ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mid-Atlantic Ridge  (2)
  • 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
  • American Geophysical Union  (3)
  • Annual Reviews
  • 2005-2009  (3)
  • 1990-1994
  • 1985-1989
  • 1980-1984
  • 1955-1959
  • 2006  (3)
  • 1
    Publication Date: 2017-04-04
    Description: Sulphur speciation in volcanic gases acts as a major redox buffer, and H2S/SO2 ratios represent a valuable indicator of magmatic conditions and interactions between magmatic and hydrothermal fluids. However, measurement of H2S/SO2 even by direct sampling techniques, is not straightforward. We report here on application of a small ultraviolet spectrometer for real-time field measurement of H2S and SO2 concentrations, using open-path and extractive configurations. The device was tested at fumaroles on Solfatara and Vulcano, Italy, in November 2002. H2S concentrations of up to 220ppmm(400 ppmv) were measured directly above the Bocca Grande fumarole at Solfatara, and H2S/SO2 molar ratios of 2 and 2.4, respectively, were determined for the ‘F11’ and ‘F0’ fumaroles at Vulcano. In comparison with other optical techniques capable of multiple volcanic gas measurements, such as laser and FTIR spectroscopy, this approach is considerably simpler and cheaper, with the potential for autonomous, sustained hightime resolution operation.
    Description: Published
    Description: 1652
    Description: partially_open
    Keywords: Remote monitoring ; Plume chemistry ; sulphur species ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 124998 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 7 (2006): Q07011, doi:10.1029/2005GC001178.
    Description: We report 157 closely spaced heat flow measurements along the Lucky Strike segment in the Mid-Atlantic Ridge (MAR) for ages of the ocean floor between 0 and 11 Ma. On the eastern flank of a volcanic plateau delimiting off-axis and axial domains, the magnitude of heat flow either conforms to the predictions of conductive lithospheric cooling models or is affected by localized anomalies. On the western flank it is uniformly lower than conductive model predictions. We interpret the observed patterns of heat flow by lateral fluid circulation in a highly permeable oceanic basement. The circulation geometries are probably 3-D rather than 2-D and are determined by the configuration of the basement/sediment interface and the distribution of effectively unsedimented seamounts where water recharge can occur. Two major hydrothermal circulation systems can possibly explain the observations off-axis: the first would involve lateral pore water flow from west to east, and the second would have a reverse flow direction. The wavelengths and magnitudes of heat flow anomalies require Darcy velocities of the order of 1–4 m/year, which are similar to those proposed for fast-accreted crust elsewhere. However, a large proportion of this MAR domain remains unaffected by hydrothermal cooling, which is a relatively unusual observation but confirms the validity of conductive thermal models for seafloor ages between 5 and 10 Ma. Closer to the ridge axis (〈5 Myr old crust), water circulation affects the overall axial domain, as larger proportions of basement are exposed. As much as 80–90% of the heat flux from the axial domain may be transferred to the Lucky Strike vent field, in agreement with the estimated discharge.
    Keywords: Heat flow ; Mid-Atlantic Ridge
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 9995846 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 6 (2005): Q09008, doi:10.1029/2005GC000954.
    Description: We reconstruct the volcanic and tectonic evolution over the last 250,000 years of the median valley floor in the spreading segment of the Mid-Atlantic Ridge centered at 25°N. In the center of the segment, multibeam bathymetry and deep-towed side-scan images show a large area of smooth-textured lava flows more like those of the East Pacific Rise than those of the Mid-Atlantic Ridge. Hummocky flows more typical of the Mid-Atlantic Ridge are found toward the southern end of the segment. The presence of the abundant smooth-textured flows allows us to interpret the volcanic and tectonic relationships in the segment. We construct a geological map using (1) multibeam bathymetry to identify the key volcanic structures and fault scarps and (2) high-resolution TOBI side-scan sonar images to interpret age relationships between features on the basis of overall sediment cover as shown by backscatter brightness. Bottom photographs across key features on the median valley floor yield detailed information on stratigraphic relationships between volcanic features and faults and allow us to calibrate backscatter brightness in terms of sediment cover and hence of age. In this way we derive a history of volcanic activity and deformation in a detailed survey area at the segment center, with the most recent flows erupted about 5000 years ago, and the youngest smooth flows about 10,000 years ago, separated by an episode of faulting. Using bathymetry and side-scan surveys, we extrapolate this to the whole of the median valley floor. The volcanic activity giving rise to the smooth flows has been continuous for about a quarter of a million years at the segment center. Over the same period, hummocky flows have been continuously erupted at the southern end of the segment. Electron probe analyses of dredged basalt glasses show that there is a systematic variation in composition with position in the segment. Basalts from the segment center are all more evolved than those at the southern end of the segment. There is, however, no relation of chemistry with lava type. The basalts from the segment center have very nearly the same composition whether they come from hummocky flows or smooth flows. The boundary between the smooth flows and hummocky flows has fluctuated with time and migrated rapidly northward over the last few thousand years, so that shortly the eruption of smooth flows will probably have ceased. The survey shows that flows that are smooth on side-scan images are not necessarily sheet flows. In this study they uniformly show pillow morphology. We conclude that smooth flows were probably erupted at faster eruption rates than hummocky flows.
    Description: This project was funded by an NERC grant that enabled Charles Darwin cruise 65 and by NSF grant OCE-9811575.
    Keywords: Mid-Atlantic Ridge ; Volcanism ; Faulting ; Tectonic history ; Smooth-textured flows ; Hummocky flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 2365648 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...