ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations  (7)
  • Methane  (6)
  • Elsevier  (9)
  • Springer  (4)
  • Annual Reviews
  • 2005-2009  (13)
  • 1990-1994
  • 1980-1984
  • 2007  (13)
Collection
Publisher
Years
  • 2005-2009  (13)
  • 1990-1994
  • 1980-1984
Year
  • 1
    Publication Date: 2017-04-03
    Description: The experience of several authors has shown that continuous measurements of the gravity field, accomplished through spring devices, are strongly affected by changes of the ambient temperature. The apparent, temperature-driven, gravity changes can be up to one order of magnitude higher than the expected changes of the gravity field. Since these effects are frequency-dependent and instrument-related, they must be removed through non-linear techniques and in a case-by-case fashion. Past studies have demonstrated the effectiveness of a Neuro-Fuzzy algorithm as a tool to reduce continuous gravity sequences for the effect of external temperature changes. In the present work, an upgraded version of this previously employed algorithm is tested against the signal from a gravimeter, which was installed in two different sites over consecutive 96-day and 163-day periods. The better performance of the new algorithm with respect to the previous one is proven. Besides, inferences about the site and/or seasonal dependence of the model structure are reported.
    Description: Published
    Description: 247–256
    Description: reserved
    Keywords: Gravimeters ; Exogenous parameter compensantion ; Neuro-Fuzzy algorithm ; Site effects ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 05. General::05.01. Computational geophysics::05.01.01. Data processing
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1253604 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: A 2.5-month long gravity sequence, encompassing the starting period of the 2002–2003 Etna eruption and coming from a summit station only 1 km away from the new fractures, is presented and discussed. The sequence comprises four hours-long anomalies that have a great chance to reflect mass redistributions linked to the ensuing activity. In particular, the start of the eruptive activity on the northeastern flank was marked by a gravity decrease as strong as about 400 microGal, which reverted soon afterwards. This strong decrease/increase anomaly is interpreted as the opening, by tectonic forces, of a fracture system along the Northeastern Rift of Mt. Etna, followed by an intrusion of magma from the central conduit to the new fractures. They were used by the intruding magma as a path to the eruptive vents at lower elevations. Afterwards, on three occasions, in November and December 2002, 6–12 h-lasting gravity decreases, with amplitude ranging between 10 and 30 microGal, were observed simultaneously with increases in the amplitude of the volcanic tremor from four seismic stations. A correlation analysis, between the gravity signal and the overall spectral amplitude of each tremor sequence is performed over the 7 November–9 December period. A marked anti-correlation is found over each contemporaneous gravity decrease/tremor increase, while, over the rest of the investigated period, the correlation is negligible. Accordingly, a joint source is inferred to have acted during the occurrence of the three common anomalies. On the grounds of some volcanological observations spanning the period covered by our analysis, we propose the temporary accumulation of a gas cloud at some level within the plumbing system of the volcano to have acted as a joint source. The present work is a further evidence of the potential of continuous gravity observations as a tool to monitor and study active volcanoes and encourages their employment in spite of the difficulty of running spring gravimeters in a continuous fashion under the adverse conditions normally encountered on the summit zone of an active volcano.
    Description: Published
    Description: 320–329
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Description: JCR Journal
    Description: reserved
    Keywords: Gravity anomalies ; Magma intrusion ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The “methane-led hypotheses” assume that gas hydrates and marine seeps are the sole geologic factors controlling Quaternary atmospheric and climate changes. Nevertheless, a wider class of geologic sources of methane exist which could have played a role in past climate changes. Beyond offshore seepage, relevant geologic emissions of methane (GEM) are from onshore seepage, including mud volcanism, microseepage and geothermal flux; altogether GEM are the second most important natural source of atmospheric methane at present. The amount of methane entering the atmosphere from onshore GEM seems to prevail on that from offshore seepage. Onshore sources inject a predominantly isotopically heavy (13C-enriched) methane into the atmosphere. They are controlled mainly by endogenic (geodynamic) processes, which induce large-scale gas flow variations over geologic and millennial time scales, and only partially by exogenic (surface) conditions, so that they are not affected by negative feedbacks. The eventual influence on atmospheric methane concentration does not necessarily require catastrophic or abrupt releases, as proposed for the “clathrate gun hypothesis”. Enhanced degassing from these sources could have contributed to the methane trends observed in the ice core records, and could explain the late Quaternary peaks of increased methane concentrations accompanied by the enrichment of isotopically heavy methane, as recently observed. This hypothesis shall be tested by means of robust multidisciplinary studies, mainly based on a series of atmospheric, biologic and geologic proxies.
    Description: Published
    Description: On line First
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Methane ; climate change ; seepage ; Quaternary ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-03
    Description: Central to any study of climate change is the development of an inventory that identifies and quantifies natural and anthropogenic sources and sinks of greenhouse gases (GHG). Recent studies have demonstrated that geologic emissions of methane (GEM), although not considered in the inventories of the IntergovernmentalPanel on Climate Change (IPCC), are an important GHG source. Etiope and Klusman (2002, Chemosphere 49, 777–789) documented that significant amounts of methane, produced within the Earth crust, are released naturally into the atmosphere through faults and fractured rocks. Major GEMs are related to hydrocarbon production in sedimentary basins (biogenic and thermogenic methane), through continuous exhalation and eruptions from more than 1200 onshore and offshore mud volcanoes (MVs), through diffuse soil microseepage, and shallow marine seeps; secondarily, methane is released from geothermal and volcano-magmatic systems. Minor geologic sources are those related to natural exhalation from coal-bearing rocks (influenced by mining activities), degassing from crystalline basement and mantle. While marine seeps have been studied for decades, methane flux from MVs has been the object of detailed measurements only since 2001, when hundreds of gas flux measurements were performed from vents and soilin the main terrestrial MVs of Europe, in Romania and Italy (Etiope et al.,2003, Geophysical Research Letters 30, 1094, doi:10.1029/2002GL016287; and references therein). In 2003 gas flux was measured in Azerbaijan, which hosts the world’s biggest MVs and densest MV population (Etiope et al., 2004, Geology, in press). In all areas investigated around 102–103 tons of methane per km2 are annually injected into the atmosphere. The global estimates of GEM from MVs range from 5 to 13Tg yr-1 (Etiope and Milkov, 2004, Environmental Geology, in press).
    Description: Published
    Description: 3099-3100
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Methane ; atmospheric gas budget ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Microgravity observations at Mt. Etna have been routinely performed as both discrete (since 1986) and continuous (since 1998) measurements. In addition to describing the methodology for acquiring and reducing gravity data from Mt. Etna, this paper provides a collection of case studies aimed at demonstrating the potential of microgravity to investigate the plumbing system of an active volcano and detect forerunners to paroxysmal volcanic events. For discrete gravity measurements, results from 1994– 1996 and 2001 are reported. During the first period, the observed gravity changes are interpreted within the framework of the Strombolian activity which occurred from the summit craters. Gravity changes observed during the first nine months of 2001 are directly related to subsurface mass redistributions which preceded, accompanied and followed the July-August 2001 flank eruption of Mt. Etna. Two continuous gravity records are discussed: a 16-month (October 1998 to February 2000) sequence and a 48-hour (26–28 October, 2002) sequence, both from a station within a few kilometers of the volcano’s summit. The 16-month record may be the longest continuous gravity sequence ever acquired at a station very close to the summit zone of an active volcano. By cross analyzing it with contemporaneous discrete observations along a summit profile of stations, both the geometry of a buried source and its time evolution can be investigated. The shorter continuous sequence encompasses the onset of an eruption from a location only 1.5 km from the gravity station. This gravity record is useful for establishing constraints on the characteristics of the intrusive mechanism leading to the eruption. In particular, the observed gravity anomaly indicates that the magma intrusion occurred ‘‘passively’’ within a fracture system opened by external forces.
    Description: Published
    Description: 769-790
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: reserved
    Keywords: Mt. Etna ; microgravity ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The island of Pantelleria is an active volcano located in the Sicily Channel (Southern Italy), in the middle of a continental rift system. Since the 1980s the island was periodically surveyed by using geodetic techniques (EDM, levelling, GPS and high precise gravimetry) to monitor the regional and local volcanic dynamics. Gravity data, collected between 1990 and 1998, show short and long wavelength changes due to the combined effect of shallow and deep sources. They reflect, to some degree, the structural setting of the island as delineated by the Bouguer anomaly field, which indicates that the island is broken up into two main basement blocks. The latter are bordered by two lineaments, probably regional faults related to the global geodynamics of the Sicily Channel Rift Zone. Moreover, the inverse correlation between the gravity and altimetric variations suggests that: i) Pantelleria is kinematically divided in two blocks; ii) the observed behaviour is strongly influenced by the geodynamics of the Sicily Channel. A new interpretation of the fully reprocessed data sets is presented, focusing on the spatial–temporal features of the horizontal ground deformation and gravity changes compared to the Bouguer anomaly and altimetric data. This leads to conclude that volcanism on the island has been probably strongly influenced by the global geodynamics of the Sicily Channel, and future eruptions are most likely to occur at the structural boundary separating the two blocks.
    Description: Published
    Description: 146– 162
    Description: reserved
    Keywords: Pantelleria ; geodesy ; deformation ; gravity ; volcanism ; geodynamics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 871690 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: In this paper we discuss the data collected by a large aperture array of broadband seismometers and a continuously recording gravity station during the 2002–2003 eruption of Etna volcano (Italy). Seismic signals recorded during the eruption are dominated by volcanic tremor whose energy spans the 0.5–5 Hz frequency band. On three different occasions (12 November, 19–20 November and 8–9 December 2002), we observed marked increases of the tremor amplitude (up to a factor of 4), which occurred simultaneously with gravity decreases (up to 30 μGal). The three concurrent gravity/tremor anomalies last 6 to 12 hours and terminate with rapid (up to 2 hours) changes, after which the signals return back to their original levels. Based on volcanological observations encompassing the simultaneous anomalies, we infer that the accumulation of a gas cloud at some level in the conduit plexus feeding a new eruptive vent could have acted as a joint source. This study highlights the potential of joint gravity–seismological analyses to both investigate the internal dynamic of a volcano and to improve the confidence of volcanic hazard assessment.
    Description: Published
    Description: 616-629
    Description: reserved
    Keywords: Etna ; volcanic tremor ; gravity changes ; foam layer ; 04. Solid Earth::04.03. Geodesy::04.03.04. Gravity anomalies ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1036216 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The goal of this paper is to describe how continuous gravity measurements can improve the geophysical monitoring of a volcano. Here the experience of 15 yr in continuous gravity on Vesuvius is presented. A wide set of dynamic phenomena (i.e. geodynamics, seismicity, volcanic activity) can produce temporal gravity changes, with a spectrum varying from short (1–10 s) to longer (more than 1 yr) periods. An impending eruption, for instance, is generally associated with the ascent of magma producing changes in the density distribution at depth, and leading to ground deformation and gravity changes observed at surface. The amplitude of such gravity variations is often quite small, on the order of 10 9–10 8 g (10–102 nm/s2; 1–10 AGal), where g is the mean value of normal gravity (9.806 199 203 m/s2), so their detection requires instruments with high sensitivity and stability, providing high quality data. Natural, man-made and instrumental sources are present on the gravity records affecting the Signal to Noise Ratio. Such effects may hide the subtle volcanic signals. The main natural noise is due to ocean–atmosphere dynamics and seismic activity. New approaches to model the instrumental response of mechanical gravity sensors (based on the inter-comparison among superconducting, mechanical and absolute gravimeters) and to investigate the temporal trends of the instrumental sensitivity are proposed. In fact, variations of the calibration factors can be considered the main cause preventing the repeatability of highprecision gravity measurements and inducing phase and amplitude perturbations in recorded gravity signals. A modelling of the background gravity noise level was performed at the Vesuvius station. Moreover, the bfar fieldQ effects produced by large earthquakes on the gravity station have been also investigated. Finally, the time dependent behaviour of the tidal gravimetric factors, the non-stationary components of the gravity field detected at Vesuvius and the results of absolute and relative gravity measurements are interpreted in the framework of its present-day dynamics, mainly characterized by the low level of seismicity, small ground deformation, gravity changes and moderate gas emission.
    Description: Published
    Description: 270– 282
    Description: reserved
    Keywords: Vesuvius ; gravity ; record ; volcanic processes ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 562329 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: It has recently been demonstrated that methane emission from lithosphere degassing is an important component of the natural greenhouse-gas atmospheric budget. Globally, the geological sources are mainly due to seepage from hydrocarbon-prone sedimentary basins, and subordinately from geothermal/volcanic fluxes. This work provides a first estimate of methane emission from the geothermal/volcanic component at European level. In Europe, 28 countries have geothermal systems and at least 10 countries host surface geothermal manifestations (hot springs, mofettes, gas vents). Even if direct methane flux measurements are available only for a few small areas in Italy, a fair number of data on CO2, CH4 and steam composition and flux from geothermal manifestations are today available for 6 countries (Czech Republic, Germany, Greece, Iceland, Italy, Spain). Following the emission factor and area-based approach, the available data have been analyzed and have led to an early and conservative estimate of methane emission into the atmosphere around 10,000 ton/yr (4000–16,000 ton/yr), basically from an area smaller than 4000 km2, with a speculative upper limit in the order of 105 ton/yr. Only 4–18% of the conservative estimate (about 720 ton/yr) is due to 12 European volcanoes, where methane concentration in volcanic gases is generally in the order of a few tens of ppmv. Volcanoes are thus not a significant methane source. While the largest emission is due to geothermal areas, which may be situated next to volcanoes or independent. Here inorganic synthesis, thermometamorphism and thermal breakdown of organic matter are substantial. Methane flux can reach hundreds of ton/yr from small individual vents. Geothermal methane is mainly released in three countries located in the main high heat flow regions: Italy, Greece, and Iceland. Turkey is likely a fourth important contributor but the absolute lack of data prevents any emission estimate. Therefore, the actual European geothermal–volcanic methane emission could be easily projected to the 105 ton/yr levels, reaching the magnitude of some other natural sources such as forest fires or wild animals.
    Description: Published
    Description: 76-86
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Methane ; volcanoes ; Geothermal vents ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The atmospheric methane budget is commonly defined assuming that major sources derive from the biosphere (wetlands, rice paddies, animals, termites) and that fossil, radiocarbon-free CH4 emission is due to and mediated by anthropogenic activity (natural gas production and distribution, and coal mining). However, the amount of radiocarbon- free CH4 in the atmosphere, estimated at approximately 20% of atmospheric CH4, is higher than the estimates from statistical data of CH4 emission from fossil fuel related anthropogenic sources. This work documents that significant amounts of ‘‘old’’ methane, produced within the Earth crust, can be released naturally into the atmosphere through gas permeable faults and fractured rocks. Major geologic emissions of methane are related to hydrocarbon production in sedimentary basins (biogenic and thermogenic methane) and, subordinately, to inorganic reactions (Fischer-Tropsch type) in geothermal systems. Geologic CH4 emissions include diffuse fluxes over wide areas, or microseepage, on the order of 100–102 mgm 2 day 1, and localised flows and gas vents, on the order of 102 t y 1, both on land and on the seafloor. Mud volcanoes producing flows of up to 103 t y 1 represent the largest visible expression of geologic methane emission. Several studies have indicated that methanotrophic consumption in soil may be insufficient to consume all leaking geologic CH4 and positive fluxes into the atmosphere can take place in dry or seasonally cold environments. Unsaturated soils have generally been considered a major sink for atmospheric methane, and never a continuous, intermittent, or localised source to the atmosphere. Although geologic CH4 sources need to be quantified more accurately, a preliminary global estimate indicates that there are likely more than enough sources to provide the amount of methane required to account for the suspected missing source of fossil CH4.
    Description: Published
    Description: 777-789
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Methane ; seepage ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: For 5 months before the 2001 Mt. Etna eruption, a progressive gravity decrease was measured along a profile of stations on the southern slope of the volcano. Between January and July 2001, the amplitude of the change reached 80 μGal, while the wavelength of the anomaly was of the order of 15 km. Elevation changes observed through GPS measurements during a period encompassing the 5-month gravity decrease, remained within 4–6 cm over the entire volcano and within 2–4 cm in the zone covered by the microgravity profile. We review both gravity and elevation changes by a model assuming the formation of new cracks, uniformly distributed in a rectangular prism. The inversion problem was formulated following a global optimization approach based on the use of Genetic Algorithms. Although it is possible to explain the observed gravity changes by means of the proposed analytical formulation, the results show that calculated elevation changes are significantly higher than those observed. Two alternative hypotheses are proposed to account for this apparent discrepancy: (1) that the assumptions behind the analytical formulation, used to invert the data, are fallacious at Etna, and thus, numerical models should be utilized; (2) that a second process, enabling a considerable mass decrease to occur without deformation, acted together with the formation of new cracks in the source volume.
    Description: Published
    Description: 553–562
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: reserved
    Keywords: Gravity ; Elastic modeling ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-02-16
    Description: The role of mud volcanoes (MVs) as a source of methane(CH4) flux to the atmosphere and the ocean has been increasingly recognised in the last several years (Milkov 2000; Dimitrov 2002, 2003; Etiope and Klusman 2002; Kopf 2002, 2003; Milkov et al. 2003; Etiope and Milkov 2004). In one of the most recent papers, Kopf (2003) claims to report a reliable estimate of the global CH4 emission from MVs. However, the significance and usefulness of the estimate presented by Kopf (2003) are rather poor. The used dataset is smaller than in previous studies (although the author makes a reverse claim), and some previously published works are misquoted and misinterpreted. Numerous arithmetic mistakes made during simple calculations and data manipulations lead to confusing results and conclusions. In this comment, we highlight some of the most significant problems with the estimates published by Kopf (2003).
    Description: Published
    Description: 490-492
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Methane ; mud volcanoes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-02-16
    Description: A new estimate of global methane emission into the atmosphere from mud volcanoes (MVs) on land and shallow seafloor is presented. The estimate, considered a lower limit, is based on 1) new direct measurements of flux, including both venting of methane and diffuse microseepage around craters and vents, and 2) a classification of MV sizes in terms of area (km2) based on a compilation of data from 120 MVs. The methane flux to the atmosphere is conservatively estimated between 6 and 9 Mt y)1. This emission from MVs is 3–6% of the natural methane sources and is comparable with ocean and hydrate sources, officially considered in the atmospheric methane budget. The total geologic source, including MVs, seepage from seafloor, microseepage in hydrocarbon-prone areas and geothermal sources, would amount to 35–45 Mt y)1. The authors believe it is time to add this parameter in the Intergovernmental Panel on Climate Change official tables of atmospheric methane sources.
    Description: Published
    Description: 997-1002
    Description: 4.5. Degassamento naturale
    Description: JCR Journal
    Description: reserved
    Keywords: Methane ; Mud volcanoes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...