ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (269)
  • Man/System Technology and Life Support  (178)
  • Analytical Chemistry and Spectroscopy
  • Industrial Chemistry
  • Inorganic Chemistry
  • 2005-2009  (447)
  • 1970-1974
  • 2008  (447)
Collection
Keywords
Years
  • 2005-2009  (447)
  • 1970-1974
Year
  • 1
    Publication Date: 2018-06-11
    Description: To sustain affordable human and robotic space exploration, the ability to live off the land at the exploration site will be essential. NASA calls this ability in situ resource utilization (ISRU) and is focusing on finding ways to sustain missions first on the Moon and then on Mars. The ISRU project aims to develop capabilities to technology readiness level 6 for the Robotic Lunar Exploration Program and early human missions returning to the Moon. NASA is concentrating on three primary areas of ISRU: (1) excavating, handling, and moving lunar regolith, (2) extracting oxygen from lunar regolith, and (3) finding, characterizing, extracting, separating, and storing volatile lunar resources, especially in the permanently shadowed polar craters. To meet the challenges related to technology development for these three primary focus areas, the Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) project was initiated in February 2005, through funding by the Exploration Systems Mission Directorate. RESOLVE's objectives are to develop requirements and conceptual designs and to perform breadboard concept verification testing of each experiment module. The final goal is to deliver a flight prototype unit that has been tested in a relevant lunar polar environment. Here we report progress toward the third primary area creating ways to find, characterize, extract, separate, and store volatile lunar resources. The tasks include studying thermal, chemical, and electrical ways to collect such volatile resources as hydrogen, water, nitrogen, methane, and ammonia. We approached this effort through two subtasks: lunar water resource demonstration (LWRD) and regolith volatile characterization (RVC).
    Keywords: Man/System Technology and Life Support
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 36-37; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: The goal of this work was to predict the trajectories of blowing lunar regolith (soil) particles when a spacecraft lands on or launches from the Moon. The blown regolith is known to travel at very high velocity and to damage any hardware located nearby on the Moon. It is important to understand the trajectories so we can develop technologies to mitigate the blast effects for the launch and landing zones at a lunar outpost. A mathematical model was implemented in software to predict the trajectory of a single spherical mass acted on by the gas jet from the nozzle of a lunar lander.
    Keywords: Lunar and Planetary Science and Exploration
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 42-43; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: Each of the six Apollo landers touched down at unique sites on the lunar surface. Aside from the Apollo 12 landing site located 180 meters from the Surveyor III lander, plume impingement effects on ground hardware during the landings were not a problem. The planned return to the Moon requires numerous landings at the same site. Since the top few centimeters of lunar soil are loosely packed regolith, plume impingement from the lander will eject the granular material at high velocities. A picture shows what the astronauts viewed from the window of the Apollo 14 lander. There was tremendous dust excavation beneath the vehicle. With high-vacuum conditions on the Moon (10 (exp -14) to 10 (exp -12) torr), motion of all particles is completely ballistic. Estimates derived from damage to Surveyor III caused by the Apollo 12 lander show that the speed of the ejected regolith particles varies from 100 m/s to 2,000 m/s. It is imperative to understand the physics of plume impingement to safely design landing sites for future Moon missions. Aerospace scientists and engineers have examined and analyzed images from Apollo video extensively in an effort to determine the theoretical effects of rocket exhaust impingement. KSC has joined the University of Central Florida (UCF) to develop an instrument that will measure the 3-D vector of dust flow caused by plume impingement during descent of landers. The data collected from the instrument will augment the theoretical studies and analysis of the Apollo videos.
    Keywords: Lunar and Planetary Science and Exploration
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 30-31; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: Volatile organic compounds (VOCs) inevitably accumulate in enclosed habitats such as the International Space Station and the Crew Exploration Vehicle (CEV) as a result of human metabolism, material off-gassing, and leaking equipment. Some VOCs can negatively affect the quality of the crew's life, health, and performance; and consequently, the success of the mission. Air quality must be closely monitored to ensure a safe living and working environment. Currently, there is no reliable air quality monitoring system that meets NASA's stringent requirements for power, mass, volume, or performance. The ultimate objective of the project -- the development of a Real-Time, Miniaturized, Autonomous Total Risk Indicator System (RT.MATRIX).is to provide a portable, dual-function sensing system that simultaneously determines total organic carbon (TOC) and individual contaminants in air streams.
    Keywords: Man/System Technology and Life Support
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 122-123; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-12
    Description: This paper investigates the non-Boltzmann modeling of the radiating atomic and molecular electronic states present in lunar-return shock-layers. The Master Equation is derived for a general atom or molecule while accounting for a variety of excitation and de-excitation mechanisms. A new set of electronic-impact excitation rates is compiled for N, O, and N2+, which are the main radiating species for most lunar-return shock-layers. Based on these new rates, a novel approach of curve-fitting the non-Boltzmann populations of the radiating atomic and molecular states is developed. This new approach provides a simple and accurate method for calculating the atomic and molecular non-Boltzmann populations while avoiding the matrix inversion procedure required for the detailed solution of the Master Equation. The radiative flux values predicted by the present detailed non-Boltzmann model and the approximate curve-fitting approach are shown to agree within 5% for the Fire 1634 s case.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: To ensure the safety and success of future lunar exploration missions, it is important to measure the toxicity of the lunar dust and its electrostatic properties. The electrostatic properties of lunar dust govern its behavior, from how the dust is deposited in an astronaut s lungs to how it contaminates equipment surfaces. NASA has identified the threat caused by lunar dust as one of the top two problems that need to be solved before returning to the Moon. To understand the electrostatic nature of lunar dust, NASA must answer the following questions: (1) how much charge can accumulate on the dust? (2) how long will the charge remain? and (3) can the dust be removed? These questions can be answered by measuring the electrostatic properties of the dust: its volume resistivity, charge decay, charge-to-mass ratio or chargeability, and dielectric properties.
    Keywords: Lunar and Planetary Science and Exploration
    Type: John F. Kennedy Space Center's Technology Development and Application 2006-2007 Report; 32-33; NASA/TM-2008-214740
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: The NASA Software Assurance Research Program (in part) performs studies as to the feasibility of technologies for improving the safety, quality, reliability, cost, and performance of NASA software. This study considers the application of commercial automated source code analysis tools to mission critical ground software that is in the operations and sustainment portion of the product lifecycle.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: Here we discuss thc bibliographic record of Lunar Science as published in refereed journals from 1955 to 2002. New tools in bibliometrics, i.e. the study of publications and citations, reveal the structure of this scientific field by measuring and visualizing connections between published papers. This approach is especially powerful when applied to a well defined field such as Lunar Science, which is strongly affected by policy and the actions resulting from policy, most obviously gathering samples from the Moon. This poster presents some results obtained by processing a dataset of lunar science bibliographic records through a bibliographic visualization program.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: Titan's middle atmosphere is characterized by cyclostrophic winds and strong seasonal modulation. Cassini CIRS observations, obtained in northern winter, indicate that the stratosphere near l mbar is warmest at low latitudes, with the South Pole a few degrees colder and the North Pole approximately 20 K colder. Associated with the cold northern temperatures are strong circumpolar winds with speeds as high as 190 m/s. Within this vortex, the mixing ratios of several organic gases are enhanced relative to those at low latitudes. Comparison with Voyager thermal infrared measurements, obtained 25 years ago in northern spring, suggests that the enhancement currently observed will increase as the winter progresses. The stratopause height, increases from 0.1 mbar near the equator to 0.01 mbar near the North Pole, where it is the warmest part of the atmosphere, greater than 200 K. This implies subsidence at the pole, which is consistent with the enhanced organics observed. Condensate features, several still not identified, are also apparent in the infrared spectra at high northern latitudes. In many ways, the winter vortex observed on Titan, with cyclostrophic winds, resembles the polar winter vortices on the Earth, where the mean winds are geostrophic.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Philosophical Transactions of The Royal Society A; Volume 367; No. 1889; 649-664
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-05
    Description: An effort to extend the low-temperature operational limit of supercapacitors is currently underway. At present, commercially available non-aqueous supercapacitors are rated for a minimum operating temperature of -40 C. A capability to operate at lower temperatures would be desirable for delivering power to systems that must operate in outer space or in the Polar Regions on Earth. Supercapacitors (also known as double-layer or electrochemical capacitors) offer a high power density (〉1,000 W/kg) and moderate energy density (about 5 to 10 Wh/kg) technology for storing energy and delivering power. This combination of properties enables delivery of large currents for pulsed applications, or alternatively, smaller currents for low duty cycle applications. The mechanism of storage of electric charge in a supercapacitor -- at the electrical double-layer formed at a solid-electrode/liquid-electrolyte interface -- differs from that of a primary or secondary electrochemical cell (i.e., a battery) in such a manner as to impart a long cycle life (typically 〉10(exp 6) charge/discharge cycles).
    Keywords: Man/System Technology and Life Support
    Type: NASA Tech Briefs, July 2008; 11-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-11
    Description: This slide presentation reviews concepts for exploring Titan via balloon vehicles. The presentation includes information about the baseline options, the deployment scenario, and the balloon technology development.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-11
    Description: This slide presentation reviews the mission architecture for the Titan mission. The presentation includes information on mission architecture options, probe delivery options, and Enceladus lighting.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-11
    Description: This newsletter reports 418 new meteorites from the 2004 and 2006 ANSMET seasons from the Cumulus Hills (CMS), LaPaz Ice Field (LAP), Graves Nunataks (GRA), Grosvenor Mountains (GRO), Larkman Nunatak (LAR), MacAlpine Hills (MAC), Miller Range (MIL), Roberts Massif (RBT), and Scott Glacier (SCO). These new samples include one iron, 1 eucrite, 1 mesosiderite, 6 CK chondrites (2 with pairing), 2 CV3 chondrites, 1 CM1, 7 CM2 (4 with pairing), 3 CR2 (2 with pairing), and one each of a type 3 L and H chondrites. The CK6 chondrites (LAR 06869, 06872, 06873) are unusual in that they have no discernable chondrules, extremely fine-grained texture, and are full of veins. This newsletter represents a break from recent newsletters in which we have announced many unusual and popular samples, including new lunar and martian meteorites, an unusual achondrite (GRA 06128 and 06129 the topic of a special session at this years LPSC).
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-11
    Description: This viewgraph presents a review of the development of food systems for the use during a Mars Mission. It review some of the food delivery systems developed for all of the NASA space programs from Mercury, Gemini, and Apollo, to the Space Shuttle, International Space Station. The goals and objectives of the program are to: provide an adequate food system and develop a safe food system, that is nutritious and acceptable to astronauts, and to provide a food system that efficiently balances vehicle resources.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-11
    Description: Suited human performance studies in reduced gravity environments to date include limited observations from Apollo Lunar surface Extravehicular Activities (EVA) and from previous studies conducted in partial gravity simulation environments. The Constellation Program EVA Systems Project office has initiated tests to develop design requirements for the next generation Lunar EVA suit. Theses studies were conducted in the Space Vehicle Mock-Up Facility (SVMF) at Johnson Space Center from which the results provided recommendations for suit weight, mass, center of gravity, pressure, and suit kinematic constraints that optimize human performance in partial gravity environments.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-06
    Description: Famine early warning systems use remote sensing in combination with socio-economic and household food economy analysis to provide timely and rigorous information on emerging food security crises. The Famine Early Warning Systems Network (FEWS NET) is the US Agency for International Development's decision support system in 20 African countries, as well as in Guatemala, Haiti and Afghanistan. FEWS NET provides early and actionable policy guidance for the US Government and its humanitarian aid partners. As we move into an era of climate change where weather hazards will become more frequent and severe, understanding how to provide quantitative and actionable scientific information for policy makers using biophysical data is critical for an appropriate and effective response.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: This viewgraph presentation reviews NASA's mission to launch to the Moon, Mars, and Beyond. The following questions will be answered: 1) What is NASA's mission? 2) Why do we explore? 3) What is our timeline? 4) Why the Moon first? 5) What will the vehicles look like? 5) What progress have we made? 6) Who will be doing the work? and 7) What are the benefits of space exploration?
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: This viewgraph presentation reviews NASA's efforts in Regolith simulants. This effort is in support of future lunar missions.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-12
    Description: This article reports on research into atmospheric revitalization systems for long-term space travel and the use ofCOMSOL Multiphysics to understand how structured sorbents can be used to improve the performance of adsorption processes via thermal management. We are developing the next generation of atmosphere revitalization systems, which will reach for new levels of resource conservation via a high percentage of loop closure. For example, a high percentage of carbon dioxide, exhaled by crew, can be converted via reaction to drinking water, closing the loop from human metabolic waste to supply. Adsorption processes play a lead role in these new/closed loop systems.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-11
    Description: We report the spectroscopic detection of mid-infrared emission from the transiting exoplanet HD 209458b. Using archive data taken with the Spitzer IRS instrument, we have determined the spectrum of HD 209458b between 7.46 and 15.25 micrometers. We have used two independent methods to determine the planet spectrum, one differential in wavelength and one absolute, and find the results are in good agreement. Over much of this spectral range, the planet spectrum is consistent with featureless thermal emission. Between 7.5 and 8.5 m, we find evidence for an unidentified spectral feature. If this spectral modulation is due to absorption, it implies that the dayside vertical temperature profile of the planetary atmosphere is not entirely isothermal. Using the IRS data, we have determined the broadband eclipse depth to be 0:00315 +/- 0:000315, implying significant redistribution of heat from the dayside to the nightside. This work required the development of improved methods for Spitzer IRS data calibration that increase the achievable absolute calibration precision and dynamic range for observations of bright point sources.
    Keywords: Lunar and Planetary Science and Exploration
    Type: The Astronomical Journal; Volume 674; 482-497
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-27
    Description: The workshop encompassed three major themes. The first theme was the scientific objectives of drilling, which center on the search for clues to the existence of past life and to the geological and climate history of Mars. Key questions are where and how deep to drill? Planetary protection issues were stressed as an important consideration in the design of any drilling mission. Secondly, architectures for drilling missions were discussed, including an overview of most of the current drills in operation that would be applicable to drilling on Mars. Considerable emphasis was placed on remote operation and drilling automation technologies. Finally, alternatives to conventional drilling were discussed. These included underground moles, penetrometers, horizontal drilling, impactors, and access to the subsurface from subsurface cavities. Considerable discussion centered on the possible Mars drilling missions that could be performed in both the near and longer term. The workshop participants concluded that useful science could be obtained today using low-cost impactors, with or without a sheperding spacecraft.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA/CP-2008-214586 , ARC-E-DAA-TN-142 , Deep Mars: Accessing the Subsurface of Mars on Near Term Missions workshop; 1-2 Mra. 2008; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-27
    Description: The NASA Vision for Space Exploration begins with a more reliable flight capability to the International Space Station and ends with sending humans to Mars. An important stepping stone on the path to Mars encompasses human missions to the Moon. There is little doubt throughout the stakeholder community that new technologies will be required to enable this Vision. However, there are many factors that influence the ability to successfully infuse any technology including the technical risk, requirement and development schedule maturity, and, funds available. This paper focuses on effective infusion processes that have been used recently for the technologies in development for the lunar exploration flight program, Constellation. Recent successes with Constellation customers are highlighted for the Exploration Technology Development Program (ETDP) Projects managed by NASA Glenn Research Center (GRC). Following an overview of the technical context of both the flight program and the technology capability mapping, the process is described for how to effectively build an integrated technology infusion plan. The process starts with a sound risk development plan and is completed with an integrated project plan, including content, schedule and cost. In reality, the available resources for this development are going to change over time, necessitating some level of iteration in the planning. However, the driving process is based on the initial risk assessment, which changes only when the overall architecture changes, enabling some level of stability in the process.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA/TM-2008-215045 , AIAA Paper 2007-6196 , E-16228 , AIAA Space 2007 Conference and Exposition; 18-20 Sept. 2007; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-27
    Description: A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.
    Keywords: Man/System Technology and Life Support
    Type: 38th International Conference on Environmental Systems; 29 Jun.?2 Jul. 2008; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-19
    Description: Portable life support systems in future space suits will include a ventilation subsystem driven by a dedicated fan. This ventilation fan must meet challenging requirements for pressure rise, flow rate, efficiency, size, safety, and reliability. This paper describes research and development that showed the feasibility of a regenerative blower that is uniquely suited to meet these requirements. We proved feasibility through component tests, blower tests, and design analysis. Based on the requirements for the Constellation Space Suit ventilation fan, we designed the critical elements of the blower. We measured the effects of key design parameters on blower performance using separate effects tests, and used the results of these tests to design a regenerative blower that will meet the ventilation fan requirements. We assembled a proof-of-concept blower and measured its performance at low pressures that simulate a PLSS environment. We obtained head/flow performance curves over a range of operating speeds, identified the maximum efficiency point for the blower, and used these results to specify the design and operating conditions for the ventilation fan. We designed a compact motor that can drive the blower under all anticipated operating requirements and operate with high efficiency during normal operation. We identified materials for the blower that will enhance safety for operation in a lunar environment. We produced a solid model that illustrates the final design. The proof-of-concept blower produced the flow rate and pressure rise needed for the CSSS ventilation subsystem while running at 5400 rpm and consuming only 9 W of electric power and using a non-optimized, commercial motor and controller and inefficient bearings. Scaling the test results to a complete design shows that a lightweight, compact, reliable, and low power blower can meet the performance requirements for future PLSSs.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-19038 , 40th International Conference on Environmental Systems; Jul 11, 2010 - Jul 15, 2010; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-19
    Description: The Lab-on-a-Chip Application Development - Portable Test System, known as LOCAD-PTS, was launched to the International Space Station (ISS) aboard Space Shuttle Discovery (STS-116) on December 9th,2006. Since that time, it has remained onboard ISS and has been operated by the crew on 10 separate occasions LOCAD-PTS is a handheld device for rapid biochemical analysis; it consists of a spectrophotometer, a series of interchangeable cartridges, a pipette and several clean/sterilized swabbing kits to obtain samples from ISS surfaces. Sampling, quantitative analysis and data retrieval is performed onboard, therefore reducing the need to return samples to Earth. Less than 20 minutes are required from sampling to data, significantly faster than existing culture-based methods on ISS, which require 3-5 days. Different cartridges are available for the detection of different target molecules (simply by changing the formulation within each cartridge), thereby maximizing the benefit and applications addressed by a single instrument. Initial tests on ISS have focused on the detection of the bact.erial macromolecule endotoxin, a component of bacterial cell walls. LOCAD-PTS detects endotoxin with a cartridge that contains a formulation known as Limulus Amebocyte Lysate (LAL) assay. LAL is derived from blood of the horseshoe crab, Limulus polyphemus, and detects enodotoxin with an enzyme cascade that triggers generation Of a yellow colored dye, p-nitroanaline. The more p-nitroanaline product, the more endotoxin is in the original sample. To enable quantitative analysis, the absorbance of this color is measured by LOCAD-PTS through a 395 nm filter and compared with an internal calibration curve, to provide a reading on the LED display that ranges from 0.05 Endotoxin Units (EU)/ml to 5 EU/ml. Several surface sites were analyzed within ISS between March 2007 and February 2008, including multiple locations in the US Laboratory Destiny, Node 1 Unity, AMock, and Service Module Zvezda. The goals of this initial study were to i) test the cleanliness of reagents/supplies on orbit, ii) test the crew's ability to collect and process a sample in microgravity without contamination, iii) demonstrate nominal function of the LOCAD-PTS, and iv) provide a general survey of endotoxin within the ISS. The surface sites varied greatly in terms of their frequency-of-use and material texture/composition; from relatively smooth aluminum, to fabric, to the room temperature vulcanizing (RTV) rubber of a Extravehicular Mobility Unit (EMU) spacesuit. Results showed that: i) the swabbing kits and reagents remained clean on orbit, ii) the crew could collect and process a sample without contamination, and iii) the LOCAD-PTS functioned nominally in 〉 99% of the 55 tests completed. We will present detailed results of the survey of endotoxin on ISS surfaces. These results and technology are important in the near-term - by providing an extra tool in the toolbox for ISS microbial monitoring. They are also important in the longer term as valuable preparation for human exploration of the Moon and Mars. One of the proposed science goals for the human exploration of Mars will be to detect and characterize any indigenous biological molecules that may exist on the Martian surface. To achieve that goal, the crew must have the technology available onboard to differentiate indigenous biology from any terrestrial biological material brought to Mars by the spacecraft and crew (termed 'forward contamination'). The LAL assay is already one of the official methods used by NASA's planetary protection program to certify cleanliness of interplanetary robotic spacecraft prior to launch; and therefore endotoxin is a good marker of forward contamination (as well as other microbial molecules detectable with LOCAD-PTS e.g. box-1, 3-glucan and lipoteichoic acid). Furthermore, the distribution and abundance of these molecules on the ISS provides a good indicator of what to expect on the Crew Exploratioehicle Orion, the lunar lander Antares, and future crewed spacecraft destined for Mars. In addition, technology such as LOCAD-PTS has been proposed to help evaluate forward contamination during lunar surface operations by the crew, as preparation for the human exploration of Mars.
    Keywords: Man/System Technology and Life Support
    Type: M09-2055 , AIAA 2008 Conference; Sep 09, 2008 - Sep 11, 2008; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-19
    Description: Human exposure to microgravity during spaceflight causes bone loss. Calcium and other metabolic byproducts are excreted in urine voids. Frequent and accurate measurement of urine void volume and constituents is essential to determining crew bone loss and the effectiveness of countermeasures. Previous US Space Shuttle (SS) Urine Monitoring System (UMS) technology was unable to accurately measure urine void volumes due to cross contamination between users and fluid system instabilities. Currently, urine voids must be collected manually in a flexible plastic bag containing a known tracer quantity. The crew member must completely mix the bag then withdraw a representative syringe sample for later ground analysis. The current bag system accuracy is highly dependent on mixing technique. The International Space Station (ISS) UMS has been developed as an automated device that collects urine from the Waste and Hygiene Compartment (WHC) urinal funnel interface, separates the urine, measures the void volume, and allows for syringe sampling. After operations, the ISS UMS delivers the urine to the WHC for normal processing then flushes its plumbing with a small water volume. The current ISS UMS design incorporates an innovative rotary separator that minimizes foaming, greatly reduces cross contamination between urine voids (〈 0.5 ml urine), and provides accurate volume measurements (〈 +/- 2% error for 100 to 1000 ml void volumes). The system performance has been validated with extensive ground tests and reduced gravity aircraft flights. The lockersized ISS UMS is currently being modified to interface with the ISS Node 3 WHC Russian ACY hardware. The operation principles, characteristics, and results are outlined in the paper.
    Keywords: Man/System Technology and Life Support
    Type: 39th International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-19
    Description: Field of view has always been a design feature paramount to helmet design, and in particular space suit design, where the helmet must provide an adequate field of view for a large range of activities, environments, and body positions. For Project Constellation, a slightly different approach to helmet requirement maturation was utilized; one that was less a direct function of body position and suit pressure and more a function of the mission segment in which the field of view is required. Through taxonimization of various parameters that affect suited FOV, as well as consideration for possible nominal and contingency operations during that mission segment, a reduction process was able to condense the large number of possible outcomes to only six unique field of view angle requirements that still captured all necessary variables without sacrificing fidelity. The specific field of view angles were defined by considering mission segment activities, historical performance of other suits, comparison between similar requirements (pressure visor up versus down, etc.), estimated requirements from other teams for field of view (Orion, Altair, EVA), previous field of view tests, medical data for shirtsleeve field of view performance, and mapping of visual field data to generate 45degree off-axis field of view requirements. Full resolution of several specific field of view angle requirements warranted further work, which consisted of low and medium fidelity field of view testing in the rear entry ISuit and DO27 helmet prototype. This paper serves to document this reduction progress and followup testing employed to write the Constellation requirements for helmet field of view.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-19
    Description: With the increasing demands placed on extravehicular activity (EVA) for the International Space Station (ISS) assembly and maintenance, along with planned lunar and Martian missions, the need for increased human productivity and capability becomes ever more critical. This is most readily achieved by reduction in space suit weight and volume, and increased hardware reliability, durability, and operating lifetime. Considerable progress has been made with each successive generation of space suit design; from the Apollo A7L suit, to the current Shuttle Extravehicular Mobile Unit (EMU) suit, and the next generation Constellation Space Suit Element (CSSE). However, one area of space suit design which has continued to lag is the fluid pump used to drive the water cooling loop of the Primary Life Support System (PLSS). The two main types of fluid pumps typically used in space applications are rotodynamic pumps (pumping is achieved through a rotary vaned impeller) and displacement pumps (which includes rotary and diaphragm pumps). The rotating and moving parts found in the pumps and electric motor add significantly to the susceptibility to wear and friction, thermal mismatch, and complexity of the pumps. Electric motor-driven pumps capable of achieving high operational reliability are necessarily large, heavy, and energy inefficient. This report describes a development effort conducted for NASA by Lynntech, Inc., who recently demonstrated the feasibility of an electrochemically-driven fluid cooling pump. With no electric motor and minimal lightweight components, an electrochemically-driven pump is expected to be significantly smaller, lighter and achieve a longer life time than conventional rotodynamic and displacement pumps. By employing sulfonated polystyrene-based proton exchange membranes, rather than conventional Nafion membranes, a significant reduction in the actuator power consumption was demonstrated. It was also demonstrated that these membranes possess the necessary mechanical strength, durability, and temperature range for long life space operation. The preliminary design for a Phase II prototype pump compares very favorably to the fluid cooling pumps currently used in space suit portable life support systems (PLSS). Characteristics of the electrochemically-driven pump are described and the benefits of the technology as a replacement for electric motor pumps in mechanically pumped single-phase fluid loops (MPFLs) is discussed.
    Keywords: Man/System Technology and Life Support
    Type: 39th International Conference on Environmental Sciences; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-19
    Description: The shuttle crew wears the Advanced Crew Escape Spacesuit (ACES) to protect themselves from cabin decompression and to support bail out during landing. ACES is cooled by a liquid-cooled garment (LCG) that interfaces to a heat exchanger that dumps heat into the cabin. The ACES outer layer is made of Gore-Tex(Registered TradeMark), permitting water vapor to escape while containing oxygen. The crew can only lose heat via insensible water losses and the LCG. Under nominal landing operations, the average cabin temperature rarely exceeds 75 F, which is adequate for the ACES to function. Problem A rescue shuttle will need to return 11 crew members if the previous mission suffers a thermal protection system failure, preventing it from returning safely to Earth. Initial analysis revealed that 11 crew members in the shuttle will increase cabin temperature at wheel stop above 80 F, which decreases the ACES ability to keep crew members cool. Air flow in the middeck of the shuttle is inhomogeneous and some ACES may experience much higher temperatures that could cause excessive thermal stress to crew members. Methods A ground study was conducted to measure the cooling efficiency of the ACES at 75 F, 85 F, and 95 F at 50% relative humidity. Test subjects representing 5, 50, and 95 percentile body habitus of the astronaut corps performed hand ergometry keeping their metabolic rate at 400, 600, and 800 BTU/hr for one hour. Core temperature was measured by rectal probe and skin, while inside and outside the suit. Environmental chamber wall and cooling unit inlet and outlet temperatures were measured using high-resolution thermistors ( 0.2 C). Conclusions Under these test conditions, the ACES was able to protect the core temperature of all test subjects, however thermal stress due to high insensible losses and skin temperature and skin heat flow may impact crew performance. Further research should be performed to understand the impact on cognitive performance.
    Keywords: Man/System Technology and Life Support
    Type: 80th Annual Scientific Meeting of the Aerospace Medical Association (ASMA); May 03, 2009 - May 07, 2009; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: NASA s Constellation Program (CxP) will conduct a series of human space expeditions of increasing scope, starting with missions supporting the International Space Station and expanding to encompass the Moon and Mars. Although human-rating is an integral part of all CxP activities throughout their life cycle, NASA Procedural Requirements document NPR 8705.2B, Human-Rating Requirements (HRR) for Space Flight Systems, defines the additional processes, procedures, and requirements necessary to produce human-rated space systems that protect the safety of crew members and passengers on these NASA missions. In order to be in compliance with 8705.2B the CxP must show appropriate implementation or progression toward the HRR, or justification for an exception. Compliance includes an explanation of how the CxP intends to meet the HRR, analyses to be performed to determine implementation; and a matrix to trace the HRR to CxP requirements. The HRR requires the CxP to establish a human system integration team (HSIT), consisting of astronauts, mission operations personnel, training personnel, ground processing personnel, human factors personnel, and human engineering experts, with clearly defined authority, responsibility, and accountability to lead the human-system integration. For example, per the HRR the HSIT is involved in the evaluation of crew workload, human-in-the-loop usability evaluations, determining associated criteria, and in assessment of how these activities influenced system design. In essence, the HSIT is invaluable in CxP s ability to meet the three fundamental tenets of human rating: the process of designing, evaluating, and assuring that the total system can safely conduct the required human missions; the incorporation of design features and capabilities that accommodate human interaction with the system to enhance overall safety and mission success; and the incorporation of design features and capabilities to enable safe recovery of the crew from hazardous situations.
    Keywords: Man/System Technology and Life Support
    Type: 80th Annual Scientific Meeting of the Aerospace Medical Association (AsMA); May 03, 2009 - May 07, 2009; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-19
    Description: The next generation space suit requires additional capabilities for controlling and adjusting internal pressure than previous design suits. Next generation suit pressures will range from slight pressure, for astronaut prebreath comfort, to hyperbaric pressure levels for emergency medical treatment. Carleton was awarded a contract in 2008 to design and build a proof of concept bench top demonstrator regulator having five setpoints which are selectable using input electronic signaling. Although the basic regulator architecture is very similar to the existing SOP regulator used in the current EMU, the major difference is the electrical selectivity of multiple setpoints rather than the mechanical On/Off feature found on the SOP regulator. The concept regulator employs a linear actuator stepper motor combination to provide variable compression to a custom design main regulator spring. This concept allows for a continuously adjustable outlet pressures from 8.2 psid (maximum) down to "firm" zero thus effectively allowing it to serve as a shutoff valve. This paper details the regulator design and presents test results on regulation band width, command set point accuracy; slue rate and regulation stability, particularly when the set point is being slued. Projections for a flight configuration version are also offered for performance, architectural layout and weight.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-19
    Description: The similarities and differences of the escape mechanisms for H+ and D+ from Venus, H+ and D+ from Mars, and heavier ions (approximately 17 and approximately 28 amu) from Titan are described. The dominant escape process for hydrogen and deuterium on Venus is thought to originate in the night side ionosphere, located in the night side H and D bulge region, where the polarization electric field is the dominant force accelerating ionospheric H+ and D+ upward into the induced magnetic tail of Titan. The resulting loss rates approximately 8.6 x 10(exp26)/s and approximately 3.2 x 10(exp 23)/s for H+ and D+, respectively, are consistent with the large observed D/H ratio - 160 times that of terrestrial water and an ancient ocean more than 10 m of liquid uniformly distributed on the surface. In contrast, Jeans escape is the dominant loss mechanism for H and D on Mars, which has a D/H ratio approximately 5.3 times that of terrestrial water. The resulting loss rates for H and D of approximately 3.7 x 10(exp 26/s and approximately 10(exp 22)/s, respectively, can be related to possible ancient water reservoirs below the surface. When horizontal atmospheric winds are taken into account, the Jeans escape rates for H and D are enhanced considerably, as are the corresponding water reservoirs. On Titan, 28 amu ions were observed to escape along its induced magnetic tail by the Voyager 1 Plasma Science Instrument (PLS). In analogy with Venus, the escaping ions were thought to originate in the ionosphere. The Cassini mission permits a test of this principle due to the numerous flybys of Titan through both the ionosphere and the tail. A polarization electric field is obtained in the ionosphere of the TA flyby, yielding an upward acceleration of 17 and 28 amu ionospheric ions that is consistent with the flux of heavy ionospheric ions observed escaping along the magnetic tail by the Cassini Ion Mass Spectrometer (CAPS) during the T9 flyby.
    Keywords: Lunar and Planetary Science and Exploration
    Type: European Planetary Science Congress 2008; 21-26 Sept. 2008; Munster; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-19
    Description: Nearly 50% of the lunar surface is oxygen, present as oxides in silicate rocks and soil. Methods for reduction of these oxides could liberate the oxygen. Remote sensing has provided evidence of significant quantities of hydrogen possibly indicating hundreds of millions of metric tons, MT, of water at the lunar poles. If the presence of lunar water is verified, water is likely to be the first in situ resource exploited for human exploration and for LOX-H2 rocket fuel. In-Situ lunar resources offer unique advantages for space operations. Each unit of product produced on the lunar surface represents 6 units that need not to be launched into LEO. Previous studies have indicated the economic advantage of LOX for space tugs from LEO to GEO. Use of lunar derived LOX in a reusable lunar lander would greatly reduce the LEO mass required for a given payload to the moon. And Lunar LOX transported to L2 has unique advantages for a Mars mission. Several methods exist for extraction of oxygen from the soil. But, extraction of lunar water has several significant advantages. Microwave heating of lunar permafrost has additional important advantages for water extraction. Microwaves penetrate and heat from within not just at the surface and excavation is not required. Proof of concept experiments using a moon in a bottle concept have demonstrated that microwave processing of cryogenic lunar permafrost simulant in a vacuum rapidly and efficiently extracts water by sublimation. A prototype lunar water extraction rover was built and tested for heating of simulant. Microwave power was very efficiently delivered into a simulated lunar soil. Microwave dielectric properties (complex electric permittivity and magnetic permeability) of lunar regolith simulant, JSC-1A, were measured down to cryogenic temperatures and above room temperature. The microwave penetration has been correlated with the measured dielectric properties. Since the microwave penetration depth is a function of temperature and frequency, an extraction system can be designed for water removal from different depths.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2008 National Space and Missile Materials Symposium; Jun 23, 2008 - Jun 27, 2008; Henderson, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-19
    Description: Space flight mass spectrometers contribute our understanding of the origin and evolution of our solar system and even of life itself. This fundamental role has motivated increasing interest in miniature mass spectrometry for planetary missions. Several remarkable new instruments are en route or under development to investigate the composition of planetary bodies such as Mars and comets. For instance, the Sample Analysis at Mars (SAM) suite on the 2009 Mars Science Laboratory (MSL) mission includes a quadrupole mass spectrometer with a sophisticated gas processing system as well as pyrolysis and chemical derivatization protocols for solid samples. Future missions will require even lighter, lower power, and yet more capable mass spectrometers, particularly to analyze samples in situ on planetary surfaces. We have been developing laser-based mass spectrometers for elemental and organic/molecular analysis of rock, ice, or fine particle samples. These typically use time-of-flight (TOF) mass analyzers, which are readily miniaturized and can detect both atomic species and complex organics that occur in a variety of planetary materials. For example, nonvolatile polycyclic aromatic hydrocarbons and kerogen-like macromolecular carbon are found in some carbonaceous meteorites, which derived from asteroid parent bodies. A single focused laser pulse is able to volatilize and ionize some of these compounds for direct TOF analysis. While this is possible without any sample preparation or contact, sensitivity and quantitative performance can improve significantly with some sample handling. As such we have also been examining robotic mechanisms and protocols to accompany space flight mass spectrometers. In addition, sensors in early development may significantly improve these capabilities, via use of techniques such as switchable polarity, ambient pressure, or resonant ionization; tandem mass spectrometry (TOF or ion trap); and chemical imaging.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Truly Portable Mass Spectrometry Symposium; Mar 05, 2008 - Mar 07, 2008; Louisianna; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-19
    Description: Scientific ground-truth measurements for near-term Mars missions, such as the 2009 Mars Science Laboratory (MSL) mission, are essential for validating current in situ flight instrumentation and for the development of advanced instrumentation technologies for life-detection missions over the next decade. The NASA Astrobiology Institute (NAI) has recently funded a consortium of researchers called the Astrobiology Sample Analysis Program (ASAP) to analyze an identical set of homogenized martian analog materials in a "round-robin" style using both state-of-the-art laboratory techniques as well as in-situ flight instrumentation including the SAM gas chromatograph mass spectrometer and CHEMIN X-ray diffraction/fluorescence instruments on MSL and the Urey and MOMA organic analyzer instruments under development for the 2013 ExoMars missions. The analog samples studied included an Atacama Desert soil from Chile, the Murchison meteorite, a gypsum sample from the 2007 AMASE Mars analog site, jarosite from Panoche Valley, CA, a hydrothermal sample from Rio Tinto, Spain, and a "blind" sample collected during the 2007 MSL slow-motion field test in New Mexico. Each sample was distributed to the team for analysis to: (1) determine the nature and inventory of organic compounds, (2) measure the bulk carbon and nitrogen isotopic composition, (3) investigate elemental abundances, mineralogy and matrix, and (4) search for biological activity. The experimental results obtained from the ASAP Mars analog research consortium will be used to build a framework for understanding the biogeochemistry of martian analogs, help calibrate current spaceflight instrumentation, and enhance the scientific return from upcoming missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Astrobiology Science Conference 2008; Apr 14, 2008 - Apr 17, 2008; San Jose, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-19
    Description: We summarize recent observations by the Composite Infrared Spectrometer of Saturn, its rings, Titan, and the icy satellites. Limb observations of Saturn show vertical oscillations of temperatures and zonal-wind shears in the equatorial region that may be related to a temporal oscillation similar to the terrestrial QBO and Jupiter's QQO. There is also evidence of subsidence at mid-northern latitudes driven by the equatorial activity. Nadir-viewing observations show compact warm spots in the troposphere and stratosphere at both (summer and winter) poles, likely associated with subsidence. Observations of Titan have defined better the characteristics of the northern winter polar vortex, with 190 m/s winds surrounding a cold atmosphere at 1 microbar. The very warm polar stratopause at 10 microbar and the enhanced abundances of organic compounds suggest subsidence within the vortex. Analysis of the zonal structure in temperature indicates that the stratospheric zonal winds rotate about an axis that is displaced approximately 4.1 deg from the IAU pole. Additional flybys, including a close one in March 2008, continue to characterize the endogenic activity in Enceladus s south polar region. Temperature maps of bright and dark terrains on Iapetus indicate that its ice is approximately stable to sublimation in the bright regions and highly unstable in the dark regions. Thermal mapping of Saturn s rings continues to constrain their composition, and observations at different solar phase angles, spacecraft elevations, solar elevations, and local hour angles have elucidated the effects of ring-particle shadowing and vertical motions on the thermal structure, and revealed the presence of small-scale structure associated with self-gravity wakes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: COSPAR General Assembly; Jul 14, 2008 - Jul 18, 2008; Montreal; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2008-233 , European Space Agency; Oct 07, 2008 - Oct 09, 2008; Noordwijk; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: Apollo landing videos shot from inside the right LEM window, provide a quantitative measure of the characteristics and dynamics of the ejecta spray of lunar regolith particles beneath the Lander during the final 10 [m] or so of descent. Photogrammetry analysis gives an estimate of the thickness of the dust layer and angle of trajectory. In addition, Apollo landing video analysis divulges valuable information on the regolith ejecta interactions with lunar surface topography. For example, dense dust streaks are seen to originate at the outer rims of craters within a critical radius of the Lander during descent. The primary intent of this work was to develop a mathematical model and software implementation for the trajectory simulation of lunar dust particles acted on by gas jets originating from the nozzle of a lunar Lander, where the particle sizes typically range from 10 micron to 500 micron. The high temperature, supersonic jet of gas that is exhausted from a rocket engine can propel dust, soil, gravel, as well as small rocks to high velocities. The lunar vacuum allows ejected particles to travel great distances unimpeded, and in the case of smaller particles, escape velocities may be reached. The particle size distributions and kinetic energies of ejected particles can lead to damage to the landing spacecraft or to other hardware that has previously been deployed in the vicinity. Thus the primary motivation behind this work is to seek a better understanding for the purpose of modeling and predicting the behavior of regolith dust particle trajectories during powered rocket descent and ascent.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2008-019 , 11th Biennial ASCE Aerospace Division International Conference on Engineering, Construction and Operations in Challenging Environments; Mar 03, 2008 - Mar 05, 2008; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2008-171 , The International Mars Society Convention; Aug 14, 2008 - Aug 17, 2008; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: The RESOLVE project requires an analytical system to identify and quantitate the volatiles released from a lunar drill core sample as it is crushed and heated to 150 C. The expected gases and their range of concentrations were used to assess Gas Chromatography (GC) and Mass Spectrometry (MS), along with specific analyzers for use on this potential lunar lander. The ability of these systems to accurately quantitate water and hydrogen in an unknown matrix led to the selection of a small MEMS commercial process GC for use in this project. The modification, development and testing of this instrument for the specific needs of the project is covered.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2008-039 , Space Technology and Application International Forum (STAIF); Feb 10, 2008 - Feb 14, 2008; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-13
    Description: Roberts' model of lunar soil erosion beneath a landing rocket has been updated in several ways to predict the effects of future lunar landings. The model predicts, among other things, the number of divots that would result on surrounding hardware due to the impact of high velocity particulates, the amount and depth of surface material removed, the volume of ejected soil, its velocity, and the distance the particles travel on the Moon. The results are compared against measured results from the Apollo program and predictions are made for mitigating the spray around a future lunar outpost.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2008-020 , 11th Biennial ASCE Aerospace Division International Conference (Earth and Space 2008); Mar 03, 2008 - Mar 06, 2008; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: Recycling is a technology that will be key to creating a self sustaining lunar outpost. The plastics used for food packaging provide a source of material that could be recycled to produce water and methane. The recycling of these plastics will require some additional resources that will affect the initial estimate of starting materials that will have to be transported from earth, mainly oxygen, energy and mass. These requirements will vary depending on the recycling conditions. The degredation products of these plastics will vary under different atmospheric conditions. An estimate of the the production rate of methane and water using typical ISRU processes along with the plastic recycling will be presented.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2008-029 , Space Technology and Application International Forum (STAIF); Feb 10, 2008 - Feb 14, 2008; Albuquerque, NM; Mexico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: Conducted as a part of NASA Ultra-Reliability effort: Goal is to design for increased reliability in all NASA missions. Desire is to increase reliability by a factor of 10. Study provides a baseline for current technology. Analyzed anomalies for spacecraft orbiting Mars. Long lived spacecraft. Comparison with current rover missions and past orbiters. Looked for trends to assist design of future missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 46th AIAA Aerospace Sciences Meeting and Exhibit; Jan 10, 2008; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: PISCES, the Pacific International Space Center for Exploration Systems. This paper describes the PISCES development plans, particularly in the areas of In-Situ Resource Utilization, Robotics and Education and Outreach.
    Keywords: Man/System Technology and Life Support
    Type: Earth and Science Conference 2008; Mar 03, 2008; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: The Phoenix Mars mission involves delivering a stationary science lander on to the surface of Mars in the polar region within the latitude band 65 deg N to 72 deg N. Its primary objective is to perform in-situ and remote sensing investigations that will characterize the chemistry of the materials at the local surface, subsurface, and atmosphere. The Phoenix spacecraft was launched on August 4, 2007 and will arrive at Mars in May 2008. The lander includes a suite of seven (7) science instruments. This mission is baselined for up to 90 sols (Martian days) of digging, sampling, and analysis. Operating at the Mars polar region creates a challenging environment for the Phoenix landed subsystems and instruments with Mars surface temperature extremes between -120 deg C to 25 deg C and diurnal thermal cycling in excess of 145 deg C. Some engineering and science hardware inside the lander were qualification tested up to 80 deg C to account for self heating. Furthermore, many of the hardware for this mission were inherited from earlier missions: the lander from the Mars Surveyor Program 2001 (MSP'01) and instruments from the MSP'01 and the Mars Polar Lander. Ensuring all the hardware was properly qualified and flight acceptance tested to meet the environments for this mission required defining and implementing an environmental assurance program that included a detailed heritage review coupled with tailored flight acceptance testing. A heritage review process with defined acceptance success criteria was developed and is presented in this paper together with the lessons learned in its implementation. This paper also provides a detailed description of the environmental assurance program of the Phoenix Mars mission. This program includes assembly/subsystem and system level testing in the areas of dynamics, thermal, and electromagnetic compatibility, as well as venting/pressure, dust, radiation, and meteoroid analyses to meet the challenging environment of this mission.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 24th Aerospace Testing Seminar; Apr 08, 2008; Manhattan Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: The Energy Storage Project of NASA s Exploration Technology Development Program is developing advanced lithium-ion batteries to meet the requirements for specific Constellation missions. NASA GRC, in conjunction with JPL and JSC, is leading efforts to develop High Energy and Ultra High Energy cells for three primary Constellation customers: Altair, Extravehicular Activities (EVA), and Lunar Surface Systems. The objective of the High Energy cell development is to enable a battery system that can operationally deliver approximately 150 Wh/kg for 2000 cycles. The Ultra High Energy cell development will enable a battery system that can operationally deliver 220 Wh/kg for 200 cycles. To accomplish these goals, cathode, electrolyte, separator, and safety components are being developed for High Energy Cells. The Ultra High Energy cell development adds lithium alloy anodes to the component development portfolio to enable much higher cell-level specific energy. The Ultra High Energy cell development is targeted for the ascent stage of Altair, which is the Lunar Lander, and for power for the Portable Life support System of the EVA Lunar spacesuit. For these missions, mass is highly critical, but only a limited number of cycles are required. The High Energy cell development is primarily targeted for Mobility Systems (rovers) for Lunar Surface Systems, however, due to the high risk nature of the Ultra High Energy cell development, the High Energy cell will also serve as a backup technology for Altair and EVA. This paper will discuss mission requirements and the goals of the material, component, and cell development efforts in further detail.
    Keywords: Lunar and Planetary Science and Exploration
    Type: E-17370 , NASA Aerospace Battery Workshop; Nov 17, 2008 - Nov 20, 2008; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: As part of an In-Situ Resource Utilization infrastructure to sustain long term-human presence on the lunar surface, the production of oxygen and metals by electrolysis of lunar regolith has been the subject of major scrutiny. There is a reasonably large body of literature characterizing the candidate solvent electrolytes, including ionic liquids, molten salts, fluxed oxides, and pure molten regolith itself. In the light of this information and in consideration of available electrolytic technologies, the authors have determined that direct molten oxide electrolysis at temperatures of approx 1600 C is the most promising avenue for further development. Results from ongoing studies as well as those of previous workers will be presented. Topics include materials selection and testing, electrode stability, gas capture and analysis, and cell operation during feeding and tapping.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2008-025 , Space Technology and Applications International Forum; Feb 10, 2008 - Feb 14, 2008; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-13
    Description: Lunar dust can jeopardize exploration activities due to its ability to cling to most surfaces. In this paper, we report on our measurements of the electrostatic properties of the lunar soil simulants. Methods have been developed to measure the volume resistivity, dielectric constant, chargeability, and charge decay of lunar soil. While the first two parameters have been measured in the past [Olhoeft 1974], the last two have never been measured directly on the lunar regolith or on any of the Apollo samples. Measurements of the electrical properties of the lunar samples are being performed in an attempt to answer important problems that must be solved for the development of an effective dust mitigation technology, namely, how much charge can accumulate on the dust and how long does the charge remain on surfaces. The measurements will help develop coatings that are compatible with the intrinsic electrostatic properties of the lunar regolith.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2008-030 , Space Technology and Applications International Forum; Feb 10, 2008 - Feb 14, 2008; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: In preparation for the Apollo program, Leonard Roberts developed a remarkable analytical theory that predicts the blowing of lunar soil and dust beneath a rocket exhaust plume. Roberts' assumed that the erosion rate is determined by the "excess shear stress" in the gas (the amount of shear stress greater than what causes grains to roll). The acceleration of particles to their final velocity in the gas consumed a portion of the shear stress. The erosion rate continues to increase until the excess shear stress is exactly consumed, thus determining the erosion rate. He calculated the largest and smallest particles that could be eroded based on forces at the particle scale, but the erosion rate equation assumes that only one particle size exists in the soil. He assumed that particle ejection angles are determined entirely by the shape of the terrain, which acts like a ballistic ramp, the particle aerodynamics being negligible. The predicted erosion rate and particle upper size limit appeared to be within an order of magnitude of small-scale terrestrial experiments, but could not be tested more quantitatively at the time. The lower particle size limit and ejection angle predictions were not tested.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2007-195 , Earth and Space 2008; Mar 03, 2008 - Mar 05, 2008; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: Each of the six Apollo mission landers touched down at unique sites on the lunar surface. Aside from the Apollo 12 landing site located 180 meters from the Surveyor III lander, plume impingement effects on ground hardware during the landings were largely not an issue. The Constellation Project's planned return to the moon requires numerous landings at the same site. Since the top few centimeters are loosely packed regolith, plume impingement from the lander ejects the granular material at high velocities. With high vacuum conditions on the moon (10 (exp -14) to 10 (epx -12) torr), motion of all particles is completely ballistic. Estimates from damage to the Surveyor III show that the ejected regolith particles to be anywhere 400 m/s to 2500 m/s. It is imperative to understand the physics of plume impingement to safely design landing sites for the Constellation Program.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2007-196 , Earth and Space 2008; Mar 03, 2008 - Mar 05, 2008; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: Laser Desorption-Infrared Spectroscopy (LD-IR) uses an IR laser pulse to desorb surface materials while a spectrometer measures the emission spectrum of the desorbed materials (Figure 1). In this example, laser desorption operates by having the incident laser energy absorbed by near surface material (~10 microns in depth). This desorption produces a plume that exists in an excited state at elevated temperatures. A natural analog for this phenomenon can be observed when comets approach the sun and become active and individual molecular emission spectra can be observed in the IR [1,2,3,4,5]. When this occurs in comets, the same species that initially emit radiation down to the ground state are free to absorb it, reducing the amount of detectable emission features. The nature of our technique results in absorption not occurring, because the laser pulse could easily be moved away form the initial desorption plume, and still have better spatial resolution then reflectance spectroscopy. In reflectance spectroscopy, trace components have a relatively weak signal when compared to the entire active nature of the surface. With LDIR, the emission spectrum is used to identify and analyze surface materials.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science Conference; Mar 17, 2008; League City, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-12
    Description: The Yamato mission to the lunar South Pole-Aitken Basin returns samples that enable dating of lunar formation and the lunar bombardment period. The design of the Yamato mission is based on a systems engineering process which takes an advanced consideration of cost and mission risk to give the mission a high probability of success.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2008-170
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: WOLF (What's On the Lunar Farside?) is a lunar sample return mission to the South Pole-Aitken (SPA) Basin, located on the farside of the moon, seeking to answer some of the remaining questions about our solar system. Through the return and analysis of SPA samples, scientists can constrain the period of inner solar system late heavy bombardment and gain momentous knowledge of the SPA basin. WOLF provides the opportunity for mankind's progression in further understanding our solar system, its history, and unknowns surrounding the lunar farside. The orbiter will provide intermittent, direct communication between the lander and ground operations via the Deep Space Network (DSN). Received images and spectrometry will aid in real-time sample selection.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2008-169
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-12
    Description: This paper details the experimentation of lunar stimulant sandblasting. This was done to understand the damage that landing spacecraft on the moon will have to a permanent lunar outpost. The sandblasting was done with JSC-1A onto glass coupons. Correlations between the velocity and the damage done to the glass were not found. Reasons for this and future analyses are discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2008-290
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: It has been suggested using a percussive motion could improve the efficiency of excavation by up to 90%. If this is proven to be true it would be very beneficial to excavation projects on the Moon and Mars. The purpose of this study is to design, build and test a percussive tool which could dig a trench and then compare this data against that of a non-percussive tool of the same shape and size. The results of this test thus far have been inconclusive due to malfunctions in the testbed and percussive bucket; however, experimental results from small scale experiments confirm this higher efficiency and support further testing.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2008-289
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-19
    Description: The MErcury, Surface, Space, ENvironment GEochemistry and Ranging (MESSENGER) spacecraft is a NASA Discovery Mission spacecraft developed and operated by the Johns Hopkins University Applied Physics Laboratory. It was launched on August 3, 2004 and is currently on a course for Mercury orbit insertion in March 2011. To date the mission trajectory has taken the spacecraft to minimum solar distances of 0.332 and 0.313 AU and on January 14, 2008 the first flyby of Mercury in 33 years. From launch through the latest perihelion passage temperature performance data has been collected for the sun facing Digital Sun Sensors (DSS), the sun facing phased array and low gain (omni) antennas, the solar arrays, the sunshade and the two sun facing attitude control 4.4 N thrusters. Prior to launch, extensive solar simulation testing was conducted at the Glenn Research Center, Tank 6 solar simulation facility in Cleveland Ohio. Flight hardware qualification units representing these Sun exposed components were tested in solar environments that represented near mission minimum solar distance as to verify the thermal designs and the material used in fabrication. The paper will review the thermal designs of these components and their thermal performance to date as compared to the solar simulation testing.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 25th Space Simulation Conference. Environmental Testing: The Earth-Space Connection; 7; NASA/CP-2008-214164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-19
    Description: Ozone, O3, has been observed on the surfaces of Ganymede and the Saturnian satellites Dione and Rhea. It is generally accepted that in each case the O3 is formed by the magnetospheric irradiation of oxygen, O2, within water-rich icy surfaces. Carbon dioxide ice, which has been detected on a number of planetary-satellite surfaces, is another possible source of O3 after irradiation. Laboratory work to date has focused on O3 formation from irradiated O2 at 10 K using 〈 1O eV and 5 keV electrons and 100 keV protons. The temperature-dependent formation of O3 in solid O2 from 11 to 30 K using 5 keV electrons also has been examined. The objectives of the present laboratory study are (1) to compare O3 formation in O2 and CO2 ices using MeV proton and 10 keV electron bombardment at different temperatures, and (2) to examine ozone's thermal stability in different icy matrices (O2, CO2, H2O) during warming. Our results will aid in the understanding of these possible abiotic ozone sources, which is necessary when assessing O3 as a potential biomarker.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Division of Planetary Sciences; Oct 11, 2008 - Oct 14, 2008; New York; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-19
    Description: Ionospheric oxygen ions have been observed throughout the magnetosphere, from the plasma sheet to the ring current region. I t has been found that the O+ /H+ density ratio in the magnetosphere increases with geomagnetic activity and varies with storm phases. During the magnetic storm in late September to earIy October 2002, Cluster was orbiting in the plasma sheet and ring current regions. At prestorm time, Cluster observed high H+ density and low O+ density in the plasma sheet and lobes. During the storm main phase, 0+ density has increased by 10 times over the pre-storm level. Strong field-aligned beams of O+ were observed in the lobes. O+ fluxes were significantly reduced in the central plasma sheet during the storm recovery. However, 0+ was still evident on the boundaries of the plasma sheet and in the lobes. In order to interpret the Cluster observations and to understand how O+ ions populate the magnetosphere during a magnetic storm, we model the storm in early October 2002 using our global ion kinetic simulation (GIK). We use the LFN global simulation model to produce electric and magnetic fields in the outer magnetosphere, the Strangeway outflow scaling with Delcourt ion trajectories to include ionospheric outflows, and the Fok inner magnetospheric model for the plasmaspheric and ring current response to all particle populations. We find that the observed composition features are qualitatively reproduced by the simulations, with some quantitative differences that point to future improvements in the models.
    Keywords: Lunar and Planetary Science and Exploration
    Type: American Geophysical Union Meeting; Dec 15, 2008 - Dec 19, 2008; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The Lunar Precursor Robotics Program (LPRP) is the host program for the Exploration Systems Mission Directorate's (ESMD) lunar robotic precursor missions to the Moon. The program includes two missions, the Lunar Reconnaissance Orbiter (LRO), and the Lunar CRater Observation and Sensing Satellite (LCROSS). Both missions will provide the required lunar information to support development and operations of those systems required for Human lunar return. LPRP is developing a lunar mapping plan, Called the Lunar Mapping and Modeling Project, to create the capability to archive and present all data from LRO, LCROSS, historical lunar missions, and international lunar missions for future mission planning and operations. LPRP is also developing its educational and public outreach activities for the Vision for Space Exploration's first missions. LPRP is working closely with the Science Mission Directorate as their lunar activities come into focus.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-2079 , AIAA Space 2008 Conference and Exposition; Sep 09, 2008 - Sep 11, 2008; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-19
    Description: The Polar Gateways conference was hosted during January 23-29, 2008, the first week of polar sunrise at Barrow, Alaska, at the new Barrow Arctic Research Center of the Barrow Arctic Science consortium (BASC). The dawn week of polar day, the highly variable low temperatures, and the ice-covered shore tundra and adjacent sea ice conditions provided an appropriate locale for a conference dedicated in the spirit of the International Polar and Heliophysical Years 2007-2009 to the educational exploration of polar and icy world science of Earth and the solar system. The many scientific, educational, and cultural interactions with the local community of four thousand residents, sixty percent native Inupiat Eskimo, further provided an unforgettable experience of what life might be someday be like on other remote polar and icy worlds to be explored and eventually inhabited. Over one hundred active participants, more than half participating remotely, contributed science presentations and educational activities during this unique circumpolar and very "green" conference. Most remote contributions came via videoconference from the Swedish Institute of Space Physics (IRF) at Kisuna, Sweden, the EISCAT Svalbard Radar Facility at Spitzbergen, Norway, the University of Alaska at Fairbanks, NASA Goddard Space Flight Center and the Jet Propulsion Laboratory, the University of California at Berkeley, and the University of Arizona. A few contributors participated via teleconference, including one from the Polar Geophysical Institute at Apatity in Russia. These active contributions spanned up to thirteen time zones (Alaska to Russia) at various tirnes during the conference. Primary videoconferencing support between Barrow and other sites was ably provided by the University of Alaska at Fairbanks, and local operators at each remote site collectively made this conference possible. Science presentations spanned the solar system from the polar Sun and heliospheric environment to Earth, Moon, Mars, Jupiter, Saturn, the Kuiper Belt, and the solar wind termination shock now crossed by both Voyager spacecraft. Barrow participants experienced look and feel of icy worlds like Europa by going "on the ice" during snowmobile expeditions to the near-shore sea ice and Point Barrow. Extensive educational outreach activities were conducted with the local Barrow township and North Slope Borough communities, partly through several interviews with local host Earl Finkler on Barrow's KBRW Radio, and through the NASA Digital Learning Network (DLN) "live from the top of the world" at Barrow. The Goddard robotic rover "Nunuq of the North" became a local celebrity. The complete science program and photo library, eventually also including video recordings of all main presentations, will be available at the new polargateways2008.gsfc.nasa.gov web site (old version: polargateways2008.org) with links to educational materials from the conference already accessible at sunearthday.nasa.gov/polarsunrise.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2008 American Geophysical Union Meeting; Dec 13, 2008 - Dec 21, 2008; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-19
    Description: Aircraft instrument panels should be designed such that primary displays are in optimal viewing location to minimize pilot perception and response time. Human Factors engineers define three zones (i.e. cones ) of visual location: 1) "Easy Eye Movement" (foveal vision); 2) "Maximum Eye Movement" (peripheral vision with saccades), and 3) "Head Movement (head movement required). Instrument display visual angles were measured to determine how well conventional aircraft (T-34, T-38, F- 15B, F-16XL, F/A-18A, U-2D, ER-2, King Air, G-III, B-52H, DC-10, B747-SCA) and the MQ-9 ground control station (GCS) complied with these standards, and how they compared with each other. Selected instrument parameters included: attitude, pitch, bank, power, airspeed, altitude, vertical speed, heading, turn rate, slip/skid, AOA, flight path, latitude, longitude, course, bearing, range and time. Vertical and horizontal visual angles for each component were measured from the pilot s eye position in each system. The vertical visual angles of displays in conventional aircraft lay within the cone of "Easy Eye Movement" for all but three of the parameters measured, and almost all of the horizontal visual angles fell within this range. All conventional vertical and horizontal visual angles lay within the cone of Maximum Eye Movement. However, most instrument vertical visual angles of the MQ-9 GCS lay outside the cone of Easy Eye Movement, though all were within the cone of Maximum Eye Movement. All the horizontal visual angles for the MQ-9 GCS were within the cone of "Easy Eye Movement". Most instrument displays in conventional aircraft lay within the cone of Easy Eye Movement, though mission-critical instruments sometimes displaced less important instruments outside this area. Many of the MQ-9 GCS systems lay outside this area. Specific training for MQ-9 pilots may be needed to avoid increased response time and potential error during flight. The learning objectives include: 1) Know three physiologic cones of eye/head movement; 2) Understand how instrument displays comply with these design principles in conventional aircraft and an uninhabited aerial vehicle system. Which of the following is NOT a recognized physiologic principle of instrument display design? Cone of Easy Eye Movement 2) Cone of Binocular Eye Movement 3) Cone of Maximum Eye Movement 4) Cone of Head Movement 5) None of the above. Answer: # 2) Cone of Binocular Eye Movement
    Keywords: Man/System Technology and Life Support
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-19
    Description: The Crew Exploration Vehicle (CEV), also known as Orion, will ferry a crew of up to six astronauts to the International Space Station (ISS), or a crew of up to four astronauts to the moon. The first launch of CEV is scheduled for approximately 2014. A stored water system on the CEV will supply the crew with potable water for various purposes: drinking and food rehydration, hygiene, medical needs, sublimation, and various contingency situations. The current baseline biocide for the stored water system is ionic silver, similar in composition to the biocide used to maintain quality of the water transferred from the Orbiter to the ISS and stored in Contingency Water Containers (CWCs). In the CEV water system, the ionic silver biocide is expected to be depleted from solution due to ionic silver plating onto the surfaces of the materials within the CEV water system, thus negating its effectiveness as a biocide. Since the biocide depletion is expected to occur within a short amount of time after loading the water into the CEV water tanks at the Kennedy Space Center (KSC), an additional microbial
    Keywords: Man/System Technology and Life Support
    Type: ICES; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-19
    Description: An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In two previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of the technology in a representative environment with simulated human metabolic loads. The next step in developmental testing at JSC was to replace the simulated humans with real humans; this testing was conducted in the spring of 2008. This first instance of human testing of a new Orion ARS technology included several cases in a sealed Orione-quivalent free volume and three cases using emergency breathing masks connected directly to the ARS loop. Significant test results presented in this paper include comparisons between the standard metabolic rates for CO2 and water vapor production published in Orion requirements documents and real-world rate ranges observed with human test subjects. Also included are qualitative assessments of process flow rate and closed-loop pressure-cycling tolerability while using the emergency masks. Recommendations for modifications to the Orion ARS design and operation, based on the test results, conclude the paper.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Pennsylvania; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-19
    Description: As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-19
    Description: Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (LCO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas is a significant heat transfer mechanism for the warming of the adsorbent bed because it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously. A NASA Small Business Innovative Research (SBIR) Phase 1 contract was performed to investigate condensing and icing as applied to MTSA to enable higher fidelity modeling and assess the impact of geometry variables on CIHX performance for future CIHX design optimization. Specifically, a design tool was created using analytical relations to explore the complex, interdependent design space of a condensing ice heat exchanger. Numerous variables were identified as having nontrivial contributions to performance such as hydraulic diameter, heat exchanger effectiveness, ventilation gas mass flow rate and surface roughness. Using this tool, four test articles were designed and manufactured to map to a full MTSA subassembly (the adsorbent bed, the sublimation heat exchanger for cooling and the condensing ice heat exchanger for warming). The design mapping considered impacts due to CIHX geometry as well as subassembly impacts such as thermal mass and thermal resistance through the adsorbent bed. The test articles were tested at simulated PLSS ventilation loop temperature, moisture content and subambient pressure. Ice accumulation and melting were observed. Data and test observations were analyzed to identify drivers of the condensing ice heat exchanger performance. This paper will discuss the analytical models, the test article designs, and testing procedures. Testing issues will be discussed to better describe data and share lessons learned. Data analysis and subsequent conclusions will be presented.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Savannah, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-19
    Description: As the United States plans to return astronauts to the moon, designing the most effective and efficient life support systems is of extreme importance. The trace contaminant control system (TCCS) will be located within the Portable Life Support System (PLSS) of the Constellation Space Suit Element (CSSE), and is responsible for removing contaminants, which at increased levels can be hazardous to a crewmember s health. These contaminants come from several sources including metabolic production of the crewmember (breathing, sweating, etc.) and offgassing of the space suit material layers. This paper summarizes the results of a trade study that investigated TCC technologies used in NASA space suits and vehicles as well as commercial and academic applications, to identify the best technology options for the CSSE PLSS. The trade study also looked at the feasibility of regeneration of TCC technologies, specifically to determine the viability of vacuum regeneration for on-back, realtime EVA.
    Keywords: Man/System Technology and Life Support
    Type: 39th International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Georgia; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-19
    Description: An advanced portable life support system (PLSS) for the space suit will require a small, robust, and energy-efficient system to transport the ventilation gas through the space suit for lunar Extravehicular Activity (EVA) operations. A trade study identified and compared ventilation transport technologies in commercial, military, and space applications to determine which technologies could be adapted for EVA use. Based on the trade study results, five commercially available, 24volt fans were selected for performance testing at various pressures and flow rates. Measured fan parameters included fan delta-pressures, input voltages, input electrical currents, and in some cases motor windings electrical voltages and currents. In addition, a follow-on trade study was performed to identify oxygen compatibility issues and assess their impact on fan design. This paper outlines the results of the fan performance characterization testing, as well as the results from the oxygen compatibility assessment.
    Keywords: Man/System Technology and Life Support
    Type: 39th International Conference on Environmental Systems; Jul 12, 2009 - Jul 16, 2009; Georgia; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: In 2008, NASA was embarking on its Exploration Vision, knowing that many technical challenges would be encountered. For lunar exploration missions, one challenge was to learn to manage lunar dust. References to problems associated with lunar dust during the Apollo Program were found on many of pages of the mission reports and technical debriefs. All engineers designing hardware that would come into contact with lunar dust had to mitigate its effects in the design.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-24902 , JSC Engineering Academy; Jan 17, 2008; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-19
    Description: Hubble Space Telescope data of the passage of Jupiter's Great Red Spot (GRS) and Oval BA were acquired on May 15, June 28 (near closest approach), and July 8. Wind fields were measured from Wide Field Planetary Camera 2 (WFPC2) data with 10-hour separations before and after closest approach, and within the GRS with 40-minute separations on all three dates. Color information was also derived using 8 narrowband WFPC2 filters from 343 to 673-nm on all three dates. We will present the results of principal components and wind analyses and discuss unique features seen in this data set. In addition, we will highlight any changes observed in the GRS, Oval BA and their surroundings as a result of the passage, including the movement of a smaller red anticyclone from west of the GRS, around its southern periphery, and to the east of the GRS.
    Keywords: Lunar and Planetary Science and Exploration
    Type: CIRS Team Meeting/AAS Division of Planetary Sciences meeting; Oct 08, 2008 - Oct 15, 2008; Ithaca, NY; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-19
    Description: Thermal radiation from the surface of Titan reaches space through a spectral window at 19-microns wavelength. After removing the effects of the atmosphere, measurement of this radiance gives the brightness temperature of the surface. The Composite Infrared Spectrometer (CIRS) has made such measurements during the Cassini prime mission. These observations cover a wide range of emission angles, thereby constraining the contributions from atmospheric radiance and opacity. With the more complete latitude coverage and much larger dataset, we have been able to improve upon the original results from Voyager IRIS. CIRS measures an equatorial surface brightness temperature, averaged over longitude, of 93.7 +/- 0.6 K. This agrees with the HASI temperature at the Huygens landing site. The latitude dependence of surface brightness temperature exhibits an approximately 2 K decrease toward the South Pole and 3 K decrease toward the North Pole. The lower surface temperatures seen at high latitudes are consistent with conditions expected for lake formation.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 40th Annual Meeting of the Division for Planetary Sciences of the American Astronomical Society; Oct 10, 2008 - Oct 15, 2008; Ithaca, New York; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-19
    Description: Polar, heliophysical, and planetary science topics related to the International Heliophysical and Polar Years 2007-2009 were addressed during this circumpolar video conference hosted January 23-29, 2808 at the new Barrow Arctic Research Center of the Barrow Arctic Science Consortium in Barrow, Alaska. This conference was planned as an IHY-IPY event science outreach event bringing together scientists and educational specialists for the first week of sunrise at subzero Arctic temperatures in Barrow. Science presentations spanned the solar system from the polar Sun to Earth, Moon, Mars, Jupiter, Saturn, and the Kuiper Belt. On-site participants experienced look and feel of icy worlds like Europa and Titan by being in the Barrow tundra and sea ice environment and by going "on the ice" during snowmobile expeditions to the near-shore sea ice environment and to Point Barrow, closest geographic point in the U.S. to the North Pole. Many science presentations were made remotely via video conference or teleconference from Sweden, Norway, Russia, Canada, Antarctica, and the United States, spanning up to thirteen time zones (Alaska to Russia) at various times. Extensive educational outreach activities were conducted with the local Barrow and Alaska North Slope communities and through the NASA Digital Learning Network live from the "top of the world" at Barrow. The Sun- Earth Day team from Goddard, and a videographer from the Passport to Knowledge project, carried out extensive educational interviews with many participants and native Inupiaq Eskimo residents of Barrow. Video and podcast recordings of selected interviews are available at http://sunearthday.nasa.gov/2008/multimedidpodcasts.php. Excerpts from these and other interviews will be included in a new high definition video documentary called "From the Sun to the Stars: The New Science of Heliophysics" from Passport to Knowledge that will later broadcast on NASA TV and other educational networks. Full conference proceedings are accessible at http://polargateways2008.org/.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-19
    Description: As described in Bertucci et al. [2007] Saturn's magnetic field is stretched out into a magnetodisk configuration where the field is confined near the equatorial plane with Titan below the current sheet. As discussed in Maurice et al. [1996] for Jupiter's outer magnetosphere where magnetodisk configuration applies the heavy ions are confined within 2 deg of the current sheet and at higher latitudes protons dominate. We show compositional evidence from the Cassini Plasma Spectrometer (CAPS) Ion Mass Spectrometer (IMS) that protons dominate the ion composition for the upstream flow, while in pickup region H2+ and protons dominate. If true, then we expect a far different interaction between Saturn's magnetosphere and Titan's upper atmosphere and exosphere, where heavy ions are essentially absent.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Joint meeting of the American Astronautical Society/Science Programs Division, American Geophysical Union; May 26, 2008 - May 30, 2008; Fort Lauderdale, Fl; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-19
    Description: The Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft has obtained numerous spectra of Saturn at varying spectral and spatial resolutions since Saturn Orbit Insertion in 2004. Emission lines due to water vapor in Saturn's stratosphere were first detected using whole-disk observations from the Infrared Space Observatory (Feuchtgruber et al 1997) and subsequently confirmed by the Submillimeter Wave Astronomy Satellite (Rergin et al 2000). CIRS has detected water and the data permit the retrieval of the latitudinal variation of water on Saturn. Emission lines of H2O on Saturn are very weak in the CIRS data. Thus. large spectral averages as well as improvements in calibration are necessary to detect water vapor. Zonally averaged nadir spectra were produced every 10 degrees of latitude. Stratospheric temperatures in the 0.5 - 5.0 mbar range were obtained by inverting spectra of CH4 in the v4 band centered at 1304 cm(exp -1). The origin of water vapor is believed to be from the ablation of micrometeorites containing water ice, followed by photochemistry. This external source of oxygen originates either from the Saturn system (from the rings or perhaps from Enceladus) or from the interplanetary medium. Connerney (1986) proposed a mechanism to transport water from the inner edge of the B-ring along magnetic field lines to specific latitudes (50N and 44S) on Saturn. Prange et al (2006) interpreted a minimum in the abundance of acetylene from ultraviolet spectra near 41S on Saturn as possibly due to an enhanced influx of water. Existing CIRS far-IR spectra are at relatively low spatial resolution, but observations at closer range planned for the extended mission will be able to test the "ring rain" mechanism by searching for localized water vapor enhancement at midlatitudes.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Saturn After Cassini-Huygens Symposium/ESA and Technology Facilities Council; Jul 28, 2008 - Aug 01, 2008; London; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: There are good reasons for pushing the spectral range of observation to shorter wavelengths than currently envisaged for terrestrial planet-finding missions utilizing with a 4-rn, diffraction-limited, optical telescope: (1) The angular resolution is higher, so that the image of an exoplanet is better separated from that of the much brighter star. (2) Due to the higher resolution, the exozodiacal background per resolution element is smaller, so exposure times are reduced for the same incident flux. (3) Most importantly, the sensitivity to the presence of life on habitable exoplanets is increased by a hundred-fold by access to the ozone biomarker at 250-300 nm. These benefits must be weighed against challenges arising from the faintness of exoplanets in the mid-UV. We will describe the benefits and the technical and cost challenges.
    Keywords: Lunar and Planetary Science and Exploration
    Type: International Astronomy Meeting; Feb 23, 2008 - Mar 01, 2008; Grenoble; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. An overview of the MESSENGER mission and its January 14th close flyby of Mercury will be provided. Primary science objectives and the science instrumentation will be described. Initial results from MESSENGER'S first flyby on January 14th, 2008 will be discussed with an emphasis on the magnetic field and charged particle measurements.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-19
    Description: Most of Titan's atmospheric organic and nitrogen chemistry, aerosol formation, and atmospheric loss are driven from external energy sources such as Solar UV, Saturn's magnetosphere, solar wind and galactic cosmic rays. The Solar UV tends to dominate the energy input at lower altitudes of approximately 1100 km but which can extend down to approximately 400 km, while the plasma interaction from Saturn's magnetosphere, Saturn's magnetosheath or solar wind are more important at higher altitudes of approximately 1400 km, but the heavy ion plasma [O(+)] of approximately 2 keV and energetic ions [H(+)] of approximately 30 keV or higher from Saturn's magnetosphere can penetrate below 950km. Cosmic rays with energies of greater than 1 GeV can penetrate much deeper into Titan's atmosphere with most of its energy deposited at approximately 100 km altitude. The haze layer tends to dominate between 100 km and 300 km. The induced magnetic field from Titan's interaction with the external plasma can be very complex and will tend to channel the flow of energy into Titan's upper atmosphere. Cassini observations combined with advanced hybrid simulations of the plasma interaction with Titan's upper atmosphere show significant changes in the character of the interaction with Saturn local time at Titan's orbit where the magnetosphere displays large and systematic changes with local time. The external solar wind can also drive sub-storms within the magnetosphere which can then modify the magnetospheric interaction with Titan. Another important parameter is solar zenith angle (SZA) with respect to the co-rotation direction of the magnetospheric flow. Titan's interaction can contribute to atmospheric loss via pickup ion loss, scavenging of Titan's ionospheric plasma, loss of ionospheric plasma down its induced magnetotail via an ionospheric wind, and non-thermal loss of the atmosphere via heating and sputtering induced by the bombardment of magnetospheric keV ions and electrons. This energy input evidently drives the large positive and negative ions observed below approximately 1100 km altitude with ion masses exceeding 10,000 daltons. We refer to these ions as seed particles for the aerosols observed below 300 km altitude. These seed particles can be formed, for example, from the polymerization of acetylene (C2H2) and benzene (C6H6) molecules in Titan's upper atmosphere to form polycyclic aromatic hydrocarbons (PAH) and/or fullerenes (C60). In the case of fullerenes, which are hollow spherical carbon shells, magnetospheric keV [O(+)] ions can become trapped inside the fullerenes and eventually find themselves inside the aerosols as free oxygen. The aerosols are then expected to fall to Titan's surface as polymerized hydrocarbons with trapped free oxygen where unknown surface chemistry can take place.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Meeting held in Corpus Christi, TX on July 7-11, 2008
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-19
    Description: Radio-occultation and thermal-infrared measurements are complementary investigations for sounding planetary atmospheres. The vertical resolution afforded by radio occultations is typically approximately 1 km or better, whereas that from infrared sounding is often comparable to a scale height. On the other hand, an instrument like CIRS can easily generate global maps of temperature and composition, whereas occultation soundings are usually distributed more sparsely. The starting point for radio-occultation inversions is determining the residual Doppler-shifted frequency, that is the shift in frequency from what it would be in the absence of the atmosphere. Hence the positions and relative velocities of the spacecraft, target atmosphere, and DSN receiving station must be known to high accuracy. It is not surprising that the inversions can be susceptible to sources of systematic errors. Stratospheric temperature profiles on Titan retrieved from Cassini radio occultations were found to be very susceptible to errors in the reconstructed spacecraft velocities (approximately equal to 1 mm/s). Here the ability to adjust the spacecraft ephemeris so that the profiles matched those retrieved from CIRS limb sounding proved to be critical in mitigating this error. A similar procedure can be used for Saturn, although the sensitivity of its retrieved profiles to this type of error seems to be smaller. One issue that has appeared in inverting the Cassini occultations by Saturn is the uncertainty in its equatorial bulge, that is, the shape in its iso-density surfaces at low latitudes. Typically one approximates that surface as a geopotential surface by assuming a barotropic atmosphere. However, the recent controversy in the equatorial winds, i.e., whether they changed between the Voyager (1981) era and later (after 1996) epochs of Cassini and some Hubble observations, has made it difficult to know the exact shape of the surface, and it leads to uncertainties in the retrieved temperature profiles of one to a few kelvins. This propagates into errors in the retrieved helium abundance, which makes use of thermal-infrared spectra and synthetic spectra computed with retrieved radio-occultation temperature profiles. The highest abundances are retrieved with the faster Voyager-era winds, but even these abundances are somewhat smaller than those retrieved from the thermal-infrared data alone (albeit with larger formal errors). The helium abundance determination is most sensitive to temperatures in the upper troposphere. Further progress may include matching the radio-occultation profiles with those from CIRS limb sounding in the upper stratosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Saturn After Cassini-Huygens Symposium/ESA, Science and Technology Faciities Council; 28 Jul. - 1 Aug. 208; London; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-19
    Description: New Horizons (NH) is NASA's mission to provide the first in situ reconnaissance of Pluto and its moons Charon, Nix, and Hydra. The NH spacecraft will reach Pluto in July 2015 and will then, if approved for an extended mission phase, continue on to a flyby encounter with one or more Kuiper belt objects (KBOs). NH was launched on 19 January 2006 and received a gravity assist during a flyby encounter with Jupiter (with closest approach at -32 RJ on 28 February 2007) that reduced its flight time to Pluto by 3 years. During the Jupiter flyby, NH collected a trove of multi-wavelength imaging and fields-and-particles measurements. Among the many science results at Jupiter were a detection of planet-wide mesoscale waves, eruptions of atmospheric ammonia clouds, unprecedented views of Io's volcanic plumes and Jupiter's tenuous ring system, a first close-up of the Little Red Spot (LRS), first sightings of polar lightning, and a trip down the tail of the magnetosphere. In 2015, NH will conduct a seven-month investigation of the Pluto system culminating in a closest approach some 12,500 km from Pluto's surface. Planning is presently underway for the Pluto encounter with special emphasis on longidentified science goals of studying the terrain, geology, and composition of the surfaces of Pluto and Charon, examining the composition and structure of Pluto's atmosphere, searching for an atmosphere on Charon, and characterizing Pluto's ionosphere and solar wind interaction. Detailed inspections will also be performed of the newly discovered satellites Nix and Hydra. Additionally, NH will characterize energetic particles in Pluto's environment, refine the bulk properties of Pluto and Charon, and search for additional satellites and rings.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Western Pacific Geophysics Meeting; Jul 29, 2008 - Aug 01, 2008; Cairns; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-19
    Description: Ethylene (C2H4) emission has been measured in the poles and equator of Jupiter. The 949 cm(sup -1) spectra were recorded with a high resolution spectrometer at the McMath-Pierce telescope at Kitt Peak in October-November 1998 and at the Infrared Telescope Facility at Mauna Kea in June 2000. C2H4 is an important product of methane chemistry in the outer planets. Knowledge of its abundance can help discriminate among the various proposed sets of CH4 photolysis branching ratios at Ly-alpha, and determine the relative importance of the reaction pathways that produce C2H2 and C2H6. In the equatorial region the C2H4 emission is weak, and we were only able to detect it at high air-mass, near the limb. We derive a peak equatorial molar abundance of C2H4 of 4.5 x 10(exp -7) - 1.7 x 10(exp -6) near 2.2 x 10(exp -3) mbar, with a total column of 5.7 x 10(exp 14) - 2.2 x 10(exp 15) molecules cm(exp -2) above 10 mbar depending upon choice of thermal profile. We observed enhanced C2H4 emission from the poles in the regions where auroras are seen in X-ray, UV, and near infrared images. In 2000 we measured a short-term change in the distribution of polar C2H4 emission; the emission in the north IR auroral "hot spot" decreased by a factor of three over a two-day interval. This transient its contribution peak at 5-10 microbar suggests that the polar e is primarily a thermal effect coupled with vertical transport. Comparing our observations from Kitt Peak and Mauna Kea shows that the C2H4 emission of the northern non-"hot spot" auroral regions did not change over the three-year period while that in the southern polar regions decreased.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The Huygens Probe executed a successful entry, descent and impact on the Saturnian moon of Titan on January 14, 2005. Gas Chromatograph Mass Spectrometer (GCMS) instrument conducted isotopic and compositional measurements throughout the two and one half hour descent from 146 km altitude, and on the surface for 69 minutes until loss of signal from the orbiting Cassini spacecraft. The GCMS incorporated a quadrupole mass filter with a secondary electron multiplier detection system. The gas sampling system provided continuous direct atmospheric composition measurements and batch sampling through three gas chromatographic (GC) columns, a chemical scrubber and a hydrocarbon enrichment cell. The GCMS gas inlet was heated to prevent condensation, and to evaporate volatiles from the surface after impact. Data products from the GCMS included altitude profiles of the major atmospheric constituents dinitrogen (N2) and methane (CH4), isotope ratios of N-14/N-15, C-12/C-13, and D/H, mole fractions of radiogenic argon (Ar-40)and primordial argon Ar-36), and upper limits on the mole fractions of neon, krypton and xenon, which were found to be below the detection limit of the instrument or absent. Surface measurements confirmed the presence of ethane (C2H6) and cyanogen (C2N2). Later data products include the instrument response to surface outgassing of C2N2, C2H6, acetylene (C2H2),and carbon dioxide (CO2). More recent results include the detection of benzene (C6H6) and height profiles of molecular hydrogen (H2). Numerous other trace species evaporating from the surface were also identified using the GCMS data.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Symposium on Titan After Cassini-Huygens; Jul 13, 2008 - Jul 20, 2008; Montreal; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Ions have been observed to flow away from Titan along its induced magnetic tail by the Plasma Science Instrument (PLS) on Voyager 1 and the Cassini Plasma Spectrometer (CAPS) on Cassini. In both cases, the ions have been inferred to be of ionospheric origin. Recent plasma measurements made at another unmagnetized body, Venus, have also observed similar flow in its magnetic tail. Much earlier, the possibility of such flow was inferred when ionospheric measurements made from the Pioneer Venus Orbiter (PVO) were used to derive upward flow and acceleration of H(+), D(+) and O(+) within the nightside ionosphere of Venus. The measurements revealed that the polarization electric field in the ionosphere produced the principal upward force on these light ions. The resulting vertical flow of H(+) and D(+) was found to be the dominant escape mechanism of hydrogen and deuterium, corresponding to loss rates consistent with large oceans in early Venus. Other electrodynamic forces were unimportant because the plasma beta in the nightside ionosphere of Venus is much greater than one. Although the plasma beta is also greater than one on Titan, ion acceleration is expected to be more complex, especially because the subsolar point and the subflow points can be 180 degrees apart. Following what we learned at Venus, upward acceleration of light ions by the polarization electric field opposing gravity in the ionosphere of Titan will be described. Additional electrodynamic forces resulting from the interaction of Saturn's magnetosphere with Titan's ionosphere will be examined using a recent hybrid model.
    Keywords: Lunar and Planetary Science and Exploration
    Type: European Geosciences Union Annual Meeting; Apr 14, 2008 - Apr 18, 2008; Vienna; Austria
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-19
    Description: During the 1970's large habitats were proposed by G. K. O'Neill and studied by NASA that could house 10,000 to 4 million people in Earth/Moon space. These peoples would be employed in building space solar satellites and more habitats for new settlers. Such a program, the NASA studies concluded, could reach financial break even in 17 to 30 years of peak Apollo level expenditures. During the STAIF 2007 conference the first author presented a proposal to begin human settlement not by building city size structures but with a minimum technology habitat that could provide subsistence for a human family (10 people) and be capable of producing new habitats with extraterrestrial materials and energy. Such a habitat would be the equivalent of a space homestead. Later these habitats could cooperate to form towns and cities in a free ad hoe manner similar to the development of the American west. In addition the approach could provide a quicker return on investment and lower start up costs, and would be of a scale that could be developed and tested within the planned transportation and lunar base architecture of the Exploration Vision. This paper examines the population growth kinetics of humans in space, and the development of space solar power industry for the space homestead in comparison to larger habitat designs considered in the 1970's.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Technology and Applications International Forum, STAIF-2008; Feb 10, 2008 - Feb 14, 2008; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-19
    Description: The space exploration mission of NASA requires long duration presence of human being beyond the low earth orbit (LEO), especially on Moon and Mars. Developing a human habitat or colony on these planets would require a diverse range of materials, whose applications would range from structural foundations, (human) life support, (electric) power generation to components for scientific instrumentation. A reasonable and cost-effective approach for fabricating the materials needed for establishing a self-sufficient human outpost would be to primarily use local (in situ) resources on these planets. Since ancient times, glass and ceramics have been playing a vital role on human civilization. A long term project on studying the feasibility of developing glass and ceramic materials using Lunar and Martian soil simulants (JSC-1) as developed by Johnson Space Center has been undertaken. The first step in this on-going project requires developing a data base on results that fully characterize the simulants to be used for further investigations. The present paper reports characterization data of both JSC-1 Lunar and JSC Mars-1 simulants obtained up to this time via x-ray diffraction analysis, scanning electron microscopy, thermal analysis (DTA, TGA) and chemical analysis. The critical cooling rate for glass formation for the melts of the simulants was also measured in order to quantitatively assess the glass forming tendency of these melts. The importance of the glasses and ceramics developed using in-situ resources for constructing human habitats on Moon or Mars is discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Technology and Applications International Forum, STAIF-2008; Feb 10, 2008 - Feb 14, 2008; Albuquerque, NM
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-19
    Description: Electrolytic reduction processes as a means to provide pure elements for lunar resource utilization have many advantages. Such processes have. the potential of removing all the oxygen from the lunar soil for use in life support and for propellant. Electrochemical reduction also provides a direct path for the. production of pure metals and silicon which can be utilized for in situ manufacturing and power production. Some of the challenges encountered in the electrolytic reduction processes include the feeding of the electrolytic cell (the transfer of electrolyte containing lunar soil), the withdrawal of reactants and refined products such as the liquidiron~siliconalloy with a number of impurities, and the spent regolith slag, produced in the hot electrolytic cell for the reduction of lunar regolith. The paper will discuss some of the possible solutions to the challenges of handling molten materials on the lunar surface, as well as the path toward the construction and testing of a proof-of-concept facility.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Technology and Applications International Forum (STAIF); Feb 10, 2008 - Feb 14, 2008; Albuquerque; Mexico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-19
    Description: The lunar surface is an inhospitable environment to work in to say the least. The environment on the lunar surface is defined by intense ultraviolet radiation, solar wind radiation (primarily electrons and protons), electrically charged dust layers, and temperatures as low as -200 C. As NASA makes plans to send manned missions to the moon's surface, significant preparation must be undertaken to ensure that the materials and mechanical components used on those missions can survive in the harsh environment. The work presented will detail the development of the Lunar Environment Test System (LETS) at the Marshall Space Flight Center that will allow scientists and engineers the ability to test new materials, mechanical components, and proposed mission hardware in a representative lunar surface environment. The LETS encompasses all the environments of the lunar surface including vacuum, thermal extremes, vacuum ultraviolet radiation, and protons and electrons from the solar wind.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Technology and Applications International Forum, STAIF-2008; Feb 10, 2008 - Feb 14, 2008; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The Mars Exploration Rover Spirit has traversed over 7.5 km in 1470 sols of operations at the Gusev Crater landing site. Chemical and mineralogical evidence from approximately 200 in-situ samples indicate various degrees of exposure to liquid water, from wet and saturated to dry and unaltered. (1) Six samples with concentrations of amorphous silica between 60 and 95 wt% were discovered in a small valley less than 50 meters in length. Associated enrichments in titanium oxide, relatively insoluble at low pH, suggest that these silica deposits formed as a result of acidic leaching processes. Liquid water interactions with these surface materials were necessary to remove cations solubilized in the low pH environment or to concentrate silica in solution prior to precipitation. (2) Hydrated ferric sulfates are found in subsurface deposits which have the unmistakable chemical signatures of nearby rocks. The movement of hydrothermal fluids and/or fumarolic vapors through local rocks prior to precipitation of these materials is suggested by these observations. (3) Goethite (alpha-FeOOH), a mineral phase which requires water to form, represents 20% to 35% of the iron in numerous rock samples (Clovis Class) on the West Spur of the Columbia Hills. Alteration of iron under aqueous conditions is clearly indicated by this presence of goethite. (4) Nearly isochemical signatures are found in elemental analyses of over ten distinct samples (Wishstone/Watchtower class rocks), yet the ratio of ferric iron to total iron varies from 0.4 to 0.95. Small quantities of water, insufficient to flush cations from the samples, were likely responsible for this weathering. (5) Bromine, a trace element readily mobilized by water, is found in high concentrations in certain rock interiors and is enhanced in subsurface soils, consistent with transport to localized cold traps by water thin-films. (6) Also relevant to the characterizing the role of liquid water is the discovery of an areally extensive ultramafic sequence of rocks where over 70% of the iron is in unaltered olivine and the ferric to total iron ratio is 0.1. This result indicates that certain materials at the martian surface have been protected from aqueous alteration.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 38th COSPAR Scientific Assembly; Jul 13, 2008 - Jul 20, 2008; Montreal; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-19
    Description: We examined organic contamination by Fourier transform infrared micro spectroscopic (micro FTIR) measurements of carbonaceous chondrite samples. Carbonaceous chondrites, Tagish Lake (C2), Murchison (CM2) and Moss (CO3), and some mineral powder samples pressed on aluminum plates were measured by micro FTIR before and after storage in several containers with silicone rubber mat. During storage, samples did not touch directly anything except the holding aluminum plates. The carbonaceous chondrites containing hydrous minerals (Tagish Lake and Murchison) pressed on aluminum plates and measured by transmission-reflection micro FTIR measurements were found to be contaminated during storage after only one day, as revealed by an increase of approximately 2965 /cm and approximately 1260 /cm peaks. The Moss meteorite which contains no hydrous minerals, did not show an increase of these peaks, indicating no organic contamination. This difference is probably related to the differing mineralogy and physical properties (including porosity and permeability) of these chondrites. Hydrous minerals such as antigorite, muscovite, montmorillonite and silica gel showed organic contamination by the same infrared measurements, while anhydrous materials such as SiO2 and KBr showed no contamination. These results indicate importance of surface OH groups for the organic contamination. Organic contamination was found on silica gel samples pressed on aluminum plates when they were stored within containers including silicone rubber, silicone grease or adhesive tape. Long path gas cell FTIR measurements for silicone rubber indicated methylsiloxane oligomers were released from the silicone rubber. In-situ heating infrared measurements on the contaminated antigorite and Tagish Lake showed decrease of the 1262 /cm (Si-CH3) and 2963 /cm (CH3) peaks from room temperature to 200-300 C indicating desorption of volatile contaminants. These results indicate that careful preparation and storage are essential for FTIR measurements on precious astromaterial samples such as meteorites, IDPs and samples returned from comets, asteroids and Mars. Every possible contamination source should be evaluated before anything is done to these samples.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Japan Geoscience Union Meeting 2008; May 25, 2008 - May 30, 2008; Chiba; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-19
    Description: For future space missions with longer duration, exposure to large solar particle events (SPEs) with high energy levels is the major concern during extra-vehicular activities (EVAs) on the lunar and Mars surface. The expected SPE propensity for large proton fluence was estimated from a non-homogeneous Poisson model using the historical database for measurements of protons with energy 〉 30 MeV, Phi(sub 30). The database includes a continuous data set for the past 5 solar cycles. The resultant SPE risk analysis for a specific mission period was made including the 95% confidence level. In addition to total particle intensity of SPE, the detailed energy spectra of protons especially at high energy levels were recognized as extremely important parameter for the risk assessment, since there remains a significant cancer risks from those energetic particles for large events. Using all the recorded proton fluence of SPEs for energies 〉60 and 〉100 MeV, Phi(sub 60) and Phi(sub 100), respectively, the expected propensities of SPEs abundant with high energy protons were estimated from the same non-homogeneous Poisson model and the representative cancer risk was analyzed. The dependencies of risk with different energy spectra, for e.g. between soft and hard SPEs, were evaluated. Finally, we describe approaches to improve radiation protection of astronauts and optimize mission planning for future space missions.
    Keywords: Man/System Technology and Life Support
    Type: 37th COSPAR Scientific Assembly; Jul 13, 2008 - Jul 20, 2008; Montreal; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-19
    Description: The Mobile Information SysTem (MIST) had its origins in the need to determine whether commercial off the shelf (COTS) technologies could improve intervehicular activities (IVA) on International Space Station (ISS) crew maintenance productivity. It began with an exploration of head mounted displays (HMDs), but quickly evolved to include voice recognition, mobile personal computing, and data collection. The unique characteristic of the MIST lies within its mobility, in which a vest is worn that contains a mini-computer and supporting equipment, and a headband with attachments for a HMD, lipstick camera, and microphone. Data is then captured directly by the computer running Morae(TM) or similar software for analysis. To date, the MIST system has been tested in numerous environments such as two parabolic flights on NASA's C-9 microgravity aircraft and several mockup facilities ranging from ISS to the Altair Lunar Sortie Lander. Functional capabilities have included its lightweight and compact design, commonality across systems and environments, and usefulness in remote collaboration. Human Factors evaluations of the system have proven the MIST's ability to be worn for long durations of time (approximately four continuous hours) with no adverse physical deficits, moderate operator compensation, and low workload being reported as measured by Corlett Bishop Discomfort Scale, Cooper-Harper Ratings, and the NASA Total Workload Index (TLX), respectively. Additionally, through development of the system, it has spawned several new applications useful in research. For example, by only employing the lipstick camera, microphone, and a compact digital video recorder (DVR), we created a portable, lightweight data collection device. Video is recorded from the participants point of view (POV) through the use of the camera mounted on the side of the head. Both the video and audio is recorded directly into the DVR located on a belt around the waist. This data is then transferred to another computer for video editing and analysis. Another application has been discovered using simulated flight, in which, a kneeboard is replaced with mini-computer and the HMD to project flight paths and glide slopes for lunar ascent. As technologies evolve, so will the system and its application for research and space system operations.
    Keywords: Man/System Technology and Life Support
    Type: Texas Regional HFES One Day Conference 2008; Apr 18, 2008; Austin, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Science on and from the Moon has important implications for expanding human knowledge and understanding, a prospect for the 21st Century that has been under discussion for at least the past 25 years. That having been said, however, there remain many issues of international versus national priorities, strategy, economy, and politics that come into play. The result is a very complex form of human behavior where science and exploration take center stage, but many other important human options are sacrificed. To renew this dialogue about the Moon, it seems we are already rushing pell-mell into it as has been done in the past. The U.S., Japan, China, India, and Russia either have sent or plan to send satellites and robotic landers there at this time. What does a return to the Moon mean, why are we doing this now, who should pay for it, and how? The only semblance of such a human enterprise seems to be the LHC currently coming online at CERN. Can it be used as a model of international collaboration rather than a sports or military event focused on national competition? Who decides and what is the human sacrifice? There are compelling arguments for establishing science on the Moon as one of the primary goals for returning to the Moon and venturing beyond. A number of science endeavors will be summarized, beyond lunar and planetary science per se. These include fundamental physics experiments that are background-limited by the Earth's magnetic dipole moment and noise produced by its atmosphere and seismic interior. The Moon is an excellent platform for some forms of astronomy. Other candidate Moon-based experiments vary from neutrino and gravitational wave astronomy, particle astrophysics, and cosmic-ray calorimeters, to space physics and fundamental physics such as proton decay. The list goes on and includes placing humans in a hostile environment to study the long-term effects of space weather. The list is long, and even newer ideas will come from this COSPAR conference. However, whatever the list the issue of cooperation and binding collaboration remains. As observers of Moon and other space enterprises, we all know that a room full of 60 scientists will not agree on much of anything and there will probably be 60! please for more funding. People have special interests and little common sense (e.g., conflict between NSF- and NASA-funding roadmaps). Scientists are no exception. Nevertheless, CERN has done it on Earth! Can we do the same on the Moon? Some of the present generation of proposals for science from and on the Moon, plus new ones, will witness a place in space exploration's future. It is clear, however, that the world has not thought this through adequately, except for talk about an international space federation whatever that is. An outpost on the Moon with humans permanently living there much like Antarctica on Earth may be in our future. However, such planning is our collective international responsibility and not that of special-interest investigators from individual nations unless they intend to pay for it.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 37th COSPAR Scientific Assembly; Jul 13, 2008 - Jul 20, 2008; Montreal; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-19
    Description: We have developed a technique for estimating the intrinsic size distribution of orbital debris objects via optical measurements alone. The process is predicated on the empirically observed power-law size distribution of debris (as indicated by radar RCS measurements) and the log-normal probability distribution of optical albedos as ascertained from phase (Lambertian) and range-corrected telescopic brightness measurements. Since the observed distribution of optical brightness is the product integral of the size distribution of the parent [debris] population with the albedo probability distribution, it is a straightforward matter to transform a given distribution of optical brightness back to a size distribution by the appropriate choice of a single albedo value. This is true because the integration of a powerlaw with a log-normal distribution (Fredholm Integral of the First Kind) yields a Gaussian-blurred power-law distribution with identical power-law exponent. Application of a single albedo to this distribution recovers a simple power-law [in size] which is linearly offset from the original distribution by a constant whose value depends on the choice of the albedo. Significantly, there exists a unique Bond albedo which, when applied to an observed brightness distribution, yields zero offset and therefore recovers the original size distribution. For physically realistic powerlaws of negative slope, the proper choice of albedo recovers the parent size distribution by compensating for the observational bias caused by the large number of small objects that appear anomalously large (bright) - and thereby skew the small population upward by rising above the detection threshold - and the lower number of large objects that appear anomalously small (dim). Based on this comprehensive analysis, a value of 0.13 should be applied to all orbital debris albedo-based brightness-to-size transformations regardless of data source. Its prima fascia genesis, derived and constructed from the current RCS to size conversion methodology (SiBAM Size-Based Estimation Model) and optical data reduction standards, assures consistency in application with the prior canonical value of 0.1. Herein we present the empirical and mathematical arguments for this approach and by example apply it to a comprehensive set of photometric data acquired via NASA's Liquid Mirror Telescopes during the 2000-2001 observing season.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-19
    Description: Prior to each shuttle mission, threat assessments are performed to determine the risk of critical penetration, payload bay door radiator tube leak and crew module window replacement from Micrometeoroid and Orbital Debris (MMOD). Mission parameters, such as vehicle attitude, exposure time and altitude are used as inputs for the analysis. Ballistic limit equations, based on hypervelocity impact testing of shuttle materials are used to estimate the critical particle diameters of the outer surfaces of the vehicle. The assessments are performed using the BUMPER computer code at the NASA/JSC Hypervelocity Impact Technology Facility (HITF). The most critical involves the calculation of Loss of Crew and Vehicle (LOCV) risk. An overview of significant MMOD impacts on the Payload Bay Door radiators, wing leading edge reinforced carbon-carbon (RCC) panels and crew module windows will be presented, along with a discussion of the techniques NASA has implemented to reduce the risk from MMOD impacts. This paper will describe on-orbit inspection of the RCC regions and the methods used discern hypervelocity impact damage. Impact damage contingency plans and on-orbit repair techniques will also be discussed. The wing leading edge impact detection system (WLEIDS) and it s role in the reduction of on-orbit risk reduction will be presented. Finally, an analysis of alternative shuttle flight attitudes on MMOD risk will be demonstrated.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 59th International Astronautical Congress; 29 Sep. ? 3 Oct. 2008; Glasgow; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-19
    Description: Astronauts show degraded balance control immediately after spaceflight. To assess this change, astronauts' ability to maintain a fixed stance under several challenging stimuli on a movable platform is quantified by "equilibrium" scores (EQs) on a scale of 0 to 100, where 100 represents perfect control (sway angle of 0) and 0 represents data loss where no sway angle is observed because the subject has to be restrained from falling. By comparing post- to pre-flight EQs for actual astronauts vs. controls, we built a classifier for deciding when an astronaut has recovered. Future diagnostic performance depends both on the sampling distribution of the classifier as well as the distribution of its input data. Taking this into consideration, we constructed a predictive ROC by simulation after modeling P(EQ = 0) in terms of a latent EQ-like beta-distributed random variable with random effects.
    Keywords: Man/System Technology and Life Support
    Type: Joint Statistical Meeting; Aug 03, 2008 - Aug 07, 2008; Denver, Co; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Efficient thermal management of Earth-orbiting human spacecraft, lunar transit spacecraft and landers, as well as a lunar habitat will require advanced thermal technology. These future spacecraft will require more sophisticated thermal control systems that can dissipate or reject greater heat loads at higher input heat fluxes while using fewer of the limited spacecraft mass, volume and power resources. The thermal control designs also must accommodate the harsh environments associated with these missions including dust and high sink temperatures. The lunar environment presents several challenges to the design and operation of active thermal control systems. During the Apollo program, landings were located and timed to occur at lunar twilight, resulting in a benign thermal environment. The long duration polar lunar bases that are foreseen in 15 years will see extremely cold thermal environments. Long sojourns remote from low-Earth orbit will require lightweight, but robust and reliable systems. Innovative thermal management components and systems are needed to accomplish the rejection of heat from lunar bases. Advances are required in the general areas of radiators, thermal control loops and equipment. Radiators on the Moon's poles must operate and survive in very cold environments. Also, the dusty environment of an active lunar base may require dust mitigation and removal techniques to maintain radiator performance over the long term.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Technology and Applications International Forum; Feb 10, 2008 - Feb 14, 2008; Albuquerque; Mexico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-19
    Description: Desert "RATS" (Research and Technology Studies) is a combined, multi-discipline group of inter-NASA center scientists and engineers, net-working and collaborating with representatives of industry and academia, for the purpose of conducting planetary surface exploration-focused remote field exercises. These integrated testing exercises conducted under representative analog Lunar and Mars surface terrain conditions, provide NASA the capability to validate experimental prototype hardware and software systems as well as to evaluate and develop mission operational techniques in order to identify and establish technical requirements and identify potential technology "gaps" applicable for future planetary human exploration. The 2007 D-RATS field campaign test activities were initiated based on the major themes and objectives of a notional 5-year plan developed for conducting relative analog test activities in support of the engineering evaluation and assessment of various system architectural requirements, conceptual prototype support equipment and selected technologies necessary for the establishment of a lunar outpost. Specifically, the major objectives included measuring task efficiency during robot, human, and human-robot interactive tasks associated with lunar outpost site surveying and reconnaissance activities and deployment of a representative solar panel power and distribution system. In addition, technology demonstrations were conducted with a new Lithium-ion battery and autonomous software to coordinate multiple robot activities. Secondary objectives were evaluating airlock concept mockups and prototype removable space suit over-garment elements for dust mitigation, and upgrades to the prototype extravehicular activities (EVA) communication and information system. Dry run test activities, prior to testing at a designated remote field site location, were initially conducted at the Johnson Space Center (JSC) Remote Field Demonstration Test Site. This is a multi-acre external test site located at JSC and has detailed representative terrain features simulating both Lunar and Mars surface characteristics. Both the local JSC and remote field test sites have terrain conditions that are representative and characteristic of both the Moon and Mars, such as strewn rock and volcanic ash fields, craters, rolling plains, hills, gullies, slopes, and outcrops. The D-RATS 2007 field campaign, representing the completion of its tenth year of analog testing, was conducted at the large Cinder Lake volcanic ash bed area adjacent to Flagstaff, Arizona.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Technology and Applications International Forum; Feb 10, 2008 - Feb 14, 2008; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-19
    Description: We report Transmission Electron Microscopy (TEM) investigations of micro-craters that originated from hypervelocity impacts of comet 81P/Wild 2 dust particles on the aluminium foil of the Stardust collector. The craters were selected by Scanning Electron Microscopy (SEM) and then prepared by Focused Ion Beam (FIB) milling techniques in order to provide electron transparent cross-sections for TEM studies. The crater residues contain both amorphous and crystalline materials in varying proportions and compositions. The amorphous component is interpreted as resulting from shock melting during the impact and the crystalline phases as relict minerals. The latter show evidence for shock metamorphism. Based on the residue morphology and the compositional variation, the impacting particles are inferred to have been dominated by mixtures of submicron olivine, pyroxene and Fe-sulfide grains, in agreement with prior results of relatively coarse-grained mineral assemblages in the aerogel collector.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-19
    Description: We describe a model initially presented by Sittler et al. [2006] which attempts to explain the global response of Saturn's magnetosphere and its corresponding auroral behavior to variations in the solar wind. The model was derived from published simultaneous Hubble Space Telescope (HST) auroral images and Cassini upstream measurements taken during the month of January 2004. These observations show a direct correlation between solar wind dynamic pressure and (1) auroral brightening toward dawn local time, (2) an increase of rotational movement of auroral features to as much as 75% of the corotation speed, (3) the movement of the auroral oval to higher latitudes and (4) an increase in the intensity of Saturn Kilometric Radiation (SKR). This model is an alternative to the reconnection model of Cowley et al. [2004a,b; 2005] which is more Earth-like while ours stresses rotation. If angular momentum is conserved in a global sense, then when compressed the magnetosphere will tend to spin up and when it expands will tend to spin down. With the plasma sheet outer boundary at L approximates 15 we argue this region to be the dominant source region for the precipitating particles. If radial transport is dominated by centrifugal driven flux tube interchange motions, then when the magnetosphere spins up, outward transport will increase, the precipitating particles will move radially outward and cause the auroral oval to move to higher latitudes as observed. The Kelvin-Helmholtz instability may contribute to the enhanced emission along the dawn meridian as observed by HST. We present this model in the context of presently published observations by Cassini.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Joint meeting of the American Astronautical Society/Science Programs Division, American Geophysical Union; May 26, 2008 - May 30, 2008; Fort Lauderdale, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-19
    Description: Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2008 National Space and Missile Materials Symposium; Jun 23, 2008 - Jun 27, 2008; Henderson, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-19
    Description: The United States (U.S.) plans to return to the Moon by 2020, with the development of a new human-rated space transportation system to replace the Space Shuttle, which is due for retirement in 2010 after it completes its missions of building the International Space Station and servicing the Hubble Space Telescope. Powering the future of space-based scientific exploration will be the Ares I Crew Launch Vehicle, which will transport the Orion Crew Exploration Vehicle to orbit where it will rendezvous with the Lunar Lander. which will be delivered by the Ares V Cargo Launch Vehicle. This new transportation infrastructure, developed by the National Aeronautics and Space Administration (NASA), will allow astronauts to leave low-Earth orbit for extended lunar exploration and preparation for the first footprint on Mars. All space-based operations begin and are controlled from Earth. NASA's philosophy is to deliver safe, reliable, and cost-effective solutions to sustain a multi-billion-dollar program across several decades. Leveraging 50 years of lessons learned, NASA is partnering with private industry, while building on proven hardware experience. This paper will discuss how the Engineering Directorate at NASA's Marshall Space Flight Center is working with the Ares Projects Office to streamline ground operations concepts and reduce costs. Currently, NASA's budget is around $17 billion, which is less than 1 percent of the U.S. Federal budget. Of this amount, NASA invests approximately $4.5 billion each year in Space Shuttle operations, regardless of whether the spacecraft is flying or not. The affordability requirement is for the Ares I to reduce this expense by 50 percent, in order to allow NASA to invest more in space-based scientific operations. Focusing on this metric, the Engineering Directorate provides several solutions-oriented approaches, including Lean/Six Sigma practices and streamlined hardware testing and integration, such as assembling major hardware elements before shipping to the Kennedy Space Center for launch operations. This paper provides top-level details for several cost saving initiatives, including both process and product improvements that will result in space transportation systems that are designed with operations efficiencies in mind. The Engineering Directorate provides both the intellectual capital embodied in an experienced workforce and unique facilities in which to validate the information technology tools that allow a nationwide team to collaboratively connect across miles that separate them and the engineering disciplines that integrate various piece parts into a whole system. As NASA transforms ground-based operations, it also is transitioning its workforce from an era of intense hands-on labor to a new one of mechanized conveniences and robust hardware with simpler interfaces. Ensuring that space exploration is on sound footing requires that operations efficiencies be designed into the transportation system and implemented in the development stage. Applying experience gained through decades of ground and space op'erations, while using value-added processes and modern business and engineering tools, is the philosophy upon which a new era of exploration will be built to solve some of the most pressing exploration challenges today -- namely, safety, reliability, and affordability.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA SpaceOps 2008; May 12, 2008 - May 16, 2008; Heidelberg; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-19
    Description: Engineering trade-off studies of life support system architecture and technology options were conducted for potential lunar surface mission scenarios within NASA's Constellation Program. The scenarios investigated are based largely on results of the NASA Lunar Architecture Team (LAT) Phase II study. In particular, the possibility of Hosted Sortie missions, the high cost of power during eclipse periods, and the potential to reduce life support consumables through scavenging, in-situ resources, and alternative EVA technologies were all examined. These trade studies were performed within the Systems Integration, Modeling and Analysis (SIMA) element of NASA's Exploration Life Support (ELS) technology development project. The tools and methodology used in the study are described briefly, followed by a discussion of mission scenarios, life support technology options and results presented in terms of equivalent system mass for various regenerative life support technologies and architectures. Three classes of repeated or extended lunar surface missions were investigated in this study along with several life support resource scenarios for each mission class. Individual mission durations of 14 days, 90 days and 180 days were considered with 10 missions assumed for each at a rate of 2 missions per year. The 14-day missions represent a class of Hosted Sortie missions where a pre-deployed and potentially mobile habitat provides life support for multiple crews at one or more locations. The 90-day and 180-day missions represent lunar outpost expeditions with a larger fixed habitat. The 180-day missions assume continuous human presence and must provide life support through eclipse periods of up to 122 hours while the 90-day missions are planned for best-case periods of nearly continuous sunlight. This paper investigates system optimization within the assumptions of each scenario and addresses how the scenario selected drives the life support system to different designs. Subsequently, these analysis results can be used to determine which technologies may be good choices throughout a broad range of architectures.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 37th COSPAR Scientific Assembly; Jul 13, 2008 - Jul 20, 2008; Montreal; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...