ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Serpentinite  (2)
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
  • American Geophysical Union  (3)
  • AAAS
  • American Physical Society
  • Nature Publishing Group
  • Wiley
  • 2005-2009  (3)
  • 1950-1954
  • 2006  (3)
  • 1
    Publication Date: 2017-04-04
    Description: Sulphur speciation in volcanic gases acts as a major redox buffer, and H2S/SO2 ratios represent a valuable indicator of magmatic conditions and interactions between magmatic and hydrothermal fluids. However, measurement of H2S/SO2 even by direct sampling techniques, is not straightforward. We report here on application of a small ultraviolet spectrometer for real-time field measurement of H2S and SO2 concentrations, using open-path and extractive configurations. The device was tested at fumaroles on Solfatara and Vulcano, Italy, in November 2002. H2S concentrations of up to 220ppmm(400 ppmv) were measured directly above the Bocca Grande fumarole at Solfatara, and H2S/SO2 molar ratios of 2 and 2.4, respectively, were determined for the ‘F11’ and ‘F0’ fumaroles at Vulcano. In comparison with other optical techniques capable of multiple volcanic gas measurements, such as laser and FTIR spectroscopy, this approach is considerably simpler and cheaper, with the potential for autonomous, sustained hightime resolution operation.
    Description: Published
    Description: 1652
    Description: partially_open
    Keywords: Remote monitoring ; Plume chemistry ; sulphur species ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 124998 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 7 (2006): Q06016, doi:10.1029/2005GC001109.
    Description: Near-bottom investigations of the cross section of the Atlantis Massif exposed in a major tectonic escarpment provide an unprecedented view of the internal structure of the footwall domain of this oceanic core complex. Integrated direct observations, sampling, photogeology, and imaging define a mylonitic, low-angle detachment shear zone (DSZ) along the crest of the massif. The shear zone may project beneath the nearby, corrugated upper surface of the massif. The DSZ and related structures are inferred to be responsible for the unroofing of upper mantle peridotites and lower crustal gabbroic rocks by extreme, localized tectonic extension during seafloor spreading over the past 2 m.y. The DSZ is characterized by strongly foliated to mylonitic serpentinites and talc-amphibole schists. It is about 100 m thick and can be traced continuously for at least 3 km in the tectonic transport direction. The DSZ foliation arches over the top of the massif in a convex-upward trajectory mimicking the morphology of the top of the massif. Kinematic indicators show consistent top-to-east (toward the MAR axis) tectonic transport directions. Foliated DSZ rocks grade structurally downward into more massive basement rocks that lack a pervasive outcrop-scale foliation. The DSZ and underlying basement rocks are cut by discrete, anastomosing, normal-slip, shear zones. Widely spaced, steeply dipping, normal faults cut all the older structures and localize serpentinization-driven hydrothermal outflow at the Lost City Hydrothermal Field. A thin (few meters) sequence of sedimentary breccias grading upward into pelagic limestones directly overlies the DSZ and may record a history of progressive rotation of the shear zone from a moderately dipping attitude into its present, gently dipping orientation during lateral spreading and uplift.
    Description: This work was supported by NSF grants OCE-9712430 and 0136816 to Karson and Kelley and Swiss SNF grant 2100-068055 to Früh-Green.
    Keywords: Detachment faults ; Faults ; Oceanic core complex ; Seafloor spreading ; Serpentinite ; Shear zones
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 14440784 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q09F26, doi:10.1029/2004GC000744.
    Description: We present first results of a petrographic study of hydrothermally altered peridotites drilled during Ocean Drilling Program (ODP) Leg 209 in the 15°20′N fracture Zone area on the Mid-Atlantic Ridge (MAR). We find that serpentinization is extensive at all drill sites. Where serpentinization is incomplete, phase relations indicate two major reaction pathways. One is reaction of pyroxene to talc and tremolite, and the other is reaction of olivine to serpentine, magnetite, and brucite. We interpret these reactions in the light of recent peridotite-seawater reaction experiments and compositions of fluids venting from peridotite massifs at a range of temperatures. We suggest that the replacement of pyroxene by talc and tremolite takes place at temperatures 〉350°–400°C, where olivine is stable. The breakdown of olivine to serpentine, magnetite, and brucite is favored at temperatures below 250°C, where olivine reacts faster then pyroxene. High-temperature hydrothermal fluids venting at the Logatchev and Rainbow sites are consistent with rapid reaction of pyroxene and little or no reaction of olivine. Moderate-temperature fluids venting at the Lost City site are consistent with ongoing reaction of olivine to serpentine and brucite. Many completely serpentinized peridotites lack brucite and talc because once the more rapidly reacting phase is exhausted, interaction with the residual phase will change fluid pH and silica activity such that brucite or talc react to serpentine. At two sites we see strong evidence for continued fluid flow and fluid-rock interaction after serpentinization was complete. At Site 1268, serpentinites underwent massive replacement by talc under static conditions. This reaction requires either removal of Mg from or addition of Si to the system. We propose that the talc-altered rocks are Si-metasomatized and that the source of Si is likely gabbro-seawater reaction or breakdown of pyroxene deeper in the basement. The basement at Site 1268 is heavily veined, with talc and talc-oxide-sulfide veins being the most common vein types. It appears that the systems evolved from reducing (oxygen fugacity buffered by magnetite-pyrrhotite-pyrite and lower) to oxidizing (dominantly hematite). We propose that this transition is indicative of high fluid flux under retrograde conditions and that the abundance of hematite may relate to the Ca-depleted nature of the basement that prevents near-quantitative removal of seawater sulfate by anhydrite precipitation. At site 1272 we find abundant iowaite partly replacing brucite. While this is the first report of iowaite from a mid-ocean ridge setting, its presence indicates, again, fairly oxidizing conditions. Our preliminary results indicate that peridotite-seawater and serpentinite-seawater interactions can take place under a wider range of temperature and redox conditions than previously appreciated.
    Description: This research used data and/or samples supplied by the Ocean Drilling Program (ODP). ODP is sponsored by the U.S. National Science Foundation (NSF) and participating countries under management of Joint Oceanographic Institutions (JOI), Inc.
    Keywords: Hydrothermal system ; Ocean Drilling Program ; Oceanic crust ; Serpentinite ; Water-rock interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 834562 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...