ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals  (8)
  • 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology  (7)
  • Elsevier  (15)
  • American Geophysical Union (AGU)
  • Annual Reviews
  • Periodicals Archive Online (PAO)
  • 2005-2009  (15)
  • 1980-1984
  • 1945-1949
  • 2008  (15)
Collection
Years
  • 2005-2009  (15)
  • 1980-1984
  • 1945-1949
Year
  • 1
    Publication Date: 2020-12-21
    Description: A sedimentary sequence spanning Marine Isotope Stage (MIS) 6 to MIS 2 in core LC07, recovered in the central Mediterranean, has been investigated in order to produce a high-resolution paleoceanographic reconstruction. The changes in productivity deduced from calcareous plankton relative abundances and independently confirmed by the BaXS fluctuations are linked to the stability of the water column which is mainly controlled by the water mass temperature. During glacial intervals, productivity was generally enhanced. Oligotrophic and warmer water masses with a deepened seasonal thermocline can be inferred for most of MIS5. The magnetic properties of the sediment show increased occurrences of North Africa dust in the central Mediterranean during cold phases, likely as a consequence of a more efficient erosive process triggered by southward displacement of the intertropical convergence zone. Although increases in both productivity and Saharan dust occurred during cold periods, the atmospheric inputs do not seem to contribute significantly to the fertilization of primary producers. A Shannon Index curve has been used to tentatively synthesize the variations of calcareous nannofossil assemblages through the last 150 kyr. The assemblage diversity sharply increased coincident with the transition from the penultimate glacial to the last interglacial, subsequently low diversity was gradually reached again in the last glacial.
    Description: Published
    Description: 26-41
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: calcareous nannofossils ; foraminifera ; paleoproductivity ; Late Pleistocene ; central mediterranean ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.05. Geomagnetism::04.05.07. Rock magnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We report high-resolution paleomagnetic records obtained from six piston cores recovered on the continental rise of theWilkes Land Basin (WLB), East Antarctica, in the frame of the Italian/Australian Wilkes Land Glacial History (WEGA) project. The studied cores, with a length of ca. 4m each, were collected from the gentle and steep sides of sedimentary ridges present in the lower part of the continental rise, and consist of very fine-grained sediments. Paleomagnetic measurements were carried out on u-channel samples. Apart from a low-coercivity magnetic overprint, removed after the first steps of alternating field demagnetization, each core is characterized by a well defined characteristic remanent magnetization. Paleomagnetic inclinations fluctuate around the expected value (of ca. −77◦) for such high latitude sites and always indicate normal magnetic polarity. Short period oscillations to anomalously shallow paleomagnetic inclinations (up to −20◦) were identified at different levels of the sampled sequences; positive (reverse) inclination values were however not observed. Specific rock magnetic measurements indicate a substantial homogeneity of the magnetic mineralogy in the sampled sequences. For each core we reconstructed curves of relative paleointensity (RPI, as computed by NRM20mT/κ and NRM20mT/ARM20mT) variation of the geomagnetic field. An original age modelwas established by tuning the individual RPI curves with the available global and regional reference RPI stacks. Paleomagnetic results, supported by other limited bio- and chronostratigraphic constraints, establish that all the cores are Late Pleistocene in age: two provide an expanded record of the last ca. 30 ka (PC18 and PC19), three span the last ca. 100, 200 and 300 ka (respectively, PC25, PC27 and PC26), and one reaches back to ca. 780 ka (PC20), approaching the Brunhes–Matuyama transition. Thus, the WEGA paleomagnetic record provides the first experimental data documenting the dynamics and amplitude of the geomagnetic field variations at high southern latitudes during the Brunhes Chron. The individual normalized RPI records were merged in aWEGARPI stacking curve spanning the last 300 kyr. The comparison of theWEGARPI individual and stacked curves with the global references RPI stacks shows that geomagnetic paleointensity variations, with periods longer than a few to tens kyr depending on the sedimentation rate, can be safely recognized in this sector of the peri-Antarctic margins. Furthermore, the stacking of the individual ChRM inclination records indicates that the recurrent swings to shallow paleomagnetic inclinations may be correlated to the main known geomagnetic excursions of the Brunhes Chron, supporting the validity of the age models. The reconstructed average sediment accumulation rates for the individual cores range from 0.6 to 19 cm/ka and are compatible with their position within the WLB, with the lowest rates found close to the ridge of the sedimentary drifts. Moreover, the high-resolution age models obtained in this study provide original constraints to assess chronology, rates and amplitudes of the climatic and environmental processes affecting this key area of the peri-Antarctic margins during the Late Pleistocene.
    Description: Published
    Description: 223-242
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Paleomagnetism; Relative paleointensity; Geomagnetic excursions; Antarctica; Brunhes Chron ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: In the present work we investigate the temporal distributions of the geomagnetic jerks occurring in the last three decades of the 20th century using a new method of analysis based on the wavelet transform: the Local Intermittency Measure (LIM). This method, which allows us to single out intermittent structures within a given time series, was applied to geomagnetic monthly means time series of the eastward magnetic field component (Y) of 44 worldwide observatories. We study the bimodal distribution of the jerk occurrence in time for the 1978 and 1991 events and point out a local/regional jerk in South Africa and in the Pacific Ocean which happened around 1986. The worldwide character of the 1999 geomagnetic jerk is also investigated integrating the LIM analysis with the traditional straight-line fit.
    Description: Published
    Description: 261-272
    Description: 3.4. Geomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: geomagnetic jerk ; Local Intermittency Measure ; geomagnetic secular variation ; wavelet analysis ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Tanguy, J.C., Principe, C., Arrighi, S., 2005. Comment on “Historical measurements of the Earth’s magnetic field compared with remanence directions from lava flows in Italy over the last four centuries”. In: Lanza, R., Meloni, A., Tema, E. (Eds.), Phys Earth Planet. Inter. 152, 116–120.
    Publication Date: 2017-04-04
    Description: A comparison of the geomagnetic directions derived from lava flows of Italian volcanoes with those derived from direct historical measurements of the Earth’s magnetic field (Lanza et al., 2005) yielded two main results: (1) The general agreement between the two data sets already noted by previous authors (Rolph et al., 1987; Incoronato et al., 2002; Tanguy et al., 2003) was better substantiated. (2) The thermal remanent magnetization (TRM) direction of most flows was shown to deviate from the corresponding historical direction by a small angle θ. In most cases, this angle was larger than the experimental error on the TRM direction as given by the α95 semi-angle of confidence of Fisher’s statistics, i.e. θ 〉 α95. The conclusion drawn from these results was straightforward: a better understanding of the causes of the TRM deviation is required if we are to fully exploit the precision of TRM data from Italian volcanoes when their α95 value is less than 2.5–3.0◦.
    Description: Published
    Description: 121-124
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: 3.4. Geomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Secular variation ; Historical magnetic measurements ; Thermal remanent magnetization ; Volcanic rocks ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The Antarctic region has profoundly affected the global climates of the past 50 million years, influencing sea levels, atmospheric composition and dynamics, and ocean circulation. A greater understanding of this region and the Antarctic cryosphere is crucial to a broader understanding of the global climates and palaeoceanography at all scales. Much of the information obtained during the last two decades derives from studies of sedimentary sequences drilled in and around Antarctica. Eight Ocean Drilling Program (ODP) legs have contributed significantly to the understanding of this evolution. These legs include Leg 113 in the Weddell Sea (Barker et al., 1988, 1990), Leg 114 in the Subantarctic South Atlantic (Ciesielski et al., 1988, 1991), Leg 119 in Prydz Bay and on Kerguelen Plateau (Barron et al., 1989, 1991), Leg 120 on Kerguelen Plateau (Schlich et al., 1989; Wise et al., 1992), Leg 177 in the southeast Atlantic sector of the Southern Ocean (Gersonde et al., 1999), Leg 178 on the Antarctic Peninsula (Barker et al., 2002), Leg 188 in Prydz Bay (O’Brien et al., 2001), and Leg 189 in the Tasmanian region (Exon et al., 2001). More recently, a series of three holes were drilled in McMurdo Sound, Ross Sea, as part of the Cape Roberts Project (CRP; Cape Roberts Science Team, 1998 1999, 2000; Hambrey et al., 1998; Barrett et al., 2000, 2001). In spite of these efforts, which have significantly advanced our understanding of the Cenozoic tectonics and palaeoenvironments of the Antarctic region, important questions and problems remain unresolved. Chief amongst these are the timing of the onset of the East Antarctic Ice Sheet (EAIS), the causes of the cooling events at around 24 and 14 Ma, and the warming events of the mid-Pliocene and Marine Isotope Stages 31 (1.07 Ma) and 11 (0.36 Ma) (Shackleton et al., 1995).
    Description: Published
    Description: 1-9
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Antarctic climate evolution ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The Cenozoic evolution of the Antarctic cryosphere and fluctuations in its ice sheet cover are considered to be one of the major influences on low- and mid-latitude deep-sea sedimentary records. Long-term Cenozoic trends and short-term climate fluctuations (≤40 ka) alike are inferred to have been driven or modulated by changes in Antarctic ice sheet volume (Kennett, 1977; Imbrie and Imbrie, 1980; Zachos et al., 1997, 2001; Shackleton et al., 1999; Lear et al., 2000; Naish et al., 2001). Similarly, changes in sea level elevations at continental margins are also inferred to result from growth and decay in Antarctic ice sheet volume throughout the Cenozoic (Barrett et al., 1987; Haq et al., 1987). Yet, direct records of the Antarctic cryosphere and its ice sheets are sparse at best, and much of the inference remains untested. Recent efforts have begun to change this, and the last decade has seen several expeditions to the Antarctic and Southern Oceans, which have recovered new high-quality sedimentary core and seismic reflection records of Southern high-latitude Cenozoic ice sheets and climate. These include the Cape Roberts Project (CRP) (Cape Roberts Science Team, 1998; Hambrey et al., 1998; Cape Roberts Science Team, 1999; Barrett et al., 2000; Cape Roberts Science Team, 2000; Barrett et al., 2001; Davey et al., 2001), ODP Leg 177 (Gersonde et al., 1999, 2003), Leg 178 (Barker et al., 1999, 2002), Leg 182 (Feary et al., 2000; Hine et al., 2004), Leg 188 (O’Brien et al., 2001; Cooper et al., 2004), and Leg 189 (Exon et al., 2001, in press), and various RVIB NB Palmer and Polarstern cruises. Recent results from these expeditions were presented at a special session of the EGS–AGU Joint assembly held in Nice, France, in April 2003. The focus of the session was the many orders and scales of variation of Antarctic ice sheets and climate from Antarctic and sub-Antarctic records derived from outcrop studies, deep sea and continental margin drilling, and seismic reflection investigations. The session also included new modelling results utilizing new data from these recent expeditions and preliminary results of geophysical surveys defining sub-ice shelf and sea ice sedimentary basins identified as drilling targets in the near future under the ANDRILL program (Harwood et al., 2002; Florindo et al., 2003a).
    Description: Published
    Description: 1-7
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Antarctic climate evolution ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-03
    Description: Ocean Drilling Program holes 744Aand 748B represent key sections for calibration of Southern Ocean Eocene-Oligocene biostratigraphic zonations. Sites 744 and 748 were above the carbonate compensation depth throughout this time interval and contain good planktonic foraminiferal, calcareous nannofossil, and diatom biostratigraphic records. In particular, the Southern Ocean diatom biostratigraphic zonation for the Oligocene critically hinges on calibration of these two holes. Previous low-resolution magnetostratigraphic studies at these sites were hampered by limited sampling and technical difficulties, which prompted our high-resolution reinvestigation of the magnetostratigraphy. Magnetic polarity zonations for holes 744Aand 748B were constructed after inspection of vector component plots at 1-cm stratigraphic intervals from continuous u-channel measurements. The magnetizations are generally stable and a robust polarity stratigraphy has been obtained for both holes. The increased resolution of our study and identification of persistent secondary overprints, which were not recognised in previous studies, suggests that the previously published interpretations need to be revised. Our magnetostratigraphic interpretations for both holes are constrained by foraminiferal and calcareous nannofossil datums, as well as by Sr isotope ages. We have calibrated four diatom datums, which are synchronous at the two studied sites, to the geomagnetic polarity timescale, including the first occurrence (FO) of Lisitzinia ornata (27.8 Ma), the FO of Rocella vigilans var. B (27.8 Ma), the FO of Cavitatus jouseanus (30.9 Ma) and the FO of Rhizosolenia oligocaenica (33.8 Ma). The synchroneity of these datums suggests that diatom biostratigraphy has considerable potential for Palaeogene biostratigraphic correlation in the Southern Ocean. Although the ages of some datums are obscured by an unconformity in Hole 744A, our age model from Hole 748B suggests age estimates for the last common occurrence of Rocella vigilans var. A(~29.0 Ma), the FO of Rocella vigilans var. A(30.0 Ma) and the FO of Rhizosolenia antarctica (33.2 Ma). It should also be noted that the last occurrence of the calcareous nannofossil Chiasmolithus altus occurs in Chron C8r rather than C8n in our revised magnetostratigraphic interpretation, which indicates that this datum is not diachronous between low and mid latitudes as had previously been suggested. Significant unconformities are documented in both holes, in the middle Oligocene and in the middle late Oligocene, respectively, which probably resulted from periods of enhanced circumpolar deep-water circulation.
    Description: Published
    Description: 145-168
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Eocene ; Oligocene ; Ocean Drilling Program ; holes 744A and 748B ; Kerguelen Plateau ; Antarctica ; magnetostratigraphy ; biostratigraphy ; diatoms ; foraminifera ; calcareous nannofossils ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: This special issue on "Antarctic Climate Evolution — view from the margin" presents results from modelling studies and reports on geoscience data aimed at improving our understanding of the behaviour of the Antarctic ice sheet and the climate of the region. This research field is of interest because of the sensitivity of the polar regions to global warming, and because of the influence of the Antarctic ice sheet on global sea level and climate through most if not all of the Cenozoic Era. The Antarctic ice sheet both responds to and forces changes on global climate and sea level. We need to be aware of the scale and frequency of these changes if we are to understand past patterns of environmental change elsewhere on earth. It was only three decades ago that we discovered from strata drilled in shelf basins on the Antarctic margin that the Antarctic ice sheet had a history that predated the Quaternary ice ages by over 20 million years (Hayes et al., 1975). Later that year the first interpretation of Antarctic glacial history through the Cenozoic Era from oxygen isotopes, recorded in foraminifera from deep-sea sediment cores, was published (Shackleton and Kennett, 1975). Revisions with a more extensive database have modified the story a little (Miller et al., 1987; Zachos et al., 2001), and there have been recent attempts to resolve the temperature–ice volume ambiguity (Lear et al., 2000). However, reports on strata drilled on the Antarctic margin have unambiguously shown the character of this huge ice sheet, which was oscillating in the Oligocene (Barrett et al., 1987; Barrett, 1999) with a period and magnitude comparable with the Northern Hemisphere ice sheets of the Quaternary (Naish et al., 2001a,b). In this issue we present further research on the history of the Antarctic ice sheet from Oligocene to recent times, most of them from the Antarctic margin, but with some on the nature of the deep-sea isotope record, and others using recently developed modeling techniques to investigate the influence of atmosphere, ocean and biosphere on past Antarctic climate. This special issue is the third in three years on the theme of Antarctic Climate Evolution. The first followed a workshop in Erice, Sicily, in 2001 to report on results from ANTOSTRAT, a SCAR-sponsored project for gathering and analysing circum-Antarctic seismic data for planning and promoting offshore drilling for climate history. The introduction to that issue (Florindo et al., 2003) provides a review of the recent history of circum-Antarctic drilling by the Ocean Drilling Program (Legs 113, 114, 119, 120, 177, 178, 188 and 189) and the Cape Roberts Project. For a more comprehensive review of earlier drilling in the Ross Sea region (Deep Sea Drilling Project Leg 28, Dry Valley Drilling Project, McMurdo Sound Sediment and Tectonic Studies, Cenozoic Investigations in the western Ross Sea) see Hambrey and Barrett (1993). The first of these issues (Florindo et al., 2003) featured a global plate reconstruction of the Southern Hemisphere through Cenozoic time with emphasis on evolution of Cenozoic seaways (Lawver and Gahagan, 2003) along with a study of the inception and early evolution of the EAIS using a new coupled global climate (GCM)– dynamic ice sheet model (DeConto and Pollard, 2003b), as well as data from recent drilling around the margin covering time period from Cretaceous to the present. A second special issue on the same theme (Florindo et al., 2005) also featured a mix of modelling and data papers with a focus on the Eocene–Oligocene boundary and the initiation of ice sheet growth, including a pioneering attempt to evaluate the relative influence of fluvial versus glacial processes in shaping the landscape of the Prydz Bay sector of Antarctica (Jamieson et al., 2005). The remainder of the issue comprised further papers on seismic stratigraphy and reports from drilling around the margin. The papers to be found in this special issue, like the previous two, maintain the mix of modelling- and data-oriented papers that reflect the range of this research.
    Description: Published
    Description: 1-8
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Antarctic climate evolution ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: A transect of three sites was drilled during Leg 188 of the Ocean Drilling Program (ODP), proximal to the East Antarctic Ice Sheet (EAIS) across the Prydz Bay continental shelf (Site 1166), slope (Site 1167), and rise (Site 1165). We present results of a palaeomagnetic and rock magnetic study of sediments recovered at sites 1165 and 1166. Magnetostratigraphic interpretations are presented for both holes and are mainly constrained by diatom and radiolarian biostratigraphies, interpreted in the light of recent refinements to Southern Ocean zonal schemes and datum calibrations for these microfossil groups. Site 1165 records a history of sedimentation on the continental rise extending back to earliest Miocene times (about 22 Ma). Several long-term changes characterise this record, including an overall trend of decreasing sedimentation rates from the bottom to the top of the hole. There is a progressive decrease in the sedimentation rate above about 308 mbsf (meters below sea floor), which is marked by a transition from dark-grey fissile claystones to greenish-grey diatom-bearing clays. At this transition, ice-rafted debris, sand grains, and total clay content also increase. The chronology presented here indicates a middle Miocene age (~14.3 Ma) for the lithological transition. Correlation to ODP Hole 747A from the Kerguelen Plateau suggests that this lithological transition coincides with the base of the Mi-3/3a δ18O event, which suggests palaeoclimatic control on middle Miocene sedimentation changes at Site 1165. Core recovery was poor at Site 1166. Consequently, the magnetostratigraphic data are of limited value. The deepest cores recovered at Site 1166 record brief intervals in the early history of the EAIS for the Prydz Bay region, extending back through the early stage of glaciation to pre-glacial times. An Early Cretaceous fluvio-lacustrine unit, lagoonal deposits and sandy fluvio-deltaic units of mid-late Eocene age contain a sporadic record of the transition from humid and mild conditions to cool temperate conditions.
    Description: Published
    Description: 69-100
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: magnetostratigraphy ; biostratigraphy ; Prydz Bay ; Antarctica ; Ocean Drilling Program ; sites 1165 and 1166 ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-03
    Description: Direct measurements of the Earth’s magnetic field in Italy since 1640 a.d. have been used to check the remanence directions derived from historically dated volcanic rocks of Etna and Vesuvius. Direct measurements consist of the records of L’Aquila and Pola geomagnetic observatories, the repeat stations of the Italian Magnetic Network and the data base of the Historical Italian Geomagnetic Data Catalogue. All have been relocated to the same reference site (Viterbo — lat. 42.45◦N, long. 12.03◦E) in order to draw a reference secular variation (SV) curve. The direction of the Earth’s field at Viterbo has also been calculated from the historical records (2000–1600) of ref. [Jackson, A., Jonkers, A.R.T., Walker, M.R., 2000. Four centuries of geomagnetic secular variation from historical records. Phil. Trans. R. Soc. London, Ser. A 358, 957–990] database. The remanence directions from Etna show a general agreement with the trend of the SV curve, although their inclination is usually lower than that from the direct measurement. The directions from Vesuvius are more scattered. Large discrepancies occur at both volcanoes and in some cases have been ascribed in the literature to poor geographic information, making it difficult to identify the flows actually emplaced during the eruptions reported in the chronicles. Closer examination shows that the great majority of the best-defined remanence directions (semi-angle of confidence α95 〈 2.5◦) deviate significantly from the geomagnetic direction measured at the time of the emplacement, the angle between the two directions being larger than the α95 value. The value of 2.5–3.0◦ can thus be regarded as a conservative evaluation of the error when dealing with dating Etna and Vesuvius lava flows older than 17th century, even when the accuracy attained in remanence measurements is higher. In default of a SV curve for Italy derived from archaeological artefacts, a further error in dating is introduced when reference is made to SV curves of other countries, even if well-established, as these are from regions too far from Italy (〉600 km) to confidently relocate magnetic directions.
    Description: Published
    Description: 97-107
    Description: 1.6. Osservazioni di geomagnetismo
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: 3.4. Geomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Secular variation ; Historical magnetic measurements ; Thermal remanent magnetization ; Volcanic rocks ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: The area of the Ionian sea, between Albania and the Southern Italian Peninsula, has been taken into account for the production of geomagnetic component maps. Data from the national Albanian and Italian magnetic repeat station networks have been merged, and normal reference fields in latitude and longitude, have been computed. Data processing, reduction procedures and comparisons with IGRF are presented.
    Description: Published
    Description: 433-438
    Description: JCR Journal
    Description: reserved
    Keywords: Ionian sea ; geomagnetic component maps ; Albanian and Italian magnetic repeat station networks ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.03. Global and regional models ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-04-04
    Description: The behaviour of the geomagnetic field as observed almost continuously at three European locations over the last 130 years is investigated by means of a non-linear forecasting approach. The analysis of the data in terms of first-differences (secular variation) of the horizontal magnetic components made in phase space with the simplex technique seems to exclude the pre-eminence of any stochastic or periodic behaviour. The dimensionality of the underlying non-linear process and the corresponding largest positive Lyapunov exponent are estimated. The results give some evidence that the geomagnetic field evolves as a non-linear chaotic system with unpredictable behaviour after times greater than a few years, confirming the common practice of updating global models of the geomagnetic field every 5 years.
    Description: Published
    Description: 207-220
    Description: JCR Journal
    Description: reserved
    Keywords: geomagnetic field ; chaos ; non-linear forecasting approach ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: Piston core LC07, located west of the Sicily Strait in the Mediterranean Sea, unambiguously records the Matuyama/ Brunhes (M/B) and the upper Jaramillo polarity reversals, with similar average sediment accumulation rates (SARs) for the Brunhes Chron (2.29 cm/kyr) and late Matuyama Chron C1r.1r (2.19 cm/kyr). We report a relative paleointensity record for the interval spanning the M/B boundary down into the Jaramillo Subchron, which is unique in the Mediterranean because existing records from this basin cover only the last 80 kyr. The average SAR in core LC07 is used to translate the depth-related paleointensity record to the time domain; the ratio of anhysteretic remanent magnetization to low-field magnetic susceptibility is climatically sensitive and is used to tune the age model. This correlation produces a good fit to the global ice volume model derived for summer insolation at 65°N. With this age model, a paleointensity minimum in association with the M/B boundary has a duration of about 4-5 kyr, while the directional change has a duration of 〈3 kyr. A second paleointensity minimum of similar duration is found about 16 kyr below the M/B boundary. This feature (precursor or 'dip' in the literature) has previously been recognized at the same time interval in many marine records, which reinforces the validity of our age model. Other relative paleointensity minima are found within chron C1r.1r, and, within the uncertainties of the respective age models, these minima coincide with those observed from the few published coeval paleointensity records. In particular, there is good correspondence between the ages of minima at about 0.92 and 0.89 Ma, which probably correlate with two geomagnetic excursions (Santa Rosa and Kamikatsura, respectively) that have been recorded in lava flows and dated using the 40Ar/39Ar technique. In contrast, a recently dated excursion at 0.83 Ma from La Palma seems to correspond to a paleointensity maximum. This observation is opposite to that expected and this excursion needs to be confirmed. In contrast to some recently published paleointensity records, spectral analysis of the LC07 record does not reveal identification of significant power at the orbital obliquity frequency.
    Description: Published
    Description: 327-341
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: paleointensity ; magnetic field ; Matuyama Chron ; Jaramillo Subchron ; Brunhes Chron ; Mediterranean Sea ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: In 1994-95 a geomagnetic survey was carried out on the territory of Hungary and the neighbouring regions on 195 stations. Magnetic declination, inclination and total field were directly observed. Some of the stations were measured jointly with Istituto Nazionale di Geofisica (ING), Roma. The results were reduced to the epoch of 1995.0. Normal fields for the magnetic components were determined as second order functions of the geographic coordinates. The polynomial coefficients have been computed in three different waves: by means of simple and weighted least squares procedure and using the adjustment according to "most frequent value". In the present paper the mathematical foundation of these methods and the comparison between the obtained results will be presented.
    Description: Published
    Description: 439-443
    Description: JCR Journal
    Description: reserved
    Keywords: Hungary ; magnetic network ; geomagnetic survey ; magnetic declination, inclination and total field ; 04. Solid Earth::04.05. Geomagnetism::04.05.02. Geomagnetic field variations and reversals ; 04. Solid Earth::04.05. Geomagnetism::04.05.03. Global and regional models ; 04. Solid Earth::04.05. Geomagnetism::04.05.05. Main geomagnetic field
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: Neogene intermontane basins in Almería Province, SE Spain, display excellent exposures of Messinian (Late Miocene) sequences. The Sorbas, Almería-Níjar and Vera basins maintained connection with the Mediterranean throughout the Messinian, except during the major desiccation phase leading to the formation of salt in the deep centre of the Western Mediterranean. These basins were part of the Western Mediterranean with no separate link to the Atlantic Ocean. The presence of normal marine sediments in these basins reflects the Western Mediterranean watermass. Messinian pre-evaporitic sediments in the basins of southeastern Almería do not show gradual change towards evaporite deposits. Instead they contain stenohaline invertebrates right up to a major erosion surface that separates them from overlying gypsum deposits. This contradicts suggestion of progressive salinity increase in this part of the Western Mediterranean prior to the Messinian Salinity Crisis (MSC); it also indicates that initiation of evaporite precipitation was not synchronous throughout the Mediterranean Basin. There is no major erosion surface within or at the top of the evaporites in these Almería basins, and the gypsum beds exhibit upward transition to siliciclastic and carbonate deposits. This is inconsistent with a model of Messinian Mediterranean evaporite formation whereby deposition of marginal evaporites was followed by their erosion during drawdown that resulted in formation of evaporites in the centre of the Western Mediterranean. The presence of stenohaline biotas in siliciclastic deposits interbedded with the gypsum and in the Messinian post-evaporitic sediments, challenges the view that a long-standing large body of brackish water (the Lago Mare) filled the Western Mediterranean following the MSC and prior to Early Pliocene flooding. It also contradicts the concept of many relatively small brackish basins spread across an otherwise desiccated Western Mediterranean basin. The basins of southeastern Almería record normal marine Early Messinian sedimentation that was abruptly interrupted by sealevel fall. This drawdown most likely resulted in precipitation of evaporites in the central deep Western Mediterranean basin. Following this episode, final marine reflooding of the Western Mediterranean took place during the Late Messinian, and the Mediterranean Sea rose to a level similar to, or higher than, that preceding the Salinity Crisis.
    Description: Published
    Description: 131-154
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Almería ; Evaporites ; Messinian Salinity Crisis ; Palaeoenvironments ; Western Mediterranean ; Spain ; 03. Hydrosphere::03.01. General::03.01.06. Paleoceanography and paleoclimatology ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...