ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.04. Geology::04.04.09. Structural geology  (4)
  • 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks  (4)
  • Springer Berlin / Heidelberg  (4)
  • Geological Society of America  (3)
  • IUGS  (1)
  • MDPI Publishing
  • Nature Publishing Group
  • 2010-2014  (8)
  • 2010  (8)
Collection
Publisher
Years
  • 2010-2014  (8)
Year
  • 1
    Publication Date: 2017-04-04
    Description: Nel Canale di Sicilia, insieme ai processi estensionali che hanno generato le tre principali depressioni tettoniche di Pantelleria, Linosa e Malta, si sono succeduti anche importanti fenomeni vulcanici. A partire da circa 8 milioni di anni fa, in questa regione ha preso posto un vulcanesimo toleiitico e alcalino, che ha creato le due isole vulcaniche di Pantelleria e Linosa ed un numero elevato di apparati sottomarini, molti dei quali ancora poco sconosciuti. Il vulcanesimo è ancora attivo e le eruzioni storiche sono tutte sottomarine; per alcune di esse abbiamo solo indicazioni vaghe, altre sono state segnalate ma mai controllate. Possediamo notizie certe solo delle due attività che hanno portato alla formazione delle isole effimere di Ferdinandea (1831) e Foerstner (1891), quest’ultima localizzata a circa 4 km a N-O delle coste dell’Isola di Pantelleria.
    Description: Published
    Description: 15-21
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: N/A or not JCR
    Description: reserved
    Keywords: Ferdinandea ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Fresh water availability has recently become a serious concern in the Italian Apennines, as various activities rely on a predictable supply. Along the ridge between Scansano and Magliano in Toscana, in southern Tuscany, the situation is further complicated by contamination of the nearby alluvial aquifers. Aquifers locally consist of thin fractured reservoirs, generally within low-permeability formations, and it can be difficult to plan the exploitation of resources based on conventional techniques. An integrated study based on geological data investigated the link between tectonics and groundwater circulation, to better define the hydrological model. After the regional identification of fault and fracture patterns, a major structure was investigated in detail to accurately map its spatial position and to understand the geometry and properties of the associated aquifer and assess its exploitation potential. The subsurface around the fault zone was clearly imaged using ground probing radar, two-dimensional and three-dimensional resistivity tomography, and three-dimensional shallow seismic surveys. The vertical and horizontal contacts between the different geological units of the Ligurian and Tuscan series were resolved with a high degree of spatial accuracy. Three-dimensional high-resolution geophysical imaging proved to be a very effective means of characterising small-scale fractured reservoirs.
    Description: Published
    Description: 1233-1246
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 3.2. Tettonica attiva
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Italy ; Fractured rocks ; Geophysical methods ; Tectonics ; Groundwater exploration ; 03. Hydrosphere::03.02. Hydrology::03.02.06. Water resources ; 04. Solid Earth::04.02. Exploration geophysics::04.02.07. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We use a kinematic GPS and laser range finder survey of a 200 m-long section of the Muliwai a Pele lava channel (Mauna Ulu, Kilauea) to examine the construction processes and flow dynamics responsible for the channel–levee structure. The levees comprise three packages. The basal package comprises an 80–150 m wide ′a′a flow in which a ∼2 m deep and ∼11 m wide channel became centred. This is capped by a second package of thin (〈45 cm thick) sheets of pahoehoe extending no more than 50 m from the channel. The upper-most package comprises localised ′a′a overflows. The channel itself contains two blockages located 130 m apart and composed of levee chunks veneered with overflow lava. The channel was emplaced over 50 h, spanning 30 May–2 June, 1974, with the flow front arriving at our section (4.4 km from the vent) 8 h after the eruption began. The basal ′a′a flow thickness yields effusion rates of 35 m3 s−1 for the opening phase, with the initial flow advancing across the mapped section at ∼10 m/min. Short-lived overflows of fluid pahoehoe then built the levee cap, increasing the apparent channel depth to 4.8 m. There were at least six pulses at 90–420 m3 s−1, causing overflow of limited extent lasting no more than 5 min. Brim-full flow conditions were thus extremely short-lived. During a dominant period of below-bank flow, flow depth was ∼2 m with an effusion rate of ∼35 m3 s−1, consistent with the mean output rate (obtained from the total flow bulk volume) of 23–54 m3 s−1. During pulses, levee chunks were plucked and floated down channel to form blockages. In a final low effusion rate phase, lava ponded behind the lower blockage to form a syn-channel pond that fed ′a′a overflow. After the end of the eruption the roofed-over pond continued to drain through the lower blockage, causing the roof to founder. Drainage emplaced inflated flows on the channel floor below the lower blockage for a further ∼10 h. The complex processes involved in levee–channel construction of this short-lived case show that care must be taken when using channel dimensions to infer flow dynamics. In our case, the full channel depth is not exposed. Instead the channel floor morphology reflects late stage pond filling and drainage rather than true channel-contained flow. Components of the compound levee relate to different flow regimes operating at different times during the eruption and associated with different effusion rates, flow dynamics and time scales. For example, although high effusion rate, brim-full flow was maintained for a small fraction of the channel lifetime, it emplaced a pile of pahoehoe overflow units that account for 60% of the total levee height. We show how time-varying volume flux is an important parameter in controlling channel construction dynamics. Because the complex history of lava delivery to a channel system is recorded by the final channel morphology, time-varying flow dynamics can be determined from the channel morphology. Developing methods for quantifying detailed flux histories for effusive events from the evidence in outcrop is therefore highly valuable. We here achieve this by using high-resolution spatial data for a channel system at Kilauea. This study not only indicates those physical and dynamic characteristics that are typical for basaltic lava flows on Hawaiian volcanoes, but also a methodology that can be widely applied to effusive basaltic eruptions.
    Description: Published
    Description: 459-474
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 1.10. TTC - Telerilevamento
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Lava channel ; Levees ; Effusion rates ; Flow dynamics ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: On 28 December 2002, new vents opened on the flanks of Stromboli, just below the summit craters, interrupting the persistent activity of the volcano with a 7-month-long effusive eruption. We here report on the plagioclase size distribution (PlgSD) in lava samples collected following the chronology of the 2002–2003 eruption. Data reveal a linear PlgSD similar to that found in samples of normal Stromboli activity, indicating that the switch from Strombolian explosive to effusive activity is not associated with changes in texture. Nevertheless, the crystal size distribution slopes and intercepts exhibit slight sinusoidal temporal variations that are here ascribed to a magma supply mechanism able to induce “resonance” in the crystal size distribution, with an amplitude that depends on the supply rate.
    Description: Published
    Description: 631-641
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Plagioclase ; Crystal size distribution ; Stromboli ; 2002–2003 eruption ; Magma supply rate ; Effusive activity ; Crystallization ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Abstract: The ANDRILL McMurdo Ice Shelf (MIS) initiative recovered a 1285 m-long core (MIS AND-1B) composed of cyclic glacimarine sediments with interbedded volcanic deposits. By far the thickest continuous volcanic sequence is about 175 m long and is found at midcore depths from 584.19 to 759.32 meters below sea floor (mbsf). The sequence was logged and initial interpretations of lithostratigraphic subdivisions were made on-ice during drilling in late 2006. Subsequent observations, based on image, petrographic, and SEM-EDS analyses, provide a more detailed, revised interpretation of a thick submarine to emergent volcanic succession. The sequence is subdivided into two main subsequences on the basis of sediment composition, texture and alteration style. The ~70 m thick lower subsequence consists mostly of monothematic stacked volcanic-rich mudstone and sandstone deposits, which are attributed to epiclastic gravity flow turbidite processes. This subsequence is consistent with abundant active volcanism that occurred at a distal site with respect to the drill site. The ~105 m thick upper subsequence consists mainly of interbedded tuff, lapilli tuff, and volcanic diamictite. A late Miocene (6.48 Ma) 2.81 m-thick subaqueously emplaced lava flow occurs within the second subsequence. This second subsequence is attributed to recurring cycles of submarine to emergent volcanic activity that occurred proximal to the drill site. This new dataset provides 1) the first rock evidence of significant late Miocene submarine volcanic activity in the Ross Embayment during a period of no to limited glaciation , and 2) a rich stratigraphic record that elucidates submarine volcano-sedimentary processes in an off-shore setting.
    Description: In press
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: open
    Keywords: ANDRILL ; AND1-B core ; McMurdo Sound ; submarine volcanism ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: During its 1800-year-long persistent activity the Stromboli volcano has erupted a highly porphyritic (HP) volatile-poor scoriaceous magma and a low porphyritic (LP) volatile-rich pumiceous magma. The HP magma is erupted during normal Strombolian explosions and lava effusions, while the LP one is related to more energetic paroxysms. During the March–April 2003 explosive activity, Stromboli ejected two typologies of juvenile glassy ashes, namely highly vesicular LP shards and volatile-poor HP shards. Their textural and in situ chemical characteristics are used to unravel mutual relationships between HP and LP magmas, as well as magma dynamics within the shallow plumbing system. The mantle-normalized trace element patterns of both ash types show the typical arc-lava pattern; however, HP glasses possess incompatible element concentrations higher than LP glasses, along with Sr and Eu negative anomalies. HP shards are generally characterized by higher Li contents (to ~20 ppm) and lower δ7Li values (+1.2 to −3.8‰) with respect to LP shards (Li contents of 7–14 ppm and δ7Li ranging between +4.6 and +0.9‰). Fractional crystallization models based on major and trace element compositions, combined with a degassing model based on open-system Rayleigh distillation and on the assumption that melt/fluidDLi 〉 1, show that abundant (~30%) plagioclase precipitation and variable degrees of degassing can lead the more primitive LP magma to evolve toward a differentiated (isotopically lighter) HP magma ponding in the upper conduit and undergoing slow continuous degassing-induced crystallization. This study also evidences that in March 2003 Stromboli volcano poured out a small early volume of LP magma that traveled slower within the conduit with respect to later and larger volumes of fast ascending LP magma erupted during the April 5 paroxysm. The different ascent rates and cooling rates of the two LP magma batches (i.e., pre- and post-paroxysm) resulted in small, but detectable, differences in their chemical signatures. Finally, this study highlights the high potential of in situ investigations of juvenile glassy ashes in petrologic and geochemical monitoring the volcanic activity and of Li isotopes as tracers of degassing processes within the shallow plumbing system.
    Description: In press
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: Stromboli ; Volcanic ash ; Lithium isotopes ; Degassing ; induced crystallization ; Petrologic monitoring ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The northeast-striking, dextral-reverse Alpine fault transitions into the Marlborough Fault System near Inchbonnie in the central South Island, New Zealand. New slip-rate estimates for the Alpine fault are presented following a reassessment of the geomorphology and age of displaced late Holocene alluvial surfaces of the Taramakau River at Inchbonnie. Progressive avulsion and abandonment of the Taramakau floodplain, aided by fault movements during the late Holocene, have preserved a left-stepping fault scarp that grows in height to the northeast. Surveyed dextral (22.5 ± 2 m) and vertical (4.8 ± 0.5 m) displacements across a left stepover in the fault across an alluvial surface are combined with a precise maximum age from a remnant tree stump (≥1590–1730 yr) to yield dextral, vertical, and reverse-slip rates of 13.6 ± 1.8, 2.9 ± 0.4, and 3.4 ± 0.6 mm/yr, respectively. These values are larger (dextral) and smaller (dip slip) than previous estimates for this site, but they refl ect advances in the local chronology of surfaces and represent improved time-averaged results over 1.7 k.y. A geological kinematic circuit constructed for the central South Island demonstrates that (1) 69%–89% of the Australian-Pacific plate motion is accommodated by the major faults (Alpine-Hope-Kakapo) in this transitional area, (2) the 50% drop in slip rate on the Alpine fault between Hokitika and Inchbonnie is taken up by the Hope and Kakapo faults at the southwestern edge of the Marlborough Fault System, and (3) the new slip rates are more compatible with contemporary models of strain partitioning presented from geodesy.
    Description: Published
    Description: 139-152
    Description: 3.2. Tettonica attiva
    Description: 4.2. TTC - Modelli per la stima della pericolosità sismica a scala nazionale
    Description: N/A or not JCR
    Description: reserved
    Keywords: Alpine fault ; plate boundary ; slip rate ; New Zealand ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Geological Society of America
    Publication Date: 2022-06-14
    Description: In central Italy, the geometry, kinematics, and tectonic evolution of the late Neogene Umbrian Arc, which is one of the main thrusts of the northern Apennines, have long been studied. Documented evidence for orogenic curvature includes vertical axis rotations along both limbs of the arc and a positive orocline test along the entire arc. The cause of the curvature is, however, still unexplained. In this work, we focus our attention on the southern portion of the Umbrian Arc, the so-called Olevano- Antrodoco thrust. We analyze, in particular, gravity and seismic-reflection data and consider available paleomagnetic, stratigraphic, structural, and topographic evidence from the central Apennines to infer spatial extent, attitude, and surface effects of a midcrustal anticlinorium imaged in the CROP-11 deep seismic profile. The anticlinorium has horizontal dimensions of ~50 by 30 km, and it is located right beneath the Olevano- Antrodoco thrust. Stratigraphic, structural, and topographic evidence suggests that the anticlinorium produced a surface uplift during its growth in early Pliocene times. We propose an evolutionary model in which, during late Neogene time, the Olevano- Antrodoco thrust developed in an out-of sequence fashion and underwent ~16° of clockwise rotation when the thrust ran into and was then raised and folded by the growing anticlinorium (late Messinian–early Pliocene time). This new model suggests a causal link between midcrustal folding and surficial orogenic curvature that is consistent with several available data sets from the northern and central Apennines; more evidence is, however, needed to fully test our hypothesis. Additionally, due to the occurrence of midcrustal basement-involved thrusts in other orogens, this model may be a viable mechanism for arc formation elsewhere.
    Description: Published
    Description: 1409-1420
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: oroclines ; Apennines ; fold and thrust belts ; gravity anomalies ; seismic reflection profiles ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.02. Exploration geophysics::04.02.06. Seismic methods ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...