ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk  (8)
  • American Geophysical Union  (8)
  • Nature Publishing Group
  • Public Library of Science (PLoS)
  • 2015-2019
  • 2005-2009  (8)
  • 2000-2004
  • 2007  (8)
Collection
Years
  • 2015-2019
  • 2005-2009  (8)
  • 2000-2004
Year
  • 1
    Publication Date: 2021-06-15
    Description: To assess ways in which the products of explosive eruptions interact with human settlements, we performed volcanological and rock magnetic analyses on the deposits of the A.D. 79 eruption at the Pompeii excavations (Italy). During this eruption the Roman town of Pompeii was covered by 2.5 m of fallout pumice and then partially destroyed by pyroclastic density currents (PDCs). Anisotropy of magnetic susceptibility measurements performed on the fine matrix of the deposits allowed the quantification of the variations in flow direction and emplacement mechanisms of the parental PDCs that entered the town. These results, integrated with volcanological field investigations, revealed that the presence of buildings, still protruding through the fallout deposits, strongly affected the distribution and accumulation of the erupted products. All of the PDCs that entered the town, even the most dilute ones, were density stratified currents in which interaction with the urban fabric occurred in the lower part of the current. The degree of interaction varied mainly as a function of obstacle height and density stratification within the current. For examples, the lower part of the EU4pf current left deposits up to 3 m thick and was able to interact with 2- to 4-m-high obstacles. However, a decrease in thickness and grain size of the deposits across the town indicates that even though the upper portion of the current was able to decouple from the lower portion, enabling it to flow over the town, it was not able to fully restore the sediment supply to the lower portion in order to maintain the deposition observed upon entry into the town.
    Description: Published
    Description: B05213
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Pompeii ; facies ; magnetic fabric ; pyroclastic density currents ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-15
    Description: During the A.D. 79 eruption of Vesuvius, Italy, the Roman town of Pompeii was covered by 2.5 m of pyroclastic fall pumice and then partially destroyed by pyroclastic density currents (PDCs). Thermal remanent magnetization measurements performed on the lithic and roof tile fragments embedded in the PDC deposits allow us to quantify the variations in the temperature (Tdep) of the deposits within and around Pompeii. These results reveal that the presence of buildings strongly influenced the deposition temperature of the erupted products. The first two currents, which entered Pompeii at a temperature around 300–360°C, show drastic decreases in the Tdep, with minima of 100–140°C, found in the deposits within the town. We interpret these decreases in temperature as being the result of localized interactions between the PDCs and the city structures, which were only able to affect the lower part of the currents. Down flow of Pompeii, the lowermost portion of the PDCs regained its original physical characteristics, emplacing hot deposits once more. The final, dilute PDCs entered a town that was already partially destroyed by the previous currents. These PDCs left thin ash deposits, which mantled the previous ones. The lack of interaction with the urban fabric is indicated by their uniform temperature everywhere. However, the relatively high temperature of the deposits, between 140 and 300°C, indicates that even these distal, thin ash layers, capped by their accretionary lapilli bed, were associated with PDCs that were still hot enough to cause problems for unsheltered people.
    Description: Published
    Description: B05214
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Pompeii ; temperature ; magnetic fabric ; pyroclastic density currents ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2017-04-04
    Description: One of the most critical practical actions to reduce volcanic risk is the evacuation of people from threatened areas during volcanic unrest. Despite its importance, this decision is usually arrived at subjectively by a few individuals, with little quantitative decision support. Here, we propose a possible strategy to integrate a probabilistic scheme for eruption forecasting and cost-benefit analysis, with an application to the call for an evacuation of one of the highest risk volcanoes: Vesuvius. This approach has the following merits. First, it incorporates a decision-analysis framework, expressed in terms of event probability, accounting for all modes of available hazard knowledge. Secondly, it is a scientific tool, based on quantitative and transparent rules that can be tested. Finally, since the quantitative rules are defined during a period of quiescence, it allows prior scrutiny of any scientific input into the model, so minimizing the external stress on scientists during an actual emergency phase. Whilst we specifically report the case of Vesuvius during the MESIMEX exercise, the approach can be generalized to other types of natural catastrophe.
    Description: Published
    Description: L22310
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: partially_open
    Keywords: evacuation ; probabilistic eruption forecasting ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In this paper we integrate stratigraphic and sedimentological analyses of the volcaniclastic deposits, emplaced during initial opening and later widening of the Valle del Bove depression, with the available stratigraphy of the inner walls, and marine offshore data, structural data, and magnetic surveys to develop a comprehensive model for the opening of the Valle del Bove depression. The resulting model adds new insight into the triggering mechanisms of the flank collapse. Additionally, it suggests a three-stage evolution of the eastern flank of Etna. (1) About 10 Kyr ago, the extinct Ellittico volcano (60 80 (per uniformità anche con Acireale) to 15 Kyr) collapsed, forming the early Valle del Bove. The collapse produced an avalanche deposit that spread ESE and formed the base of the Milo Lahar and the Chiancone deposits. (2) The second stage involved instability-related minor collapses within the valley, causing southward and westward enlargement of the depression and the emplacement of the debris flow sequence that comprises the upper part of the Milo Lahar deposit. (3) Available debris that accumulated within the Valle del Bove from smaller subsequent collapses was deposited at the mouth of the Valle del Bove in the fluvial sequence that forms most of the exposed part of the Chiancone deposit. The emplacement of the whole volcaniclastic sequence occurred between 10 and 2 Kyr ago. Since then, the Valle del Bove has acted as a basin protecting the lower eastern flank of Etna from lava flows or inundations of volcaniclastic debris.
    Description: Published
    Description: 65-75
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: open
    Keywords: Etna ; flank collapse ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We applied a new simulation model, based on multiphase transport laws, to describe the 4D (3D spatial coordinates plus time) dynamics of explosive eruptions. Numerical experiments, carried out on a parallel supercomputer, describe the collapse of the volcanic eruption column and the propagation of pyroclastic density currents (PDCs), for selected medium scale (sub-Plinian) eruptive scenarios at Vesuvius, Italy. Simulations provide crucial insights into the effects of the generation mechanism of the flows - partial collapse vs boiling-over - on their evolution and hazard potential, the unstable dynamics of the fountain, and the influence of Mount Somma on the propagation of PDCs into the circum-Vesuvian area, one of the world's most hazardous volcanic settings. Results also show that it is possible to characterize the volcanic column behavior in terms of percentage of the mass of pyroclasts collapsed to the ground and how this parameter strongly influences the dynamics and hazard of the associated PDCs.
    Description: Published
    Description: L04309
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: explosive eruption ; numerical modeling ; Vesuvius ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Field evidence reveals that the Neolithic village of Atlit-Yam (Israeli coast) was destroyed in an event which also caused the sudden death of tens of inhabitants. Archaeological evidence and numerical simulations support the notion that the village was destroyed, ~8.3 ka B.P., by a tsunami triggered by a known Holocene flank collapse of Mt. Etna volcano (Italy). The filling of a water well within the village confirms inundation by a tsunami wave train and a sediment layer, composed of a clayed-sandy matrix and other detritus including reworked marine sediment, indicates tsunami inundation. This scenario shows that tsunamis generated by sector collapses from coastal volcanoes can seriously threaten near-shore settlements thousands of kilometres distant from the tsunami source.
    Description: Published
    Description: L16317
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: tsunami ; Mt. Etna ; Atlit-Yam ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Numerical simulation of pyroclastic density currents has developed significantly in recent years and is increasingly applied to volcanological research. Results from physical modeling are commonly taken into account in volcanic hazard assessment and in the definition of hazard mitigation strategies. In this work, we modeled pyroclastic density currents in the Phlegrean Fields caldera, where flows propagating along the flat ground could be confined by the old crater rims that separate downtown Naples from the caldera. The different eruptive scenarios (mass eruption rates, magma compositions, and water contents) were based on available knowledge of this volcanic system, and appropriate vent conditions were calculated for each scenario. Simulations were performed along different topographic profiles to evaluate the effects of topographic barriers on flow propagation. Simulations highlighted interesting features associated with the presence of obstacles such as the development of backflows. Complex interaction between outward moving fronts and backflows can affect flow propagation; if backflows reach the vent, they can even interfere with fountain dynamics and induce a more collapsing behavior. Results show that in the case of large events ( 108 kg/s), obstacles affect flow propagation by reducing flow velocity and hence dynamic pressure in distal regions, but they cannot stop the advancement of flows. Deadly conditions (in terms of temperature and ash concentration) characterize the entire region invaded by pyroclastic flows. In the case of small events (2.5 107 kg/s), flows are confined by distal topographic barriers which provide valuable protection to the region beyond.
    Description: Published
    Description: Q11003
    Description: open
    Keywords: Phlegrean Fields ; multiphase flow ; pyroclastic flows ; dynamic pressure ; volcanic hazard ; caldera ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 6050852 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-09
    Description: In January 2002, Nyiragongo volcano erupted 14–34 × 106 m3 of lava from fractures on its southern flanks. The nearby city of Goma was inundated by two lava flows, which caused substantial socioeconomic disruption and forced the mass exodus of the population, leaving nearly 120,000 people homeless. Field observations showed marked differences between the lava erupted from the northern portion of the fracture system and that later erupted from the southern part. These observations are confirmed by new 238U and 232Th series radioactive disequilibria data, which show the presence of three different phases during the eruption. The lavas first erupted (T1) were probably supplied by a residual magma batch from the lava lake activity during 1994–1995. These lavas were followed by a fresh batch erupted from fissure vents as well as later (May–June 2002) from the central crater (T2). Both lava batches reached the surface via the volcano's central plumbing system, even though a separate flank reservoir may also have been involved in addition to the main reservoir. The final phase (T3) is related to an independent magmatic reservoir located much closer (or even beneath) the city of Goma. Data from the January 2002 eruption, and for similar activity in January 1977, suggest that the eruptive style of the volcano is likely to change in the future, trending toward more common occurrence of flank eruptions. If so, this would pose a significant escalation of volcanic hazards facing Goma and environs, thus requiring the implementation of different volcano-monitoring strategies to better anticipate where and when future eruptions might take place.
    Description: Published
    Description: B09202
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: Nyiragongo ; forecasting ; volcanic hazard ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...