ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: An edited version of this paper was published by AGU. Copyright (2010) American Geophysical Union
    Description: We investigate the role of the Africa-Eurasia convergence in the recent tectonic evolution of the central Mediterranean. To this end we focused on two sectors of the Adriatic-Hyblean foreland of the Apennine-Maghrebian chain as they allow tectonic evidence for relative plate motions to be analyzed aside from the masking effect of other more local tectonic phenomena (e.g., subduction, chain building, etc.). We present a thorough review of data and interpretations on two major shear zones cutting these foreland sectors: the E-W Molise-Gondola in central Adriatic and the N-S Vizzini-Scicli in southern Sicily. The selected foreland areas exhibit remarkable similarities, including an unexpectedly high level of seismicity and the presence of the investigated shear zones since the Mesozoic. We analyze the tectonic framework, active tectonics, and seismicity of each of the foreland areas, highlighting the evolution of the tectonic understanding. In both areas, we find that current strains at midcrustal levels seem to respond to the same far-field force oriented NNW-SSE to NW-SE, similar to the orientation of the Africa-Eurasia convergence. We conclude that this convergence plays a primary role in the seismotectonics of the central Mediterranean and is partly accommodated by the reactivation of large Mesozoic shear zones.
    Description: The work has been funded by project “Sviluppo Nuove Tecnologie per la Protezione e Difesa del Territorio dai Rischi Naturali,” by the Italian Ministry of Education and Research (MIUR), and by the Italian Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile (DPC).
    Description: Published
    Description: B12404
    Description: 3.2. Tettonica attiva
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: partially_open
    Keywords: Molise-Gondola shear zone ; Vizzini-Scicli shear zone ; Gargano Promontory ; Hyblean Plateau ; slip reversal ; 1627 earthquake ; 1693 earthquake ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): B01101, doi:10.1029/2003JB002499.
    Description: Ocean bottom seismic networks deployed following the 1998 eruption of Axial seamount reveal an evolving pattern of microearthquake activity associated with subsurface magmatism and thermal strain. Seismicity rates decay steadily over 15 months of observation (February 8, 1998, to April 30, 1999), consistent with a trend toward thermal and mechanical equilibrium in the shallow crust after the magmatic event. Immediately after the eruption, seismicity rates were high for about 60 days in the southeast corner of the caldera where lava flows from the 1998 eruption were mapped. A small burst of seismic activity was observed on the southeast shoulder of the volcano from 100 to 150 days after the eruption. These events, which are characterized by slip on nearly vertical faults in the shallow crust, extend about 6 km from the southeast corner of the caldera and overlie a mid-crustal low-velocity zone. After this episode, seismicity rates remain low until the end of the observation period, 455 days after the eruption. Shallow (~0.7 km depth) events, consistent with thermal contraction and volume changes of ~2 × 10−3 m3 in ~5 m3 sources, are observed in individual clusters beneath hydrothermal vents within the 1998 lava flow at the southeast edge of the caldera. Microearthquakes observed during the last 70 days of observation are distributed around the central caldera, most likely representing small amounts of subsidence on caldera faults during the final stages of equilibration following melt withdrawal associated with the 1998 eruption.
    Description: Sohn, Webb, and the field program were supported by NSF grant OCE 97- 11700. Barclay was supported in part by the Woods Hole Oceanographic Institution.
    Keywords: Microearthquakes ; Hydrothermal ; Magmatism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q08012, doi:10.1029/2007GC001597.
    Description: Several models have been proposed to relate slab geometry to parameters such as plate velocity or plate age. However, studies on the observed relationships between slab geometry and a wide range of subduction parameters show that there is not a simple global relationship between slab geometry and any one of these other subduction parameters for all subduction zones. Numerical and laboratory models of subduction provide a method to explore the relative importance of different physical processes in determining subduction dynamics. Employing 2-D numerical models with a viscosity structure constrained by laboratory experiments for the deformation of olivine, we show that the observed range in slab dip and the observed trends between slab dip and convergence velocity, subducting plate age, and subduction duration can be reproduced without trench motion (i.e., slab roll-back) for locations away from slab edges. Successful models include a stiff slab that is 100–1000 times more viscous than previous estimates from models of plate bending, the geoid, and global plate motions. We find that slab dip in the upper mantle depends primarily on slab strength and plate boundary coupling, with a small dependence on subducting plate age. Once the slab sinks into the lower mantle the primary processes controlling slab evolution are (1) the ability of the stiff slab to transmit stresses up dip, (2) resistance to slab descent into the higher-viscosity lower mantle, and (3) subduction-induced flow in the mantle-wedge corner.
    Description: This research was partially supported by NSF award EAR0125919.
    Keywords: Subduction ; Rheology ; Mantle dynamics ; Plate tectonics ; Slab morphology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q08013, doi:10.1029/2007GC001652.
    Description: We report first evidence for hydrothermal activity from the southern Knipovich Ridge, an ultra-slow spreading ridge segment in the Norwegian-Greenland Sea. Evidence comes from optical backscatter anomalies collected during a systematic side-scan sonar survey of the ridge axis, augmented by the identification of biogeochemical tracers in the overlying water column that are diagnostic of hydrothermal plume discharge (Mn, CH4, ATP). Analysis of coregistered geologic and oceanographic data reveals that the signals we have identified are consistent with a single high-temperature hydrothermal source, located distant from any of the axial volcanic centers that define second-order segmentation along this oblique ridge system. Rather, our data indicate a hydrothermal source associated with highly tectonized seafloor that may be indicative of serpentinizing ultramafic outcrops. Consistent with this hypothesis, the hydrothermal plume signals we have detected exhibit a high methane to manganese ratio of 2–3:1. This is higher than that typical of volcanically hosted vent sites and provides further evidence that the source of the plume signals reported here is most probably a high-temperature hydrothermal field that experiences some ultramafic influence (compare to Rainbow and Logachev sites, Mid-Atlantic Ridge). While such sites have previously been invoked to be common on the SW Indian Ridge, this may be the first such site to be located along the Arctic ultra-slow spreading ridge system.
    Description: Connelly and German were funded by NERC grant NER/B/S/ 2000/00755, NERC Core Strategic Funding at NOC, and the ChEss project of the Census of Marine Life.
    Keywords: Hydrothermal ; Arctic ; Serpentinization ; Knipovich Ridge
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 10 (2009): Q05T05, doi:10.1029/2008GC002314.
    Description: This paper demonstrates that a Raman spectroscopy, point-counting technique can be used for phase analysis of minerals commonly found in deep-sea hydrothermal plumes, even for minerals with similar chemical compositions. It also presents our robust autonomous identification algorithm and spectral database, both of which were developed specifically for deep-sea hydrothermal studies. The Raman spectroscopy expert algorithm was developed and tested against multicomponent mixtures of minerals relevant to the deep-sea hydrothermal environment. It is intended for autonomous classification where many spectra must be examined with little or no human involvement to increase analytic precision, accuracy, and data volume or to enable in situ measurements and experimentation.
    Description: Support for J.A.B. was provided through a RIDGE 2000 Postdoctoral Fellowship (NSF OCE-0550331).
    Keywords: Hydrothermal ; Mineralogy ; Optical instruments ; Raman spectroscopy ; Analytic techniques ; Chemical sensor
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/zip
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 11 (2010): Q05002, doi:10.1029/2009GC002957.
    Description: Areas of the seafloor at mid-ocean ridges where hydrothermal vents discharge are easily recognized by the dramatic biological, physical, and chemical processes that characterize such sites. Locations where seawater flows into the seafloor to recharge hydrothermal cells within the crustal reservoir are by contrast almost invisible but can be indirectly identified by a systematic grid of conductive heat flow measurements. An array of conductive heat flow stations in the Endeavour axial valley of the Juan de Fuca Ridge has identified recharge zones that appear to represent a nested system of fluid circulation paths. At the scale of an axial rift valley, conductive heat flow data indicate a general cross-valley fluid flow, where seawater enters the shallow subsurface crustal reservoir at the eastern wall of the Endeavour axial valley and undergoes a kilometer of horizontal transit beneath the valley floor, finally exiting as warm hydrothermal fluid discharge on the western valley bounding wall. Recharge zones also have been identified as located within an annular ring of very cold seafloor around the large Main Endeavour Hydrothermal Field, with seawater inflow occurring within faults that surround the fluid discharge sites. These conductive heat flow data are consistent with previous models where high-temperature fluid circulation cells beneath large hydrothermal vent fields may be composed of narrow vertical cylinders. Subsurface fluid circulation on the Endeavour Segment occurs at various crustal depths in three distinct modes: (1) general east to west flow across the entire valley floor, (2) in narrow cylinders that penetrate deeply to high-temperature heat sources, and (3) supplying low-temperature diffuse vents where seawater is entrained into the shallow uppermost crust by the adjacent high-temperature cylindrical systems. The systematic array of conductive heat flow measurements over the axial valley floor averaged ∼150 mW/m2, suggesting that only about 3% of the total energy flux of ocean crustal formation is removed by conductive heat transfer, with the remainder being dissipated to overlying seawater by fluid advection.
    Description: Funding was provided by NSF grants OCE0318566 and OCE0241294 and NSF/SGER grant OCE0902626.
    Keywords: Hydrothermal ; Juan de Fuca ; Vents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): B05202, doi:10.1029/2007JB005075.
    Description: We evaluate the applicability of plagioclase and gabbro flow laws by comparing predicted and observed deformation mechanisms in gabbroic shear zones. Gabbros and layered gabbro mylonites were collected from the Southwest Indian Ridge (SWIR), Ocean Drilling Program Hole 735B. Deformation temperatures are constrained by two-pyroxene thermometry, stress is estimated from grain size, and deformation mechanisms are analyzed by microstructure and the presence or absence of a lattice preferred orientation (LPO). Our analyses indicate that mylonite layers deformed at a strain rate in the range of 10−12 to 10−11 s−1, while coarse-grained gabbro deformed at a strain rate of approximately 10−14 to 10−13 s−1. Plagioclase in pure plagioclase mylonite layers exhibit strong LPOs indicating that they deformed by dislocation creep. Plagioclase grain size in mixed plagioclase-pyroxene mylonite layers is finer than in pure plagioclase layers and depends on the size and proportion of pyroxenes. Progressive mixing of pyroxene and plagioclase within gabbro mylonite layers is accompanied by weakening of the LPO, indicating that phase mixing promotes a transition to diffusion creep processes that involve grain boundary sliding. Our results indicate that experimental flow laws are accurate at geologic strain rates, although the strain rate for diffusion creep of fine-grained gabbro may be underestimated. At the conditions estimated for the SWIR crust, our calculations suggest that strain localization leads to a factor of 2–4 decrease in lower crustal viscosity. Away from shear zones, the viscosity of lower gabbroic crust is predicted to be similar to that of dry upper mantle.
    Description: This work was supported with NSF grants EAR-0230267 and EAR-0409609.
    Keywords: Mylonite ; Rheology ; Flow law
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/postscript
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q06T01, doi:10.1029/2008GC002104.
    Description: As part of a rapid response cruise in May 2006, we surveyed water column hydrothermal plumes and bottom conditions on the East Pacific Rise between 9°46.0′N and 9°57.6′N, where recent seafloor volcanic activity was suspected. Real-time measurements included temperature, light transmission, and salinity. Samples of the plume waters were analyzed for methane, manganese, helium concentrations, and the δ 13C of methane. These data allow us to examine the effects of the 2005–2006 volcanic eruption(s) on plume chemistry. Methane and manganese are sensitive tracers of hydrothermal plumes, and both were present in high concentrations. Methane reached 347 nM in upper plume samples (250 m above seafloor) and exceeded 1085 nM in a near-bottom sample. Mn reached 54 nM in the upper plume and 98 nM in near-bottom samples. The concentrations of methane and Mn were higher than measurements made after a volcanic eruption in the same area in 1991, but the ratio of CH4/Mn, at 6.7, is slightly lower, though still well above the ratios measured in chronic plumes. High concentrations of methane in near-bottom samples were associated with areas of microbial mats and diffuse venting documented in seafloor imagery. The isotopic composition of the methane carbon shows evidence of active microbial oxidation; however, neither the fractionation factor nor the source of the eruption-associated methane can be determined with any certainty. Considerable scatter in the isotopic data is due to diverse sources for the methane as well as fractionation as methane is consumed. One sample at +21‰ versus Peedee belemnite standard is among the most enriched methane carbon values reported in a hydrothermal plume to date.
    Description: This field work was supported by NSF awards OCE0222069 (J.P.C., M.D.L.); OCE0525863 (D.J.F.); and OCE0327261 (T.M..S.); and the NASA Astrobiology Institute (JPC). The NOAA-VENTS program provided additional support through a grant to the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA17RJ1232.
    Keywords: Hydrothermal ; Plume ; Methane isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 34 (2007): L08307, doi:10.1029/2007GL029250.
    Description: The microstructure of ductile shear zones differs from that of surrounding wall rocks. In particular, compositional layering is a hallmark of shear zones. As layered rocks are weaker than their isotropic protolith when loaded in simple shear, layering may hold the key to explain localization of ductile deformation onto ductile shear zones. I propose here a constitutive model for layer development. A two-level mixing theory allows the strength of the aggregate to be estimated at intermediate degrees of layering. A probabilistic failure model is introduced to control how layers develop in a deforming aggregate. This model captures one of the initial mechanism of phase interconnection identified experimentally by Holyoke and Tullis (2006a, 2006b), fracturing of load bearing grains. This model reproduces the strength evolution of these experiments and can now be applied to tectonic modeling.
    Description: This project was supported by NSF grant EAR- 0337678 and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research.
    Keywords: Shear zone ; Foliation ; Rheology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): B10404, doi:10.1029/2003JB002925.
    Description: Postseismic deformation is well documented in geodetic data collected in the aftermath of large earthquakes. In the postseismic time interval, GPS is most sensitive to creep in the lower crust or upper mantle activated by earthquake-generated stress perturbations. In these regions, deformation may be localized on an aseismic frictional surface or on a ductile shear zone. These two hypotheses imply specific rheologies and therefore time dependence of postseismic creep. Hence postseismic creep constitutes a potential probe into the rheology of aseismic regions of the lithosphere. I present a simple shear zone model of postseismic creep in which the rheology of the creeping element can be varied. In the absence of tectonic loading during the postseismic time interval, the displacement history of the shear zone obeying a power law rheology with stress exponent n follows an analytical relaxation curve parameterized by 1/n. For a frictional surface, postseismic creep follows the same relaxation law in the limit 1/n → 0. A rough estimate of the apparent stress exponent can be obtained from continuous GPS records. Application to data collected after the 1994 Sanriku earthquake yields 1/n ∼ 0.1, which is consistent with dislocation creep mechanisms. However, the records of two other subduction zone events, the 2001 Peru event and the 1997 Kronotski earthquake, and a continental strike-slip earthquake, the 1999 İzmit earthquake, require negative 1/n. Rather than characterizing the shear zone rheology, these negative exponents indicate that reloading of the shear zone by tectonic forces is important. Numerical simulations of postseismic deformation with nonnegligible reloading produce curves that are well fit by the generalized relaxation law with 1/n 〈 0, although the actual stress exponent of the rheology is positive. While this prevents rheology from being tightly constrained by the studied GPS records, it indicates that reloading is important in the postseismic time interval. In other words, the stress perturbation induced by an earthquake is comparable to the stress supported by ductile shear zones in the interseismic period.
    Description: This work was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the USGS, complemented by NSF grants OCE- 9907244, OCE-0327588, EAR-0337678, and a grant from the Deep Ocean Exploration Institute at WHOI to Greg Hirth.
    Keywords: Postseismic ; Rheology ; Stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 36 (2009): L19301, doi:10.1029/2009GL040006.
    Description: Bottom pressure measurements acquired from the TAG hydrothermal field on the Mid-Atlantic Ridge (26°N) contain clusters of narrowband spectral peaks centered at periods from 22 to 53.2 minutes. The strongest signal at 53.2 min corresponds to 13 mm of water depth variation. Smaller, but statistically significant, signals were also observed at periods of 22, 26.5, 33.4, and 37.7 min (1–4 mm amplitude). These kinds of signals have not previously been observed in the ocean, and they appear to represent vertical motion of the seafloor in response to hydrothermal flow - similar in many ways to periodic terrestrial geysers. We demonstrate that displacements of 13 mm can be produced by relatively small flow-induced pressures (several kPa) if the source region is less than ∼100 m below the seafloor. We suggest that the periodic nature of the signals results from a non-linear relationship between fluid pore pressure and crustal permeability.
    Keywords: Ground ; Displacement ; Hydrothermal
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...