ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (4)
  • 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques  (2)
  • Debris flows  (2)
  • Springer  (4)
  • American Chemical Society
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2015-2019
  • 2005-2009  (4)
  • 1985-1989
  • 2007  (4)
Collection
  • Articles  (4)
Publisher
Years
  • 2015-2019
  • 2005-2009  (4)
  • 1985-1989
Year
  • 2007  (4)
  • 1
    Publication Date: 2017-04-04
    Description: Measurement of effusion rate is a primary objective for studies that model lava flow and magma system dynamics, as well as for monitoring efforts during on-going eruptions. However, its exact definition remains a source of confusion, and problems occur when comparing volume flux values that are averaged over different time periods or spatial scales, or measured using different approaches. Thus our aims are to: (1) define effusion rate terminology; and (2) assess the various measurement methods and their results. We first distinguish between instantaneous effusion rate, and time-averaged discharge rate. Eruption rate is next defined as the total volume of lava emplaced since the beginning of the eruption divided by the time since the eruption began. The ultimate extension of this is mean output rate, this being the final volume of erupted lava divided by total eruption duration. Whether these values are total values, i.e. the flux feeding all flow units across the entire flow field, or local, i.e. the flux feeding a single active unit within a flow field across which many units are active, also needs to be specified. No approach is without its problems, and all can have large error (up to ∼50%). However, good agreement between diverse approaches shows that reliable estimates can be made if each approach is applied carefully and takes into account the caveats we detail here. There are three important factors to consider and state when measuring, giving or using an effusion rate. First, the time-period over which the value was averaged; second, whether the measurement applies to the entire active flow field, or a single lava flow within that field; and third, the measurement technique and its accompanying assumptions.
    Description: Published
    Description: 1-22
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: JCR Journal
    Description: reserved
    Keywords: Lava ; Instantaneous effusion rate ; Time-averaged discharge rate ; Eruption rate ; Monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The use of a hand-held thermal camera during the 2002–2003 Stromboli effusive eruption proved essential in tracking the development of flow field structures and in measuring related eruption parameters, such as the number of active vents and flow lengths. The steep underlying slope on which the flow field was emplaced resulted in a characteristic flow field morphology. This comprised a proximal shield, where flow stacking and inflation caused piling up of lava on the relatively flat ground of the vent zone, that fed a medial–distal lava flow field. This zone was characterized by the formation of lava tubes and tumuli forming a complex network of tumuli and flows linked by tubes. Most of the flow field was emplaced on extremely steep slopes and this had two effects. It caused flows to slide, as well as flow, and flow fronts to fail frequently, persistent flow front crumbling resulted in the production of an extensive debris field. Channel-fed flows were also characterized by development of excavated debris levees in this zone (Calvari et al. 2005). Collapse of lava flow fronts and inflation of the upper proximal lava shield made volume calculation very difficult. Comparison of the final field volume with that expecta by integrating the lava effusion rates through time suggests a loss of ~70% erupted lava by flow front crumbling and accumulation as debris flows below sea level. Derived relationships between effusion rate, flow length, and number of active vents showed systematic and correlated variations with time where spreading of volume between numerous flows caused an otherwise good correlation between effusion rate, flow length to break down. Observations collected during this eruption are useful in helping to understand lava flow processes on steep slopes, as well as in interpreting old lava–debris sequences found in other steep-sided volcanoes subject to effusive activity.
    Description: Published
    Description: JCR Journal
    Description: reserved
    Keywords: Lava flow field ; Morphology ; Tumuli ; Lava tubes ; Effusion rate ; Rheology ; Stromboli volcano ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1287165 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The catastrophic events that occurred in May 1998 in the area of Sarno (Southern Italy) highlight the destructive potential of debris flows, even when they are of relatively low magnitude. More than 130 people were killed and severe property damage took place when volcaniclastic debris flows triggered by heavy rainfall inundated various towns located in piedmont areas. This work investigates the suitability of LAHARZ, a GIS-assisted method for the automatic delineation of lahar inundation areas, for reproducing the May 1998 flows at Sarno. It was found that recalibration of the empirical relationship employed by LAHARZ is required in order to realistically hind-cast the inundation areas of considered events. The potential for further improvements in prediction outputs for this type of geomorphic setting is discussed, taking into account the observed lower mobility of these small volcaniclastic debris flows as compared to lahars of similar size.
    Description: Published
    Description: JCR Journal
    Description: reserved
    Keywords: Sarno ; LAHARZ ; Debris flows ; Lahars ; Debris flow modelling ; Hazard assessment ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The Campania Region (southern Italy) is characterized by the frequent occurrence of volcaniclastic debris flows that damage property and loss of life (more than 170 deaths between 1996 and 1999). Historical investigation allowed the identification of more than 500 events during the last four centuries; in particular, more than half of these occurred in the last 100 years, causing hundreds of deaths. The aim of this paper is to quantify debris-flow hazard potential in the Campania Region. To this end, we compared several elements such as the thickness distribution of pyroclastic fall deposits from the last 18 ka of the Vesuvius and Phlegrean Fields volcanoes, the slopes of relieves, and the historical record of volcaniclastic debris flows from A.D. 1500 to the present. Results show that flow occurrence is not only a function of the cumulative thickness of past pyroclastic fall deposits but also depends on the age of emplacement. Deposits younger than 10 ka (Holocene eruptions) apparently increase the risk of debris flows, while those older than 10 ka (Late Pleistocene eruptions) seem to play a less prominent role, which is probably due to different climatic conditions, and therefore different rates of erosion of pyroclastic falls between the Holocene and the Late Pleistocene. Based on the above considerations, we compiled a large-scale debris-flow hazard map of the study area in which five main hazard zones are identified: very low, low, moderate, high, and very high.
    Description: Published
    Description: 157-167
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 5.4. TTC - Sistema Informativo Territoriale
    Description: JCR Journal
    Description: reserved
    Keywords: Debris flows ; Explosive eruptions ; Hazard mapping ; Vesuvius volcano ; Erosion ; Campania region ; Southern Italy ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...