ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mid-Atlantic Ridge  (2)
  • Submarine  (2)
  • 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
  • American Geophysical Union  (5)
  • Annual Reviews
  • 2005-2009  (5)
  • 1990-1994
  • 1985-1989
  • 1980-1984
  • 1955-1959
  • 2006  (5)
  • 1
    Publication Date: 2017-04-04
    Description: Sulphur speciation in volcanic gases acts as a major redox buffer, and H2S/SO2 ratios represent a valuable indicator of magmatic conditions and interactions between magmatic and hydrothermal fluids. However, measurement of H2S/SO2 even by direct sampling techniques, is not straightforward. We report here on application of a small ultraviolet spectrometer for real-time field measurement of H2S and SO2 concentrations, using open-path and extractive configurations. The device was tested at fumaroles on Solfatara and Vulcano, Italy, in November 2002. H2S concentrations of up to 220ppmm(400 ppmv) were measured directly above the Bocca Grande fumarole at Solfatara, and H2S/SO2 molar ratios of 2 and 2.4, respectively, were determined for the ‘F11’ and ‘F0’ fumaroles at Vulcano. In comparison with other optical techniques capable of multiple volcanic gas measurements, such as laser and FTIR spectroscopy, this approach is considerably simpler and cheaper, with the potential for autonomous, sustained hightime resolution operation.
    Description: Published
    Description: 1652
    Description: partially_open
    Keywords: Remote monitoring ; Plume chemistry ; sulphur species ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 124998 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 6 (2005): Q08005, doi:10.1029/2005GC000912.
    Description: Submarine lava flows are the building blocks of young oceanic crust. Lava erupted at the ridge axis is transported across the ridge crest in a manner dictated by the rheology of the lava, the characteristics of the eruption, and the topography it encounters. The resulting lava flows can vary dramatically in form and consequently in their impact on the physical characteristics of the seafloor and the architecture of the upper 50–500 m of the oceanic crust. We have mapped and measured numerous submarine channelized lava flows at the East Pacific Rise (EPR) crest 9°–10°N that reflect the high-effusion-rate and high-flow-velocity end-member of lava eruption and transport at mid-ocean ridges. Channel systems composed of identifiable segments 50–1000 m in length extend up to 3 km from the axial summit trough (AST) and have widths of 10–50 m and depths of 2–3 m. Samples collected within the channels are N-MORB with Mg# indicating eruption from the AST. We produce detailed maps of lava surface morphology across the channel surface from mosaics of digital images that show lineated or flat sheets at the channel center bounded by brecciated lava at the channel margins. Modeled velocity profiles across the channel surface allow us to determine flux through the channels from 0.4 to 4.7 × 103 m3/s, and modeled shear rates help explain the surface morphology variation. We suggest that channelized lava flows are a primary mechanism by which lava accumulates in the off-axis region (1–3 km) and produces the layer 2A thickening that is observed at fast and superfast spreading ridges. In addition, the rapid, high-volume-flux eruptions necessary to produce channelized flows may act as an indicator of the local magma budget along the EPR. We find that high concentrations of channelized lava flows correlate with local, across-axis ridge morphology indicative of an elevated magma budget. Additionally, in locations where channelized flows are located dominantly to the east or west of the AST, the ridge crest is asymmetric, and layer 2A appears to thicken over a greater distance from the AST toward the side of the ridge crest where the channels are located.
    Description: This work was supported by NSF grant OCE-9819261 (to H.S., M.A.T., and D.J.F.) as well as the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Penzance Endowed Discretionary Fund.
    Keywords: Channels ; Lava ; Lava morphology ; Ridge-crest ; Submarine
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 4255619 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 7 (2006): Q07011, doi:10.1029/2005GC001178.
    Description: We report 157 closely spaced heat flow measurements along the Lucky Strike segment in the Mid-Atlantic Ridge (MAR) for ages of the ocean floor between 0 and 11 Ma. On the eastern flank of a volcanic plateau delimiting off-axis and axial domains, the magnitude of heat flow either conforms to the predictions of conductive lithospheric cooling models or is affected by localized anomalies. On the western flank it is uniformly lower than conductive model predictions. We interpret the observed patterns of heat flow by lateral fluid circulation in a highly permeable oceanic basement. The circulation geometries are probably 3-D rather than 2-D and are determined by the configuration of the basement/sediment interface and the distribution of effectively unsedimented seamounts where water recharge can occur. Two major hydrothermal circulation systems can possibly explain the observations off-axis: the first would involve lateral pore water flow from west to east, and the second would have a reverse flow direction. The wavelengths and magnitudes of heat flow anomalies require Darcy velocities of the order of 1–4 m/year, which are similar to those proposed for fast-accreted crust elsewhere. However, a large proportion of this MAR domain remains unaffected by hydrothermal cooling, which is a relatively unusual observation but confirms the validity of conductive thermal models for seafloor ages between 5 and 10 Ma. Closer to the ridge axis (〈5 Myr old crust), water circulation affects the overall axial domain, as larger proportions of basement are exposed. As much as 80–90% of the heat flux from the axial domain may be transferred to the Lucky Strike vent field, in agreement with the estimated discharge.
    Keywords: Heat flow ; Mid-Atlantic Ridge
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 9995846 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 6 (2005): Q09008, doi:10.1029/2005GC000954.
    Description: We reconstruct the volcanic and tectonic evolution over the last 250,000 years of the median valley floor in the spreading segment of the Mid-Atlantic Ridge centered at 25°N. In the center of the segment, multibeam bathymetry and deep-towed side-scan images show a large area of smooth-textured lava flows more like those of the East Pacific Rise than those of the Mid-Atlantic Ridge. Hummocky flows more typical of the Mid-Atlantic Ridge are found toward the southern end of the segment. The presence of the abundant smooth-textured flows allows us to interpret the volcanic and tectonic relationships in the segment. We construct a geological map using (1) multibeam bathymetry to identify the key volcanic structures and fault scarps and (2) high-resolution TOBI side-scan sonar images to interpret age relationships between features on the basis of overall sediment cover as shown by backscatter brightness. Bottom photographs across key features on the median valley floor yield detailed information on stratigraphic relationships between volcanic features and faults and allow us to calibrate backscatter brightness in terms of sediment cover and hence of age. In this way we derive a history of volcanic activity and deformation in a detailed survey area at the segment center, with the most recent flows erupted about 5000 years ago, and the youngest smooth flows about 10,000 years ago, separated by an episode of faulting. Using bathymetry and side-scan surveys, we extrapolate this to the whole of the median valley floor. The volcanic activity giving rise to the smooth flows has been continuous for about a quarter of a million years at the segment center. Over the same period, hummocky flows have been continuously erupted at the southern end of the segment. Electron probe analyses of dredged basalt glasses show that there is a systematic variation in composition with position in the segment. Basalts from the segment center are all more evolved than those at the southern end of the segment. There is, however, no relation of chemistry with lava type. The basalts from the segment center have very nearly the same composition whether they come from hummocky flows or smooth flows. The boundary between the smooth flows and hummocky flows has fluctuated with time and migrated rapidly northward over the last few thousand years, so that shortly the eruption of smooth flows will probably have ceased. The survey shows that flows that are smooth on side-scan images are not necessarily sheet flows. In this study they uniformly show pillow morphology. We conclude that smooth flows were probably erupted at faster eruption rates than hummocky flows.
    Description: This project was funded by an NERC grant that enabled Charles Darwin cruise 65 and by NSF grant OCE-9811575.
    Keywords: Mid-Atlantic Ridge ; Volcanism ; Faulting ; Tectonic history ; Smooth-textured flows ; Hummocky flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 2365648 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q06007, doi:10.1029/2004GC000702.
    Description: We deployed five ocean bottom hydrophones (OBHs) for a 1-year seismic monitoring study of Vailulu'u Seamount, the youngest and easternmost volcano in the Samoan Archipelago. Four instruments were placed on the summit crater rim at 600–700 m water depth, and one was placed inside the crater at 1000 m water depth. An analysis of the first 45 days of records shows a very large number of seismic events, 211 of them local. These events define a steady background activity of about four seismic events per day, increasing to about 10 events per day during a week of heightened seismic activity, which peaked at 40 events during 1 day. We identified 107 earthquakes, whose arrivals could be picked on all five stations and that are likely located within the seamount, based on their similar waveforms. Two linear trends are defined by 21 of these events. These are extremely well correlated and located, first downward then upward on a steeply inclined plane that is close to the axial plane of the southeast rift as it emerges from the main summit of Vailulu'u. These events resemble volcanotectonic earthquakes from subaerial volcanoes in displaying very coherent seismic waveforms and by showing systematic, narrowly defined progressions in hypocenter locations. We propose that these events reflect brittle rock failure due to magma redistribution in or near a central magma reservoir.
    Description: The bulk of this work was funded by NSF-OCE, in grants to HS and SRH and the OBSIP facility at Scripps.
    Keywords: Samoa ; Vailulu'u ; Volcano ; Seismic monitoring ; Volcanic activity ; Submarine
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 3744815 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...