements, the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to no later than 2028.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-26664 , International Conference of Environmental Systems; Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: Crow-AMSAA (CA) plots are used to model reliability growth. Use of CA plots has expanded into other areas, such as tracking events of interest to management, maintenance problems, and safety mishaps. Safety mishaps can often be successfully modeled using a Poisson probability distribution. CA plots show a Poisson process in log-log space. If the safety mishaps are a stable homogenous Poisson process, a linear fit to the points in a CA plot will have a slope of one. Slopes of greater than one indicate a nonhomogenous Poisson process, with increasing occurrence. Slopes of less than one indicate a nonhomogenous Poisson process, with decreasing occurrence. Changes in slope, known as "cusps," indicate a change in process, which could be an improvement or a degradation. After presenting the CA conceptual framework, examples are given of trending slips, trips and falls, and ergonomic incidents at NASA (from Agency-level data). Crow-AMSAA plotting is a robust tool for trending safety mishaps that can provide insight into safety performance over time.
    Keywords: Man/System Technology and Life Support
    Type: E-18240 , 29th International System Safety Conference; Aug 08, 2011 - Aug 12, 2011; Las Vegas, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: The NASA Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) project strives to enable a largely mission-independent cradle-to-grave-to-cradle approach to minimize logistics contributions to total mission architecture mass. The goals are to engineer logistics materials, common crew consumables, and container configurations to meet the following five basic goals: 1. Minimize intrinsic logistics mass and improve ground logistics flexibility. 2. Allow logistics components to be directly repurposed for on-orbit non-logistics functions (e.g., crew cabin outfitting) thereby indirectly reducing mass/volume. 3. Compact and process logistics that have not been directly repurposed to generate useful on-orbit components and/or compounds (e.g., radiation shielding, propellant, other usable chemical constituents). 4. Enable long-term stable storage and disposal of logistics end products that cannot be reused or repurposed (e.g., compaction for volume reduction, odor control, and maintenance of crew cabin hygienic conditions). 5. Allow vehicles in different mission phases to share logistics resources. This paper addresses the work being done to meet the second goal, the direct repurposing of logistics components to meet other on-orbit needs, through a strategy termed Logistics to Living (L2L). L2L has several areas but can be defined as repurposing or converting logistical items (bags, containers, foam, components, etc.) into useful crew items or life support augmentation on-orbit after they have provided their primary logistics function. The intent is that by repurposing items, dedicated crew items do not have to be launched and overall launch mass is decreased. For non-LEO missions, the vehicle interior volume will be relatively fixed so L2L will enable this volume to be used more effectively through reuse and rearrangement of logistical components. Past work in the area of L2L has already conceptually developed several potential technologies [Howe, Howard 2010]. Several of the L2L concepts that have shown the most potential in the past are based on NASA cargo transfer bags (CTBs) or their equivalents which are currently used to transfer cargo to and from the ISS. A high percentage of all logistics supplies are packaging mass and for a 6-month mission a crew of four might need over 100 CTBs. These CTBs are used for on-orbit transfer and storage but eventually becomes waste after use since down mass is very limited. The work being done in L2L also considering innovative interior habitat construction that integrate the CTBs into the walls of future habitats. The direct integration could provide multiple functions: launch packaging, stowage, radiation protection, water processing, life support augmentation, as well as structure. Reuse of these CTBs would reduce the amount of waste generated and also significantly reduce future up mass requirements for exploration missions. Also discussed here is the L2L water wall , an innovative reuse of an unfolded CTB as a passive water treatment system utilizing forward osmosis. The bags have been modified to have an inner membrane liner that allows them to purify wastewater. They may also provide a structural water-wall element that can be used to provide radiation protection and as a structural divider. Integration of the components into vehicle/habitat architecture and consideration of operations concepts and human factors will be discussed. In the future these bags could be designed to treat wastewater, concentrated brines, and solid wastes, and to dewater solid wastes and produce a bio-stabilized construction element. This paper will describe the follow-on work done in design, fabrication and demonstrations of various L2L concepts, including advanced CTBs for reuse/repurposing, internal outfitting studies and the CTB-based forward osmosis water wall.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25643 , AIAA (American Institute of Aeronautics and Astronautics) Space 2012; Sep 11, 2012 - Sep 13, 2012; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: The Spacesuit Water Membrane Evaporator (SWME) is a heat-rejection device that is being developed to perform thermal control for advanced spacesuits. Cooling is achieved by circulating water from the liquid cooling garment (LCG) through hollow fibers (HoFi s), which are small hydrophobic tubes. Liquid water remains within the hydrophobic tubes, but water vapor is exhausted to space, thereby removing heat. A SWME test article was tested over the course of a year, for a total of 600 cumulative hours. In order to evaluate SWME tolerance to contamination due to constituents caused by distillation processes, these constituents were allowed to accumulate in the water as evaporation occurred. A test article was tested over the course of a year for a total of 600 cumulative hours. The heat rejection performance of the SWME degraded significantly--below 700 W, attributable to the accumulation of rust in the circulating loop and biofilm growth. Bubble elimination capability, a feature that was previously proven with SWME, was compromised during the test, most likely due to loss of hydrophobic properties of the hollow fibers. The utilization of water for heat rejection was shown not to be dependent on test article, life cycle, heat rejection rate, or freezing of the membranes.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-25970 , 42nd International Conference of Environmental Systems (ICES2012); Jul 15, 2012 - Jul 19, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...