ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05. General::05.02. Data dissemination::05.02.01. Geochemical data
  • Elsevier  (5)
  • Annual Reviews
  • Springer Science + Business Media
  • 2020-2022
  • 2005-2009  (5)
  • 1980-1984
  • 2008  (5)
Collection
Publisher
Years
  • 2020-2022
  • 2005-2009  (5)
  • 1980-1984
Year
  • 1
    Publication Date: 2021-05-17
    Description: Papandayan is a stratovolcano situated in West Java, Indonesia. Since the last magmatic eruption in 1772,only few hydrothermal explosions have occurred. An explosive eruption occurred in November 2002 and ejected ash and altered rocks. The altered rocks show that an advanced argillic alteration took place in the hydrothermal system by interaction between acid fluids and rocks. Four zones of alteration have been defined and are limited in extension and shape along faults or across permeable structures at different levels beneath the active crater of the volcano. At the present time, the activity is centered in the northeast crater with discharge of low temperature fumaroles and acid hot springs. Two types of acid fluids are emitted in the crater of Papandayan volcano: (1) acid sulfate-chloride waters with pH between 1.6 and 4.6 and (2) acid sulfate waters with pH between 1.2 and 2.5. The water samples collected after the eruption on January 2003 reveal an increase in the SO4/Cl and Mg/Cl ratios. This evolution is likely explained by an increase in the neutralization of acid fluids and tends to show that water–rock interactions were more significant after the eruption. The evolution in the chemistry observed since 2003 is the consequence of the opening of new fractures at depth where unaltered (or less altered) volcanic rocks were in contact with the ascending acid waters. The high δ34S values (9–17‰) observed in acid sulfatechloride waters before the November 2002 eruption suggest that a significant fraction of dissolved sulfates was formed by the disproportionation of magmatic SO2. On the other hand, the low δ34S (−0.3–7‰) observed in hot spring waters sampled after the eruption suggest that the hydrothermal contribution (i.e. the surficial oxidation of hydrogen sulfide) has increased.
    Description: Published
    Description: 276-286
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: Papandayan volcano ; Indonesia ; phreatic eruption ; hydrothermal system ; fluid geochemistry ; advanced argillic alteration ; gas geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: El Chichón volcano (Chiapas, Mexico) erupted violently in March–April 1982, breaching through the former volcano–hydrothermal system. Since then, the 1982 crater has hosted a shallow (1–3.3 m, acidic (pH ∼ 2.2) and warm (∼ 30 °C) crater lake with a strongly varying chemistry (Cl/SO4=0–79 molar ratio). The changes in crater lake chemistry and volume are not systematically related to the seasonal variation of rainfall, but rather to the activity of near-neutral geyser-like springs in the crater (Soap Pool). These Soap Pool springs are the only sources of Cl for the lake. Their geyser-like behaviour with a long-term (months to years) periodicity is due to a specific geometry of the shallow boiling aquifer beneath the lake, which is the remnant of the 1983 Cl-rich (24,000 mg/l) crater lake water. The Soap Pool springs decreased in Cl content over time. The zero-time extrapolation (1982, year of the eruption) approaches the Cl content in the initial crater lake,meanwhile the extrapolation towards the future indicates a zero-Cl content by 2009±1. This particular situation offers the opportunity to calculate mass balance and Cl budget to quantify the lake–spring system in the El Chichón crater. These calculations show that the water balance without the input of SP springs is negative, implying that the lake should disappear during the dry season. The isotopic composition of lake waters (δD and δ18O) coincide with this crater lake-SP dynamics, reflecting evaporation processes and mixing with SP geyser and meteoric water. Future dome growth, not observed yet in the post-1982 El Chichón crater, may be anticipated by changes in lake chemistry and dynamics.
    Description: Published
    Description: 237–248
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: El Chichón volcano ; crater lake–Spring dynamics ; fluid geochemistry ; stable isotopes ; monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: El Chichón crater lake appeared immediately after the 1982 catastrophic eruption in a newly formed, 1-km wide, explosive crater. During the first 2 years after the eruption the lake transformed from hot and ultraacidic caused by dissolution of magmatic gases, to a warm and less acidic lake due to a rapid “magmatic-tohydrothermal transition” — input of hydrothermal fluids and oxidation of H2S to sulfate. Chemical composition of the lake water and other thermal fluids discharging in the crater, stable isotope composition (δD and δ18O) of lake water, gas condensates and thermal waters collected in 1995–2006 were used for the mass-balance calculations (Cl, SO4 and isotopic composition) of the thermal flux from the crater floor. The calculated fluxes of thermal fluid by different mass-balance approaches become of the same order of magnitude as those derived from the energy-budget model if values of 1.9 and 2 mmol/mol are taken for the catchment coefficient and the average H2S concentration in the hydrothermal vapors, respectively. The total heat power from the crater is estimated to be between 35 and 60 MW and the CO2 flux is not higher than 150 t/day or ~200 gm−2 day−1.
    Description: Published
    Description: 472-481
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: El Chichón ; crater lake ; mass-energy budget ; CO2 flux ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Four groups of thermal springs with temperatures from 50 to 80 °C are located on the S–SW–W slopes of El Chichón volcano, a composite dome-tephra edifice, which exploded in 1982 with a 1 km wide, 160 m deep crater left. Very dynamic thermal activity inside the crater (variations in chemistry and migration of pools and fumaroles, drastic changes in the crater lake volume and chemistry) contrasts with the stable behavior of the flank hot springs during the time of observations (1974–2005). All known groups of hot springs are located on the contact of the basement and volcanic edifice, and only on the W–SW–S slopes of the volcano at almost same elevations 600–650 m asl and less than 3 km of direct distance from the crater. Three groups of near-neutral (pH≈6) springs at SW–S slopes have the total thermal water outflow rate higher than 300 l/s and are similar in composition. The fourth and farthest group on the western slope discharges acidic (pH≈2) saline (10 g/kg of Cl) water with a much lower outflow rate (b10 l/s). Water–rock interaction modeling of main types of the El Chichón thermal waters using regular log Q/K graphs (saturation indices vs temperature) showed maximum equilibrium temperature slightly higher than 200 °C. Acidic waters are equilibrated with some clay minerals at about 120 °C. Three main sources of the salinity of thermal water are suggested on the basis of mixing plots and isotopic data: a magmatic source for CO2, boron, sulfur and a limited part of Cl; volcanic rock source for the major cations and trace elements; the oil-bearing evaporitic basement source (oil-field brine?) for NaCl, Br, a part of Ca and some trace elements. All flank thermal springs end up in the river Rio Magdalena that has a variable seasonal flow rates from 4 to 20 m3/s. Any changes in the chemistry of springs must notably change the composition of the streams draining hot springs and eventually, Rio Magdalena. A monthly geochemical monitoring of Rio Magdalena and streams draining main hot springs would be a useful tool for surveying the activity of the volcano.
    Description: Published
    Description: 224–236
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: JCR Journal
    Description: reserved
    Keywords: volcano–hydrothermal system ; crater lake ; acidic water ; trace elements ; thermochemical modeling ; El Chichón volcano ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: During 2001–2005, Mount Etna was characterized by intense eruptive activity involving the emission of petrologically different products from several vents, which involved at least two types of magma with different degrees of evolution. We investigated the ratios and abundances for noble-gas isotopes in fluid inclusions trapped in olivines and pyroxenes in the erupted products. We confirm that olivine has the most efficient crystalline structure for preserving the pristine composition of entrapped gases, while pyroxene can suffer diffusive He loss. Both the minerals also experience noble gas air contamination after eruption. Helium isotopes of the products genetically linked to the two different magmas fall in the isotopic range typical of the Etnean volcanism. This result is compatible with the metasomatic process that the Etnean mantle is undergoing by fluids from the Ionian slab during the last ten kyr, as previously inferred by isotope and trace element geochemistry. Significant differences were also observed among olivines of the same parental magma that erupted throughout 2001–2005, with 3He/4He ratios moving from about 7.0 Ra in 2001 volcanites, to 6.6 Ra in 2004–2005 products. Changes in He abundances and isotope ratios were attributed to variations in protracted degassing of the same magma bodies from the 2001 to the 2004–2005 events, with the latter lacking any contribution of undegassed magma. The decrease in 3He/4He is similar to that found from measurements carried out every fifteen days during the same period in gases discharged at the periphery of the volcano. To our knowledge this is the first time that such a comparison has been performed so in detail, and provides strong evidence of the real-time feeding of peripheral emissions by magmatic degassing.
    Description: Published
    Description: 683-690
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: JCR Journal
    Description: open
    Keywords: fluid inclusions ; noble gases ; helium isotopes ; magma degassing ; olivine ; pyroxene ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...