ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Man/System Technology and Life Support  (429)
  • Astrophysics  (196)
  • Spacecraft Design, Testing and Performance  (175)
  • 2005-2009  (800)
  • 2005  (800)
  • 1
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: Gravitational and space biology bulletin : publication of the American Society for Gravitational and Space Biology (ISSN 1089-988X); Volume 18; 2; 93-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: BACKGROUND: Astronaut spacewalk training can result in a variety of symptom complaints and possible injuries. This study quantified and characterized signs, symptoms, and injuries resulting from extravehicular activity spacesuit training at NASA's Neutral Buoyancy Laboratory, Johnson Space Center, Houston, TX, immersion facility. METHODS: We identified the frequency and incidence of symptoms by location, mechanisms of injury, and effective countermeasures. Recommendations were made to improve injury prevention, astronaut training, test preparation, and training hardware. At the end of each test, a questionnaire was completed documenting signs and symptoms, mechanisms of injury, and countermeasures. RESULTS: Of the 770 tests, there were 190 in which suit symptoms were reported (24.6%). There were a total of 352 reported suit symptom comments. Of those symptoms, 166 were in the hands (47.16%), 73 were in the shoulders (20.7%), and 40 were in the feet (11.4%). Others ranged from 6.0% to 0.28%, respectively, from the legs, arms, neck, trunk, groin, and head. Causal mechanisms for the hands included moisture and hard glove contacts resulting in fingernail injuries; in the shoulders, hard contact with suit components and strain mechanisms; and in the feet, hard boot contact. The severity of symptoms was highest in the shoulders, hands, and feet. CONCLUSIONS: Most signs and symptoms were mild, self-limited, of brief duration, and were well controlled by available countermeasures. Some represented the potential for significant injury with consequences affecting astronaut health and performance. Correction of extravehicular activity training-related injuries requires a multidisciplinary approach to improve prevention, medical intervention, astronaut training, test planning, and suit engineering.
    Keywords: Man/System Technology and Life Support
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 76; 5; 469-74
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Operation of aerobic biological reactors in space is controlled by a number of challenging constraints, mainly stemming from mass transfer limitations and phase separation. Immobilized-cell packed-bed bioreactors, specially designed to function in the absence of gravity, offer a viable solution for the treatment of gray water generated in space stations and spacecrafts. A novel gravity-independent wastewater biological processor, capable of carbon oxidation and nitrification of high-strength aqueous waste streams, is presented. The system, consisting of a fully saturated pressurized packed bed and a membrane oxygenation module attached to an external recirculation loop, operated continuously for over one year. The system attained high carbon oxidation efficiencies often exceeding 90% and ammonia oxidation reaching approximately 60%. The oxygen supply module relies on hydrophobic, nonporous, oxygen selective membranes, in a shell and tube configuration, for transferring oxygen to the packed bed, while keeping the gaseous and liquid phases separated. This reactor configuration and operating mode render the system gravity-independent and suitable for space applications.
    Keywords: Man/System Technology and Life Support
    Type: Water environment research : a research publication of the Water Environment Federation (ISSN 1061-4303); Volume 77; 2; 138-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: This paper describes a technique for viewing and interacting with 2-D medical data in three dimensions. The approach requires little pre-processing, runs on personal computers, and has a wide range of application. Implementation details are discussed, examples are presented, and results are summarized.
    Keywords: Man/System Technology and Life Support
    Type: Studies in health technology and informatics (ISSN 0926-9630); Volume 111; 321-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-29
    Description: In this paper, we will present a new methodology that measures the "worth" of deploying an additional testing instrument (sensor) in terms of the amount of information that can be retrieved from such measurement. This quantity is obtained using a probabilistic model of RLV's that has been partially developed in the NASA Ames Research Center. A number of correlated attributes are identified and used to obtain the worth of deploying a sensor in a given test point from an information-theoretic viewpoint. Once the information-theoretic worth of sensors is formulated and incorporated into our general model for IHM performance, the problem can be formulated as a constrained optimization problem where reliability and operational safety of the system as a whole is considered. Although this research is conducted specifically for RLV's, the proposed methodology in its generic form can be easily extended to other domains of systems health monitoring.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-11
    Description: A pinpoint landing capability will be a critical component for many planned NASA missions to Mars and beyond. Implicit in the requirement is the ability to accurately localize the spacecraft with respect to the terrain during descent. In this paper, we present evidence that a vision-based solution using craters as landmarks is both practical and will meet the requirements of next generation missions. Our emphasis in this paper is on the feasibility of such a system in terms of (a) localization accuracy and (b) applicability to Martian terrain. We show that accuracy of well under 100 meters can be expected under suitable conditions. We also present a sensitivity analysis that makes an explicit connection between input data and robustness of our pose estimate. In addition, we present an analysis of the susceptibility of our technique to inherently ambiguous configurations of craters. We show that probability of failure due to such ambiguity is becoming increasingly small.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Photogrammetric Engineering and Remote Sensing (ISSN 0099-1112); Volume 71; No. 10; 1197-1204
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-11
    Description: HEALPix the Hierarchical Equal Area isoLatitude Pixelization is a versatile structure for the pixelization of data on the sphere. An associated library of computational algorithms and visualization software supports fast scientific applications executable directly on discretized spherical maps generated from very large volumes of astronomical data. Originally developed to address the data processing and analysis needs of the present generation of cosmic microwave background experiments (e.g., BOOMERANG, WMAP), HEALPix can be expanded to meet many of the profound challenges that will arise in confrontation with the observational output of future missions and experiments, including, e.g., Planck, Herschel, SAFIR, and the Beyond Einstein inflation probe. In this paper we consider the requirements and implementation constraints on a framework that simultaneously enables an efficient discretization with associated hierarchical indexation and fast analysis/synthesis of functions defined on the sphere. We demonstrate how these are explicitly satisfied by HEALPix.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; Volume 622; Issue 2; 759-771
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-11
    Description: We report interferometric observations of the semiregular variable star RS CrB, a red giant with strong silicate emission features. The data were among the first long-baseline mid-infrared stellar fringes obtained between the Keck telescopes, using parts of the new nulling beam combiner.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; Volume 634; L169-L172.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-11
    Description: We have analyzed the high-resolution ultraviolet (UV) emission spectrum of molecular deuterium hydride (HD) excited by electron impact at 100 eV under optically thin, single-scattering experimental conditions. The high-resolution spectrum (FWHM=160 mA) spans the wavelength range from 900 to 1650 A and contains the two Rydberg series of HD: (sup 1)Sigma(sub u)(sup +)1s(sigma), np(si n=2, 3, 4) --〉 X(sup 1)Sigma(sub g)(sup +) and (sup 1)Pi(sub u)(sup +)1s(sigma), np(pi)(C,D,D',D'', n=2, 3, 4, 5) --〉X(sup 1)Sigma(sub g)(sup +). A model spectrum of HD, based on newly calculated tra rovibrational coupling for the strongest band systems, B (sup 1)Sigma(sub u)(sup +)-X(sup 1)Sigma(sub g)(sup +),B'(sup 1)Sigma(sub g)(sup +)-X(sup 1)Sigma(sub g)(sup +),C(sup 1)Pi(sub u)-X(sup 1)Sigm sections for direct excitation at 100 eV of the B (sup 1)Sigma(sub u)(sup +), B' (sup 1)Sigma(sub u)(sup +), C(sup 1)Pi(sub u), and D(sup 1)Pi(sub u) states were derived from a model analysis of the state. The absolute cross section values for excitation to the B (sup 1)Sigma(sub u)(sup +), B' (sup 1)Sigma(sub u)(sup +), C(sup 1)Pi(sub u), and D(sup 1)Pi(sub u) states were found to be (2.57+/-0. and (0.17+/-0.04)x10(exp -17) sq cm, respectively. We have also determined the dissociative excitation cross sections at 100 eV for the emission of Ly(alpha) at 1216 A and Ly(Beta) at 1025 A lines, which are (7.98+/-1.12)x10(exp -18) and (0.40+/-0.10)x10(exp -18) sq cm, respectively. The summed excitation function of the closely spaced pair of lines, H Ly(alpha) and D Ly(Beta), resulting from excitation of HD, has been measured from the threshold to 800 eV and is analytically modeled with a semiempirical relation. The model cross sections are in good agreement with the corrected Ly(alpha) cross sections of Mohlmann et al. up to 2 keV. Based on measurements of H, D (2s) production cross section values by Mohlmann et al., the H, D (n=2) cross section is estimated to be 1.6 x 10(exp -17) sq cm at 100 eV.
    Keywords: Astrophysics
    Type: The Astrophysical Journal Supplement Series; Volume 159; 314-330
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-11
    Description: In a recent paper, Kuchner, Crepp, and Ge describe new image-plane coronagraph mask designs that reject to eighth order the leakage of starlight caused by image motion at the mask, resulting in a substantial relaxation of image centroiding requirements compared to previous fourth-order and second-order masks. They also suggest that the new masks are effective at rejecting leakage caused by low-order aberrations (e.g., focus, coma, and astigmatism). In this paper, we derive the sensitivity of eighth-order masks to aberrations of any order and provide simulations of coronagraph behavior in the presence of optical aberrations.We find that the masks leak light as the fourth power of focus, astigmatism, coma, and trefoil. This has tremendous performance advantages for the Terrestrial Planet Finder Coronagraph.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; Volume 628; 474-477
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-11
    Description: Of the three major groups of comets approaching the Sun to between 6 and 12 solar radii and discovered with the coronagraphs on board SOHO, we investigate the Marsden and Kracht groups.We call these comets ''sunskirters'' to distinguish them from the Kreutz system sungrazers. Our objective is to understand the origin, history, and orbital evolution of the two groups.
    Keywords: Astrophysics
    Type: The Astrophysical Journal Supplement Series; Volume 161; 551-586
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-11
    Description: The Stellar Planet Survey is an ongoing astrometric search for giant planets and brown dwarfs around a sample of ~30 M dwarfs. We have discovered several low-mass companions by measuring the motion of our target stars relative to their reference frames. The lowest mass discovery thus far is GJ 802b, a companion to the M5 dwarf GJ 802A. The orbital period is 3.14 +/-0:03 yr, the system mass is 0:214 +/- 0:045 M(circled dot operator), and the semimajor axis is 1:28+/- 0:10 AU or 81 + 6 mas. Imaging observations indicate that GJ 802b is likely to be a brow with the astrometrically determined mass 0:058 +/- 0:021 M(circled dot operator) (1 (sigma) limits). The remaining uncertainty in the orbit is the eccentricity that is now loosely constrained. We dis the system age limits the mass and the prospects of further narrowing the mass range when e is more precisely determined.
    Keywords: Astrophysics
    Type: The Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-28
    Description: Thermal protection systems (TPS) insulate planetary probes and Earth re-entry vehicles from the aerothermal heating experienced during hypersonic deceleration to the planet s surface. The systems are typically designed with some additional capability to compensate for both variations in the TPS material and for uncertainties in the heating environment. This additional capability, or robustness, also provides a surge capability for operating under abnormal severe conditions for a short period of time, and for unexpected events, such as meteoroid impact damage, that would detract from the nominal performance. Strategies and approaches to developing robust designs must also minimize mass because an extra kilogram of TPS displaces one kilogram of payload. Because aircraft structures must be optimized for minimum mass, reliability-based design approaches for mechanical components exist that minimize mass. Adapting these existing approaches to TPS component design takes advantage of the extensive work, knowledge, and experience from nearly fifty years of reliability-based design of mechanical components. A Non-Dimensional Load Interference (NDLI) method for calculating the thermal reliability of TPS components is presented in this lecture and applied to several examples. A sensitivity analysis from an existing numerical simulation of a carbon phenolic TPS provides insight into the effects of the various design parameters, and is used to demonstrate how sensitivity analysis may be used with NDLI to develop reliability-based designs of TPS components.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Critical Technologies for Hypersonic Vehicle Development; 13-1 - 13-28; RTO-EN-AVT-116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-28
    Description: Optimal cognition during complex and sustained operations is a critical component for success in current and future military operations. "Cognitive Performance, Judgment, and Decision-making" (CPJD) is a newly organized U.S. Army Medical Research and Materiel Command research program focused on sustaining operational effectiveness of Future Force Warriors by developing paradigms through which militarily-relevant, higher-order cognitive performance, judgment, and decision-making can be assessed and sustained in individuals, small teams, and leaders of network-centric fighting units. CPJD evaluates the impact of stressors intrinsic to military operational environments (e.g., sleep deprivation, workload, fatigue, temperature extremes, altitude, environmental/physiological disruption) on military performance, evaluates noninvasive automated methods for monitoring and predicting cognitive performance, and investigates pharmaceutical strategies (e.g., stimulant countermeasures, hypnotics) to mitigate performance decrements. This manuscript describes the CPJD program, discusses the metrics utilized to relate militarily applied research findings to academic research, and discusses how the simulated combat capabilities of a synthetic battle laboratory may facilitate future cognitive performance research.
    Keywords: Man/System Technology and Life Support
    Type: Strategies to Maintain Combat Readiness during Extended Deployments: A Human Systems Approach; 14-1 - 14-15; RTO-MP-HFM-124
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-28
    Description: An important element of the Space Shuttle Orbiter safety improvement plan is the improved understanding of its aerodynamic performance so as to minimize the "black zones" in the contingency abort trajectories [1]. These zones are regions in the launch trajectory where it is predicted that, due to vehicle limitations, the Orbiter will be unable to return to the launch site in a two or three engine-out scenario. Reduction of these zones requires accurate knowledge of the aerodynamic forces and moments to better assess the structural capability of the vehicle. An interesting aspect of the contingency abort trajectories is that the Orbiter would need to achieve angles of attack as high as 60deg. Such steep attitudes are much higher than those for a nominal flight trajectory. The Orbiter is currently flight certified only up to an angle of attack of 44deg at high Mach numbers and has never flown at angles of attack larger than this limit. Contingency abort trajectories are generated using the data in the Space Shuttle Operational Aerodynamic Data Book (OADB) [2]. The OADB, a detailed document of the aerodynamic environment of the current Orbiter, is primarily based on wind-tunnel measurements (over a wide Mach number and angle-of-attack range) extrapolated to flight conditions using available theories and correlations, and updated with flight data where available. For nominal flight conditions, i.e., angles of attack of less than 45deg, the fidelity of the OADB is excellent due to the availability of flight data. However, at the off-nominal conditions, such as would be encountered on contingency abort trajectories, the fidelity of the OADB is less certain. The primary aims of a recent collaborative effort (completed in the year 2001) between NASA and Boeing were to determine: 1) accurate distributions of pressure and shear loads on the Orbiter at select points in the contingency abort trajectory space; and 2) integrated aerodynamic forces and moments for the entire vehicle and the control surfaces (body flap, speed brake, and elevons). The latter served the useful purpose of verification of the aerodynamic characteristics that went into the generation of the abort trajectories.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Critical Technologies for Hypersonic Vehicle Development; 11-1 - DP-17; RTO-EN-AVT-116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-12
    Description: The future human lunar missions are expected to undertake far more ambitious activities than those of the Apollo program with the possibility of some missions lasting up to several months. Such extended missions require the use of large-size lunar outposts to accommodate living quarters for the astronauts as well as indoor laboratory facilities. The greatest obstacle to the prolonged human presence on the Moon is the threat posed by the harsh lunar environment that is plagued with multi-source high-energy radiation exposure as well as frequent barrage of meteoroids. Hence, for such extended missions to succeed, it is vital that the future lunar outposts be designed to provide a safe habitat for the astronauts. Over the past few years, a variety of ideas and concepts for future lunar outposts and bases have been proposed. With shielding as the primary concern, some have suggested the use of natural structures such as lava tubes while others have taken a more industrial approach and suggested the construction of fixed structures in the form of inflatable, inflatable with rigid elements, and tent-style membrane. For evaluation of these structural design concepts, Drake and Richter1 have proposed a rating system based on such factors as effectiveness, importance, and timing. While all of these designs, in general, benefit from in-situ resource utilization (i.e., lunar regolith) for shielding, they share a common disadvantage of being fixed to one particular location that would limit exploration to the region in close proximity of the outpost.
    Keywords: Spacecraft Design, Testing and Performance
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XXXIV-1 - XXXIV-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-12
    Description: Solar Sailcraft, the stuff of dreams of the H.G. Wells generation, is now a rapidly maturing reality. The promise of unlimited propulsive power by harnessing stellar radiation is close to realization. Currently, efforts are underway to build, prototype and test two configurations. These sails are designed to meet a 20m sail requirement, under guidance of the In-Space Propulsion (ISP) technology program office at MSFC. While these sails will not fly , they are the first steps in improving our understanding of the processes and phenomena at work. As part of the New Millennium Program (NMP) the ST9 technology validation mission hopes to launch and fly a solar sail by 2010 or sooner. Though the Solar Sail community has been studying and validating various concepts over two decades, it was not until recent breakthroughs in structural and material technology, has made possible to build sails that could be launched. With real sails that can be tested (albeit under earth conditions), the real task of engineering a viable spacecraft has finally commenced. Since it is not possible to accurately or practically recreate the actual operating conditions of the sailcraft (zero-G, vacuum and extremely low temperatures), much of the work has focused on developing accurate models that can be used to predict behavior in space, and for sails that are 6-10 times the size of currently existing sails. Since these models can be validated only with real test data under "earth" conditions, the process of modeling and the identification of uncertainty due to model assumptions and scope need to be closely considered. Sailcraft models that exist currently, are primarily focused on detailed physical representations at the component level, these are intended to support prototyping efforts. System level models that cut across different sail configurations and control concepts while maintaining a consistent approach are non-existent. Much effort has been focused on the areas of thrust performance, solar radiation prediction, and sail membrane behavior vis-a-vis their reflective geometry, such as wrinkling/folding/furling as it pertains to thrust prediction. A parallel effort has been conducted on developing usable models for developing attitude control systems (ACS), for different sail configurations in different regimes. There has been very little by way of a system wide exploration of the impact of the various control schemes, thrust prediction models for different sail configurations being considered.
    Keywords: Spacecraft Design, Testing and Performance
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XXXVII-1 - XXXVII-6; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: This research was in support of exploring the need for more flexible "center of gravity (CG) specifications than those currently established by NASA for the Multi-Purpose Logistics Module (MPLM). The MPLM is the cargo carrier for International Space Station (ISS) missions. The MPLM provides locations for 16 standard racks, as shown in Figure 1; not all positions need to be filled in any given flight. The MPLM coordinate system (X(sub M), Y(sub M), Z(sub M)) is illustrated as well. For this project, the primary missions of interest were those which supply the ISS and remove excess materials on the return flights. These flights use a predominate number of "Resupply Stowage Racks" (RSR) and "Resupply Stowage Platforms" (RSP). In these two types of racks, various smaller items are stowed. Hence, these racks will exhibit a considerable range of mass values as well as a range as to where their individual CG are located.
    Keywords: Spacecraft Design, Testing and Performance
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XLIV-1 - XLIV-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-12
    Description: Human motion tracking systems represent a crucial technology in the area of modeling and simulation. These systems, which allow engineers to capture human motion for study or replication in virtual environments, have broad applications in several research disciplines including human engineering, robotics, and psychology. These systems are based on several sensing paradigms, including electro-magnetic, infrared, and visual recognition. Each of these paradigms requires specialized environments and hardware configurations to optimize performance of the human motion tracking system. Ideally, these systems are used in a laboratory or other facility that was designed to accommodate the particular sensing technology. For example, electromagnetic systems are highly vulnerable to interference from metallic objects, and should be used in a specialized lab free of metal components.
    Keywords: Man/System Technology and Life Support
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XX-1 - XX-24; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-12
    Description: Space travel propelled by solar sails is motivated by the fact that the momentum exchange that occurs when photons are reflected and/or absorbed by a large solar sail generates a small but constant acceleration. This acceleration can induce a constant thrust in very large sails that is sufficient to maintain a polar observing satellite in a constant position relative to the Sun or Earth. For long distance propulsion, square sails (with side length greater than 150 meters) can reach Jupiter in two years and Pluto in less than ten years. Converting such design concepts to real-world systems will require accurate analytical models and model parameters. This requires extensive structural dynamics tests. However, the low mass and high flexibility of large and light weight structures such as solar sails makes them unsuitable for ground testing. As a result, validating analytical models is an extremely difficult problem. On the other hand, a fundamental question can be asked. That is whether an analytical model that represents a small-scale version of a solar-sail boom can be extended to much larger versions of the same boom. To answer this question, we considered a long deployable boom that will be used to support the solar sails of the sail-craft. The length of fully deployed booms of the actual solar sail-craft will exceed 100 meters. However, the test-bed we used in our study is a 30 meter retractable boom at MSFC. We first develop analytical models based on Lagrange s equations and the standard Euler-Bernoulli beam. Then the response of the models will be compared with test data of the 30 meter boom at various deployed lengths. For this stage of study, our analysis was limited to experimental data obtained at 12ft and 18ft deployment lengths. The comparison results are positive but speculative. To observe properly validate the analytic model, experiments at longer deployment lengths, up to the full 30 meter, have been requested. We expect the study to answer the extendibility question of the analytical models. In operation, rapid temperature changes can be induced in solar sails as they transition from day to night and vice versa. This generates time dependent thermally induced forces, which may in turn create oscillation in structural members such as booms. Such oscillations have an adverse effect on system operations, precise pointing of instruments and antennas and can lead to self excited vibrations of increasing amplitude. The latter phenomenon is known as thermal flutter and can lead to the catastrophic failure of structural systems. To remedy this problem, an active vibration suppression system has been developed. It was shown that piezoelectric actuators used in conjunction with a Proportional Feedback Control (PFC) law (or Velocity Feedback Control (VFC) law) can induce moments that can suppress structural vibrations and prevent flutter instability in spacecraft booms. In this study, we will investigate control strategies using piezoelectric transducers in active, passive, and/or hybrid control configurations. Advantages and disadvantages of each configuration will be studied and experiments to determine their capabilities and limitations will be planned. In particular, special attention will be given to the hybrid control, also known as energy recycling, configuration due to its unique characteristics.
    Keywords: Spacecraft Design, Testing and Performance
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; XXIII-1 - XXIII-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-12
    Description: Planning is underway for new NASA missions to the moon and to MARS. These missions carry a great deal of risk, as the Challenger and Columbia accidents demonstrate. In order to minimize the risks to the crew and the mission, risk reduction must be done at every stage, not only in quality manufacturing, but also in design. It is necessary, therefore, to be able to compare the risks posed in different launch vehicle designs. Further, these designs have not yet been implemented, so it is necessary to compare these risks without being able to test the vehicles themselves. This paper will discuss some of the issues involved in this type of comparison. It will start with a general discussion of reliability estimation. It will continue with a short look at some software designed to make this estimation easier and faster. It will conclude with a few recommendations for future tools.
    Keywords: Spacecraft Design, Testing and Performance
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; V-1 - V-5; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-12
    Description: Part 2, which will be discussed in this report, will discuss the development of a Lunar Cargo Lander (unmanned launch vehicle) that will transport usable payload from Trans- Lunar Injection to the moon. The Delta IV-Heavy was originally used to transport the Lunar Cargo Lander to TLI, but other launch vehicles have been studied. In order to uncover how much payload is possible to land on the moon, research was needed in order to design the sub-systems of the spacecraft. The report will discuss and compare the use of a hypergolic and cryogenic system for its main propulsion system. The guidance, navigation, control, telecommunications, thermal, propulsion, structure, mechanisms, landing gear, command, data handling, and electrical power sub-systems were designed by scaling off other flown orbiters and moon landers. Once all data was collected, an excel spreadsheet was created to accurately calculate the usable payload that will land on the moon along with detailed mass and volume estimating relations. As designed, The Lunar Cargo Lander can plant 5,400 lbm of usable payload on the moon using a hypergolic system and 7,400 lbm of usable payload on the moon using a cryogenic system.
    Keywords: Spacecraft Design, Testing and Performance
    Type: The 2004 NASA Faculty Fellowship Program Research Reports; X-1 - X-8; NASA/CR-2005-213847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-12
    Description: EXO 2030+375, a 42 s transient X-ray pulsar with a Be star companion, has been observed to undergo an outburst at nearly every periastron passage for the last 13.5 years. From 1994 through 2002, the global trend in the pulsar spin frequency was spin-down. Using Rossi X-Ray Timing Explorer (RXTE) data from 2003 September, we have observed a transition to global spin-up in EXO 2030+375. Although the spin-frequency observations are sparse, the relative spin-up between 2002 June and 2003 September observations, along with an overall brightening of the outbursts since mid-2002 observed with the RXTE All-Sky Monitor, accompanied by an increase in density of the Be disk, indicated by infrared magnitudes, suggest that the pattern observed with BATSE of a roughly constant spin frequency, followed by spin-up, followed by spin-down is repeating. If so, this pattern has approximately an 11 yr period, similar to the 15 +/- 3 yr period derived by Wilson et al. for the precession period of a one-armed oscillation in the Be disk. If this pattern is indeed repeating, we predict a transition from spin-up to spin-down in 2005.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 620; No. 2; L99-L102
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-11
    Description: Characteristic X-ray emission lines are detected from simulants of comet surfaces as they undergo collisions with highly charged ions (HCIs). The HCI projectiles are O+2-O+7. Ion energies are varied in the range (2-7)q keV, where q is the ion charge state. The targets are the insulator minerals olivine, augite, and quartz. It is found that the emission of characteristic K-L, K-M X-rays appears to proceed during positive charging of the surface by the HCI beam. When one uses low-energy, flood-gun electrons to neutralize the surface charge, the X-ray emission is eliminated or greatly reduced, depending on the flood-gun current. Acceleration of background electrons onto the charged surface results in excitation of elemental transitions, including the K-L2 and K-L3 target X-ray emission lines of Mg and Si located spectroscopically at 1253.6 and 1739.4 eV, respectively. Also observed are emission lines from O, Na, Ca, Al, and Fe atoms in the target and charge-exchange lines via surface extraction of electrons by the O+q electric field. Good agreement is found in the ratio of the measured X-ray yields for Mg and Si relative to the ratio of their electron-impact K-shell ionization cross sections. The present study may serve as a guide to astronomers as to specific observing X-ray energies indicative of solar/stellar wind or magnetospheric ion interactions with a comet, planetary surface, or circumstellar dust.
    Keywords: Astrophysics
    Type: The Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-11
    Description: Experimental cross sections are reported for the 1s(2)2s(2) S-1 -〉 1s(2)2s2p P-1(o) transition in O+4 located at 19.689 eV. Use is made of the electron energy-loss method, using a merged electron-ion beam geometry. The center-of-mass interaction energies for the measurements in the S-1 -〉 P-1(o) transition are in the range 18 eV ( below the threshold) to 30 eV. Data are compared with other previous electron energy-loss measurements and with results of a 26 term R-matrix calculation that includes fine structure explicitly via the Breit-Pauli Hamiltonian. Clear resonance enhancement is observed in all experimental and theoretical results near the threshold for this S-1 -〉 P-1(o) transition.
    Keywords: Astrophysics
    Type: The Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-11
    Keywords: Spacecraft Design, Testing and Performance
    Type: 5th IAA Symposium on Small Satellites for Earth Observation; Berlin; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-06
    Description: We report the detection with the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) of 530 Hz burst oscillations in a thermonuclear (Type I) burst from the transient X-ray source A1744-361. This is only the second burst ever observed from this source, and the first to be seen in any detail. Our results confirm that A1744-361 is a low mass X-ray binary (LMXB) system harboring a rapidly rotating neutron star. The oscillations are first detected along the rising edge of the burst, and show evidence for frequency evolution of a magnitude similar to that seen in other burst sources. The modulation amplitude and its increase with photon energy are also typical of burst oscillations. The lack of any strong indication of photospheric radius expansion during the burst suggests a 9 kpc upper limit of the source distance. We also find energy dependent dips, establishing A1744-361 as a high inclination, dipping LMXB. The timescale between the two episodes of observed dips suggests an orbital period of approx. 97 min. We have also detected a 2 - 4 Hz quasi-periodic-oscillation (QPO) for the first time from this source. This QPO appears consistent with approx. 1 Hz QPOs seen from other high inclination systems. We searched for kilohertz QPOs, and found a suggestive 2.3 sigma feature at 800 Hz in one observation. The frequency, strength and quality factor are consistent with that of a lower frequency kilohertz QPO, but the relatively low significance argues for caution, so we consider this a tentative detection requiring confirmation.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-06
    Description: The dependence of Swift#s detection sensitivity on a burst#s temporal and spectral properties shapes the detected burst population. Using s implified models of the detector hardware and the burst trigger syste m I find that Swift is more sensitive to long, soft bursts than CGRO# s BATSE, a reference mission because of its large burst database. Thu s Swift has increased sensitivity in the parameter space region into which time dilation and spectral redshifting shift high redshift burs ts.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2018-06-12
    Description: During launch of Shuttle Columbia, mission STS-107, a large piece of spray on foam insulation (SOFI) separated from the external tank left bipod ramp area impacting the shuttle orbiter left wing leading edge. "Analysis showed that this large piece of foam struck Columbia on the underside of the left wing after launch. Later, analysis showed that the larger piece struck Columbia on the underside of the left wing, around Reinforced Carbon-Carbon (RCC) panels 5 through 9, at 81.9 seconds after launch. Further photographic analysis revealed that the large foam piece was approximately 21 to 27 inches long and 12 to 18 inches wide and was moving at a relative velocity to the Shuttle stack of 625 to 840 feet per second (416 to 573 miles per hour) at the time of impact." This impact damaged the wing leading edge resulting in loss of orbiter thermal protection. The piece of errant foam was part of a bipod ramp which was designed to meet thermal and aerodynamic requirements in that region of the external tank (ET).
    Keywords: Spacecraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-02
    Description: As part of basic and applied research on advanced instrumentation technologies, the NASA Glenn Research Center is examining applications for sonoluminescence: ultrasonically produced glowing bubbles that are hotter than the Sun. In the last decade, those outside of the ultrasonic community have become interested in understanding sonoluminescence and in using some of its more interesting properties. First discovered in the 1930s as a byproduct of early work on sonar, the phenomenon is defined as the generation of light energy from sound waves. This glow, which was originally thought to be a form of static electricity, was found to be generated in flashes of much less than a billionth of a second that result when microscopic bubbles of air collapse. The temperature generated in the collapsing bubbles is at least 4 times that of the surface of the Sun.
    Keywords: Astrophysics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-02
    Description: Engineers and interns at this NASA field center are building the prototype of a robotic rover that could go where no wheeled rover has gone before-into the dark cold craters at the lunar poles and across the Moon s rugged highlands-like a walking tetrahedron. With NASA pushing to meet President Bush's new exploration objectives, the robots taking shape here today could be on the Moon in a decade. In the longer term, the concept could lead to shape-shifting robot swarms designed to explore distant planetary surfaces in advance of humans. "If you look at all of NASA s projections of the future, anyone s projections of the space program, they re all rigid-body architecture," says Steven Curtis, principal investigator on the effort. "This is not rigid-body. The whole key here is flexibility and reconfigurability with a capital R."
    Keywords: Spacecraft Design, Testing and Performance
    Type: Aviation Week and Space Technology (ISSN 0005-2175); Volume 162; No. 22; 48-49
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-06
    Description: We present new techniques for evolving binary black hole systems which allow the accurate determination of gravitational waveforms directly from the wave zone region of the numerical simulations. Rather than excising the black hole interiors, our approach follows the "puncture" treatment of black holes, but utilizing a new gauge condition which allows the black holes to move successfully through the computational domain. We apply these techniques to an inspiraling binary, modeling the radiation generated during the final plunge and ringdown. We demonstrate convergence of the waveforms and and good conservation of mass-energy, with just over 3% of the system s mass converted to gravitational radiation.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2017-10-02
    Description: H(2-2), N2 and CO are the most abundant molecular constituents in astrophysical environments, including protostellar nebulae. Although some organic molecules may be produced on very long timescales by the irradiation of ices formed on the cold surfaces of interstellar grains and these molecules may be an important source of raw materials leading to the origin of life on Earth, pre-solar organics could be swamped by the efficient conversion of nebular H2, N2 and CO to simple organic materials.
    Keywords: Astrophysics
    Type: Lunar and Planetary Science XXXVI, Part 14; LPI-Contrib-1234-Pt-14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2017-10-02
    Description: On 2 January, 2004, the Stardust spacecraft flew by the nucleus of comet 81P/Wild 2 with a closest approach distance of approx. 240 km. During the encounter, the Stardust Optical Navigation Camera (ONC) obtained 72 images of the nucleus with exposure times alternating between 10 ms (near-optimal for most of the nucleus surface) and 100 ms (used for navigation, and revealing additional details in the coma and dark portions of the surface. Phase angles varied from 72 deg. to near zero to 103 deg. during the encounter, allowing the entire sunlit portion of the surface to be imaged. As many as 20 of the images near closest approach are of sufficiently high resolution to be used in mapping the nucleus surface; of these, two pairs of short-exposure images were used to create the nucleus shape model and derived products reported here. The best image resolution obtained was approx. 14 m/pixel, resulting in approx. 300 pixels across the nucleus. The Stardust Wild 2 dataset is therefore markedly superior from a stereomapping perspective to the Deep Space 1 MICAS images of comet Borrelly. The key subset of the latter (3 images) covered only about a quarter of the surface at phase angles approx. 50 - 60 and less than 50 x 160 pixels across the nucleus, yet it sufficed for groups at the USGS and DLR to produce digital elevation models (DEMs) and study the morphology and photometry of the nucleus in detail.
    Keywords: Astrophysics
    Type: Lunar and Planetary Science XXXVI, Part 11; LPI-Contrib-1234-Pt-11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: We report the discovery of X-rays from both components of Cepheus A, East and West, with the XMM-Newton observatory. HH 168 joins the ranks of other energetic Herbig-Haro objects that are sources of T ≥ 10(6) K X-ray emission. The effective temperature of HH 168 is T = 5.8(-2.3)(+3.5) x 10(6) K, and its unabsorbed luminosity is 1: 1; 10(29) ergs s(-1), making it hotter and less luminous than other representatives of its class. We also detect prominent X-ray emission from the complex of compact radio sources believed to be the power sources for Cep A. We call this source HWX, and it is distinguished by its hard X-ray spectrum, T = 1.2(-0.5)(+1.2) 10(8) K, and its complex spatial distribution. It may arise from one or more protostars associated with the radio complex, the outflows, or a combination of the two. We detect 102 X-ray sources, many presumed to be pre-main-sequence stars on the basis of the reddening of their optical and IR counterparts.
    Keywords: Astrophysics
    Type: The Astrophysical Journal
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-06
    Description: In January 2004, NASA established a new, long-term exploration program to fulfill the President's Vision for U.S. Space Exploration. The primary goal of this program is to establish a sustained human presence in space, beginning with robotic missions to the Moon in 2008, followed by extended human expeditions to the Moon as early as 2015. In addition, the program places significant emphasis on the development of joint human-robot systems. A key difference from previous exploration efforts is that future space exploration activities must be sustainable over the long-term. Experience with the space station has shown that cost pressures will keep astronaut teams small. Consequently, care must be taken to extend the effectiveness of these astronauts well beyond their individual human capacity. Thus, in order to reduce human workload, costs, and fatigue-driven error and risk, intelligent robots will have to be an integral part of mission design.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-05
    Description: The current system for moisture removal and humidity control for the space shuttles and the International Space Station uses a two-stage process. Water first condenses onto fins and is pulled through "slurper bars." These bars take in a two-phase mixture of air and water that is then separated by the rotary separator. A more efficient design would remove the water directly from the air without the need of an additional water separator downstream. For the Condensing Heat Exchanger for Space Systems (CHESS) project, researchers at the NASA Glenn Research Center in collaboration with NASA Johnson Space Center are designing a condensing heat exchanger that utilizes capillary forces to collect and remove water and that can operate in varying gravitational conditions including microgravity, lunar gravity, and Martian gravity.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-05
    Description: To meet the needs of current and future space vehicles, the NASA Glenn Research Center is developing advanced control surface seals. These seals are used to fill the gaps surrounding actuated structures, such as rudders and body flaps, to shield underlying lower temperature structures, such as mechanical actuators, from the hot gases encountered during atmospheric reentry. During previous testing, the current baseline seal design, which is used on the space shuttle as a thermal barrier and was selected as the rudder-fin seal on the X-38 crew return vehicle, exhibited significant permanent set following compression at 1900 F (see the following photograph). Decreased resiliency (springback) could prevent the seal from contacting both of the opposing sealing surfaces and allow the ingestion of damaging hot gases during reentry, which could have detrimental effects on vehicle subsystems.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-05
    Description: As part of NASA s Return-To-Flight efforts, the Space Operations Program investigated the condition of actuators for the orbiter s rudder speed brake. The actuators control the position of the rudder panels located in the tail of the orbiter, providing both steering control and braking during reentry, approach, and landing. Inspections of flight hardware revealed fretting and wear damage to the critical working surfaces of the actuator gears. To best understand the root cause of the observed damage and to help establish an appropriate reuse and maintenance plan for these safety critical parts, researchers completed a set of gear wear experiments at the NASA Glenn Research Center.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-06
    Description: Integrated Vehicle Health Management (ISHM) systems are used to detect, assess, and isolate functional failures in order to improve safety of space systems such as Orbital Space Planes (OSPs). An ISHM system, as a whole, consists of several subsystems that monitor different components of an OSP including: Spacecraft, Launch Vehicle, Ground Control, and the International Space Station. In this research, therefore, we propose a new methodology to design and optimize ISHM as a distributed system with multiple disciplines (that correspond to different subsystems of OSP safety). A paramount amount of interest has been given in the literature to the multidisciplinary design optimization of problems with such architecture (as will be reviewed in the full paper).
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-06
    Description: We have reanalyzed the 900 ks Chandra X-ray spectrum of NGC 3783, finding evidence on the asymmetry of the spectral absorption lines. The lines are fitted with a parametric expression that results from an analytical treatment of radiatively driven winds. The line asymmetry distribution derived from the spectrum is consistent with a non-spherical outflow with a finite optical depth. Within this scenario, our model explains the observed correlations between the line velocity shifts and the ionization parameter and between the line velocity shift and the line asymmetry. The present results may provide a framework for detailed testing of models for the dynamic and physical properties of warm absorber in Seyfert galaxies.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-06
    Description: LISA will be able to detect gravitational waves from inspiralling massive black hole (MBH) binaries out to redshifts z 〉 10. If the binary masses and luminosity distances can be extracted from the Laser Interferometer Space Antenna (LISA) data stream, this information can be used to reveal the merger history of MBH binaries and their host galaxies in the evolving universe. Since this parameter extraction generally requires that LISA observe the inspiral for a significant fraction of its yearly orbit, carrying out this program requires adequate sensitivity at low frequencies, f 〈 10(exp -4) Hz. Using several candidate low frequency sensitivities, we examine LISA's potential for characterizing MBH binary coalescences at redshifts z 〉 1.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-06-06
    Description: Building on Nakar & Piran's analysis of the Amati relation relating gamma-ray burst peak energies E(sub p) and isotropic energies E(sub iso ) we test the consistency of a large sample of BATSE bursts with the Amati and Ghirlanda (which relates peak energies and actual gamma-ray energies E(sub gamma)) relations. Each of these relations can be exp ressed as a ratio of the different energies that is a function of red shift (for both the Amati and Ghirlanda relations) and beaming fraction f(sub B) (for the Ghirlanda relation). The most rigorous test, whic h allows bursts to be at any redshift, corroborates Nakar & Piran's r esult - 88% of the BATSE bursts are inconsistent with the Amati relat ion - while only l.6% of the bursts are inconsistent with the Ghirlan da relation if f(sub B) = 1. Modelling the redshift distribution resu lts in an energy ratio distribution for the Amati relation that is sh ifted by an order of magnitude relative to the observed distributions; any sub-population satisfying the Amati relation can comprise at mos t approx. 18% of our burst sample. A similar analysis of the Ghirland a relation depends sensitively on the beaming fraction distribution f or small values of f(sub B); for reasonable estimates of this distrib ution about a third of the burst sample is inconsistent with the Ghir landa relation. Our results indicate that these relations are an artifact of the selection effects of the burst sample in which they were f ound; these selection effects may favor sub-populations for which the se relations are valid.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-06-06
    Description: During its nine-year lifetime, the Energetic Gamma Ray Experiment Telescope (EGBET) on the Compton Gamma Ray Observatory (CGRO) detected 1506 cosmic photons with measured energy E〉10 GeV. Of this number, 187 are found within a 1 deg of sources that are listed in the Third EGRET Catalog and were included in determining the detection likelihood, flux, and spectra of those sources. In particular, five detected EGRET pulsars are found to have events above 10 GeV, and together they account for 37 events. A pulsar not included in the Third EGRET Catalog has 2 events, both with the same phase and in one peak of the lower-energy gamma-ray light-curve. Most of the remaining 1319 events appear to be diffuse Galactic and extragalactic radiation based on the similarity of the their spatial and energy distributions with the diffuse model and in the E〉100, MeV emission. No significant time clustering which would suggest a burst was detected.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: X-ray pulses with millisecond-long FWHM have been detected in RXTE (Rossi X-Ray Timing Explorer) satellite observations of Cyg X-1. Their identity as short- timescale variations in the X-ray luminosity of the source, and not stochastic variability in the X-ray flux, is established by their simultaneous occurrence and similar pulse structure in two independent energy bandpasses. The light-time distance corresponding to the timescale of their FWHM indicates that they originate in the inner region of the accretion disk around the system's black hole component. The fluence in the pulses can equal or exceed the fluence of the system's average continuous flux over the duration of the pulse's FWHM in several different bandpasses between 1 and 73 keV. Millisecond pulses are detected during both high and low luminosity states of Cyg X-1, and during transitions between luminosity states.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-06-06
    Description: Cosmic infrared background (CIB) contains information about galaxy luminosities over the entire history of the Universe and can be a powerful diagnostic of the early populations otherwise inaccessible to telescopic studies. Its measurements are very difficult because of the strong IR foregrounds from the Solar system and the Galaxy. Nevertheless, substantial recent progress in measuring the CIB and its structure has been made. The measurements now allow to set significant constraints on early galaxy evolution and, perhaps, even detect the elusive Population III era. We discuss briefly the theory behind the CIB, review the latest measurements of the CIB and its structure, and discuss their implications for detecting and/or constraining the first stars and their epochs.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2018-06-06
    Description: The NASA strategic roadmap on the Origin, Evolution, Structure and Destiny of the Universe is one of 13 roadmaps that outline NASA s approach to implement the vision for space exploration. The roadmap outlines a program to address the questions: What powered the Big Bang? What happens close to a Black Hole? What is Dark Energy? How did the infant universe grow into the galaxies, stars and planets, and set the stage for life? The roadmap builds upon the currently operating and successful missions such as HST, Chandra and Spitzer. The program contains two elements, Beyond Einstein and Pathways to Life, performed in three phases (2005-2015, 2015-2025 and 〉2025) with priorities set by inputs received from reviews undertaken by the National Academy of Sciences and technology readiness. The program includes the following missions: 2005-2015 GLAST, JWST and LISA; 2015-2025 Constellation-X and a series of Einstein Probes; and 〉2025 a number of ambitious vision missions which will be prioritized by results from the previous two phases.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-06-06
    Description: The accreting millisecond pulsar XTE J1814-338 exhibits oscillations at the known spin frequency during Type I X-ray bursts. The properties of the burst oscillations reflect the nature of the thermal asymmetry on the stellar surface. We present an analysis of the variability of the burst oscillations of this source, focusing on three characteristics: fractional amplitude, harmonic content and frequency. Fractional amplitude and harmonic content constrain the size, shape and position of the emitting region, whilst variations in frequency indicate motion of the emitting region on the neutron star surface. We examine both long-term variability over the course of the outburst, and short-term variability during the bursts. For most of the bursts, fractional amplitude is consistent with that of the accretion pulsations, implying a low degree of fuel spread. There is however a population of bursts whose fractional amplitudes are substantially lower, implying a higher degree of fuel spread, possibly forced by the explosive burning front of a precursor burst. For the first harmonic, substantial differences between the burst and accretion pulsations suggest that hotspot geometry is not the only mechanism giving rise to harmonic content in the latter. Fractional amplitude variability during the bursts is low; we can only rule out the hypothesis that the fractional amplitude remains constant at the l(sigma) level for bursts that do not exhibit photospheric radius expansion (PRE). There are no significant variations in frequency in any of the bursts except for the one burst that exhibits PRE. This burst exhibits a highly significant but small (= 0.1Hz) drop in frequency in the burst rise. The timescale of the frequency shift is slower than simple burning layer expansion models predict, suggesting that other mechanisms may be at work.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-06-11
    Description: Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.
    Keywords: Man/System Technology and Life Support
    Type: NASA Summer Faculty Fellowship Program 2004, Volumes 1 and 2; 12-1 - 12-17; NASA/CR-2005-213690/VOL1/2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2018-06-11
    Description: Within the scope of the Multi-purpose Crew Restraints for Long Duration Spaceflights project, funded by Code U, it was proposed to conduct a series of evaluations on the ground and on the KC-135 to investigate the human factors issues concerning confined/unique workstations, such as the design of crew restraints. The usability of multiple crew restraints was evaluated for use with the Life Sciences Glovebox (LSG) and for performing general purpose tasks. The purpose of the KC-135 microgravity evaluation was to: (1) to investigate the usability and effectiveness of the concepts developed, (2) to gather recommendations for further development of the concepts, and (3) to verify the validity of the existing requirements. Some designs had already been tested during a March KC-135 evaluation, and testing revealed the need for modifications/enhancements. This flight was designed to test the new iterations, as well as some new concepts. This flight also involved higher fidelity tasks in the LSG, and the addition of load cells on the gloveports.
    Keywords: Man/System Technology and Life Support
    Type: KC-135 and Other Microgravity Simulations; 19-26; NASA/TM-2005-213162
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: Wayne Hill, Space Shuttle Deputy Program Manager, and Chair of the Mission Management Team, reports the following: the testing of the thermal protection system in space, on orbit was successful; the MMT meeting formally approved the mission extension for one day; image analysis from the launch phase has been completed; tile and blankets had been formally cleared by the Engineering team; additional inspection of the reinforced carbon-carbon (RCC); gap filler, heat shield and small black spot phenomenon are carefully inspected and evaluated to prepare the safe return of the Discovery. Bill Gerstenmaier, ISS Program Manager reports on the extra vehicular activities (EVA): replaced the GPS antenna; prepared the airlock to attach the ESP2; re-powered CMG2; transfer of CWCs; and the MISSE packages were wrapped around thru at the end of the air lock. He mentioned the high currents problem seen on CMG3, which they will have to take off line to check and understand the problem. Consumables, engineering performance of the three sensors (LCS, LDRI, ITVC), CMG removal and replacement, EVA2 and EVA3, gap fillers, RCC, hydrogen tank pre-press cycles, thermal protection system, inspection, ISS supply maintenance, and projection of next flight are topics covered with the News Media.
    Keywords: Spacecraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: A continuation of the tests performed on the Space Shuttle Discovery in preparation for its return to flight is presented. The tests include: 1) Shuttle Robot Arm Recertification; 2) Michael Hiltz Systems Group Leader; 3) Orbiter Boom Fabrication; 4) Orbiter Boom Final Development; 5) Gary Searle Manager of Orbiter Boom Sensor System (OBSS) Manufacturing and Assembly; 6) Orbiter Boom Qualification Unit; 7) STS-114 Crew Inspects Orbiter Boom at Kennedy Space Center; 8) Orbiter Boom Inspection of Thermal Protection System Animation; 9) External Tank Bipod Redesign; 10) External Tank Flange Redesign; 11) External Tank Bellows Redesign; 12) Shuttle Main Engine Testing and Delivery to Kennedy Space Center; 13) Ronnie Rigney Project Manager Space Shuttle Main Engine Program Office; 14) Gene Goldmman NASA Project Manager Space Shuttle Main Engine Project; 15) Mike Cosgrove Boeing-Rocketdyne Flow Manager; 16) Shuttle Rocket Booster Build-Up; 17) Ascent Imagery Improvements; and 18) STS-114 Flight Control Team and Mission Management Team.
    Keywords: Spacecraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: A video presentation detailing the tests performed on the Space Shuttle Discovery in preparation for its return to flight is shown. The tests include: 1) Reinforced Carbon-Carbon (RCC) Impact Test Article; 2) RCC Foam Impact Testing; 3) Thermal Protection System (TPS) Ice Impact Testing featuring Justin Kerr, Project Engineer; 4) Wing Leading Edge Wireless Sensors featuring Karl Kiefer, President and CEO of Invocon, and Kevin Champaigne of Invocon; 5) TPS Repair Testing KC-135 Zero-G Environment featuring Soichi Noguchi, Mission Specialist; 6) TPS Extravehicular Activity Tool Demonstration; 7) TPS Repair Testing Vacuum Glove box; 8) TPS Repair Testing Human Thermal Vacuum Chamber; 9) TPS Reentry Testing Atmospheric Reentry Materials and Structures Evaluation Facility; 10) TPS Alternative Repair Concept; 11) Lora Bailey Lead Engineer for EVA Tools; 12) Reinforced Carbon-Carbon ATK Thiokol Plug Repair Animation; 13) 3-Percent Model Build-Up; and 14) Wind Tunnel Testing RCC Aging Research Ballistic Testing.
    Keywords: Spacecraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: This video features a briefing on NASA Langley Research Center (LaRC) contributions to the Space Shuttle fleet's Return to Flight (RTF). The briefing is split into two sections, which LaRC Shuttle Project Manager Robert Barnes and Deputy Manager Harry Belvin deliver in the form of a viewgraph presentation. Barnes speaks about LaRC contributions to the STS-114 mission of Space Shuttle Discovery, and Belvin speaks about LaRC contributions to subsequent Shuttle missions. In both sections of the briefing, LaRC contributions are in the following areas: External Tank (ET), Orbiter, Systems Integration, and Corrosion/Aging. The managers discuss nondestructive and destructive tests performed on ET foam, wing leading edge reinforced carbon-carbon (RCC) composites, on-orbit tile repair, aerothermodynamic simulation of reentry effects, Mission Management Team (MMT) support, and landing gear tests. The managers briefly answer questions from reporters, and the video concludes with several short video segments about LaRC contributions to the RTF effort.
    Keywords: Spacecraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: After forty years of experience with human space flight (Table 1), the current emphasis is on the design of space vehicles, habitats, and missions to ensure mission success. What lessons have we learned that will affect the design of spacecraft for future space exploration, leading up to exploring Mars? This chapter addresses this issue in four sections: Anthropometry and Biomechanics; Environmental Factors; Habitability and Architecture; and Crew Personal Sustenance. This introductory section introduces factors unique to space flight. A unique consideration for design of a habitable volume in a space vehicle is the lack of gravity during a space flight, referred to as microgravity. This affects all aspects of life, and drives special features in the habitat, equipment, tools, and procedures. The difference in gravity during a space mission requires designing for posture and motion differences. In Earth s gravity, or even with partial gravity, orientation is not a variable because the direction in which gravity acts defines up and down. In a microgravity environment the working position is arbitrary; there is no gravity cue. Orientation is defined primarily through visual cues. The orientation within a particular crew station or work area is referred to as local vertical, and should be consistent within a module to increase crew productivity. Equipment was intentionally arranged in various orientations in one module on Skylab to assess the efficiency in use of space versus the effects of inconsistent layout. The effects of that arrangement were confusion on entering the module, time spent in re-orientation, and conflicts in crew space requirements when multiple crew members were in the module. Design of a space vehicle is constrained by the three major mission drivers: mass, volume and power. Each of these factors drives the cost of a mission. Mass and volume determine the size of the launch vehicle directly; they can limit consumables such as air, water, and propellant; and they impact crew size and the types of activities the crew performs. Power is a limiting factor for a space vehicle. All environmental features (e.g., atmosphere, temperature, lighting) require power to maintain them. Power can be generated from batteries, from fuel cells, or from solar panels. Each of these sources requires lifting mass and volume from Earth, driving mission cost. All engineering decisions directly impact the design for habitation design and usage. For instance, if fuel cells are used they produce water, which is used for drinking and food preparation. If a different power source is used water has to be carried and stored on the vehicle which then directly impacts the food system choice as well as the launch weight of the vehicle.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: Paul Hill, STS-114 Lead Flight Director, and John Shannon, Flight Operations and Integrations Manager for the Space Shuttle Program were present. Paul gave a detailed description of the Orbiter's performance upon its arrival on the International Space Station, orbital rendezvous and docking was completed, performance was nominal by all measures, and crew is already inside the ISS. He also briefly mentioned the next day crew activities, robotics work and first space walk. John emphasized on ground technical engineering tasks, data gathering and inspection of data, imagery and damage assessment, assessing the performance of the external tank, engineering analysis, and the increase of understanding of the overall condition of the vehicle. Safety of the vehicle, battery lifetime, foam loss, tile damage, post launch analysis were some of the topics discussed with the News Media.
    Keywords: Spacecraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-05
    Description: European Automated Transfer Vehicles (ATVs) can begin sending tons of logistics supplies to the International Space Station as early as 2006, now that the U.S./Russian crew has outfitted the exterior of the ISS with the final communications and GPS antennas needed for ATV rendezvous and docking. During their extravehicular activity (EVA) on Mar. 28, Expedition 10 commander astronaut Leroy Chiao and Russian flight engineer cosmonaut Salizhan Sharipov also coordinated the hand-launch by Sharipov of a small Russian technology satellite. The crew wore Russian Orlan space suits during the 4 hr. 30 min. EVA, which they completed an hour earlier than expected. The EVA was the sixth for Chiao and the second for Sharipov. Both Expedition 10 crewmen had been outside together on Jan. 25 at the start of their six- month mission. The Expedition 11 replacement crew is to launch to the ISS Apr. 15, enabling the current crew to return to Earth Apr. 25. A detailed discussion about Chiao and Sharipov's EVA is presented.
    Keywords: Man/System Technology and Life Support
    Type: Aviation Week and Space Technology (ISSN 0005-2175); Volume 162; No. 14; 32
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-11
    Description: We report the results of an in-depth study of the long-term soft gamma-ray (30 keV to 1.7 MeV) flux and spectral variability of the transient source GRO J1719-24 that was first discovered by BATSE and SIGMA in the fall of 1993. Our results were obtained from the JPL BATSE-EBOP database covering a 1000 day period between 1993 January 13 and 1995 October 10. During this period, the source underwent a major outburst in the fall of 1993 when the 35-100 keV flux rose from a quiescent state of less than 16 mcrab before 1993 September 17 to a level of 1.5 crab on October 3. The source remained in this high-intensity state over the next approx. 70 days, during which the 35-100 keV flux decreased monotonically by 33% to 1 crab on December 12, then decreased sharply to the pretransition quiescent level of 44 mcrab on December 21, where it remained until 1994 September 5. During a 400 day period between 1994 September 5 and 1995 October 10, the source again underwent a series of five transitions when the 35-100 keV flux increased to low-intensity levels of 200 400 mcrab, a factor of 4-7 times lower than what was observed in 1993. The low- and high-intensity states were characterized by two different spectral shapes. The low-state spectra are described by a power law with a spectral index of approx. 2. The high-state spectra, on the other hand, have two components: a thermal Comptonized shape below approx. 200 keV with electron temperature k(sub Te) of approx. 37 keV and optical depth tau approx. 2.8, and a soft power-law tail with photon index of 3.4 above 200 keV that extends to approx. 500 keV. The softer high-intensity spectrum and the harder low-intensity spectrum intersect at approx. 400 keV. The nonthermal power-law gamma-ray component in both the high- and low-intensity spectra suggests that the persistent nonthermal emission source is coupled to the hot and variable thermal emission source in the system. Furthermore, the correlation of the spectral characteristics with the high- and low-intensity states resembles that seen in two other gamma-ray emitting black hole candidates, GRO J0422+32 and Cygnus X-1, suggesting that perhaps similar system configurations and processes are occurring in these systems. Possible scenarios for interpreting these behaviors are discussed.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; Volume 622; 492-502
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-11
    Description: We present an 11" resolution map of the central 2 pc of the Galaxy in the CO J = 7 --〉 6 rotational transition. The CO emission shows rotation about Sgr A* but also evidence for noncircular turbulent motion and a clumpy morphology. We combine our data set with available CO measurements to model the physical conditions in the disk. We find that the molecular gas in the region is both warm and dense, with T approx. 200-300 K and n(sub H2) approx. (5-7) x 10(exp 4) cm(exp -3). The mass of warm molecular gas we measure in the central 2 pc is at least 2000 M(solar), about 20 times the UV-excited atomic gas mass, ruling out a UV heating scenario for the molecular material. We compare the available spectral tracers with theoretical models and conclude that molecular gas is heated with magnetohydrodynamic shocks with v approx. 10-20 km s(exp -1) and B approx. 0.3- 0.5 mG. Using the conditions derived with the CO analysis, we include the other important coolants, neutral oxygen and molecular hydrogen, to estimate the total cooling budget of the molecular material. We derive a mass-to-luminosity ratio of approx. 2-3 M(solar)(L(solar)exp -1), which is consistent with the total power dissipated via turbulent decay in 0.1 pc cells with v(sub rms) approx. 15 kilometers per second. These size and velocity scales are comparable to the observed clumping scale and the velocity dispersion. At this rate, the material near Sgr A* is dissipating its orbital energy on an orbital timescale and cannot last for more than a few orbits. Our conclusions support a scenario in which the features near Sgr A* such as the circumnuclear disk and northern arm are generated by infalling clouds with low specific angular momentum.
    Keywords: Astrophysics
    Type: Astrophysical Journal; Volume 623; 866-876
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-18
    Description: Outline of Content to be Presented: Session 1: Background on Human Space Flight, NASA Human Space Flight Programs: Apollo, Shuttle, ISS, U.S. Vision for Space Exploration, Goals of Human Spaceflight. Session. 2: Use of Polymers in NASA Technology Development, Life Support & Habitation Program, Spacecraft and Space Suit Requirements and Constraints Applications - Past, Current, Future Technologies in Development. Session 3: NASA Materials Database, Classes of Useful Polymers and Composites, Unique Requirements on Polymers in Space Applications of Synthetic and Biological Polymers. Session 4: Design of Polymer Parts for a Lunar Space Suit, Sample Activities for Teachers to Use in High School Classrooms.
    Keywords: Man/System Technology and Life Support
    Type: Teaching TEKS with Polymers: High School CHemistry with Meaningful Applications Workshop; Jan 31, 2005; Abilene, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-18
    Description: To achieve the exploration goals, new approaches to exploration are being envisioned that include robotic networks, modular systems, pre-positioned propellants and in-space assembly in Earth orbit, Lunar orbit and other locations around the cosmos. A fundamental requirement for rendezvous and docking to accomplish in-space assembly exists in each of these locations. While existing systems and technologies can accomplish rendezvous and docking in low earth orbit, and rendezvous and docking with crewed systems has been successfully accomplished in low lunar orbit, our capability must extend toward autonomous rendezvous and docking. To meet the needs of the exploration vision in-space assembly requiring both crewed and uncrewed vehicles will be an integral part of the exploration architecture. This paper focuses on the intelligent application of autonomous rendezvous and docking technologies to meet the needs of that architecture. It also describes key technology investments that will increase the exploration program's ability to ensure mission success, regardless of whether the rendezvous are fully automated or have humans in the loop.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 1st Space Exploration Conference; Jan 30, 2005 - Feb 01, 2005; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-18
    Description: Accelerated charged particles have been used on Earth since 1930 to explore the very essence of matter, for industrial applications, and for medical treatments. Throughout the universe nature employs a dizzying array of acceleration processes to produce particles spanning twenty orders of magnitude in energy range, while shaping our cosmic environment. Here, we introduce and review the basic physical processes causing particle acceleration, in astrophysical plasmas from geospace to the outer reaches of the cosmos. These processes are chiefly divided into four categories: adiabatic and other forms of non-stochastic acceleration, magnetic energy storage and stochastic acceleration, shock acceleration, and plasma wave and turbulent acceleration. The purpose of this introduction is to set the stage and context for the individual papers comprising this monograph.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: In the past decade, many changes have been made to Team X's process of designing each spacecraft, with the purpose of making the overall procedure more efficient over time. One such improvement is the use of information databases from previous missions, designs, and research. By referring to these databases, members of the design team can locate relevant instrument data and significantly reduce the total time they spend on each design. The files in these databases were stored in several different formats with various levels of accuracy. During the past 2 months, efforts have been made in an attempt to combine and organize these files. The main focus was in the Instruments department, where spacecraft subsystems are designed based on mission measurement requirements. A common database was developed for all instrument parameters using Microsoft Excel to minimize the time and confusion experienced when searching through files stored in several different formats and locations. By making this collection of information more organized, the files within them have become more easily searchable. Additionally, the new Excel database offers the option of importing its contents into a more efficient database management system in the future. This potential for expansion enables the database to grow and acquire more search features as needed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Summer Student Research Presentations; 48; JPL-Publ-05-07
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-18
    Description: The Advanced Projects Design Team, also known as Team X, is a concurrent engineering team that quickly and cheaply designs space mission architectures including the flight system and subsystems, the trajectory, and ground system. Through the use of ICEMaker, an Excel spreadsheet database, the parameters from each subsystem can be shared and used among the other subsystems. This allows for entire missions to be planned with only a few short design team sessions. Based on the results, the feasibility of the mission concept can be determined. Over the Years since the team was created, the amount of information being shared among subsystems on the database has increased, however many of the parameters are now obsolete. Removal of these unused parameters Will clean UP the database and help to streamline the mission design process. By comparing parameter files from previous Team X mission studies, the parameter usage can be determined. As was initially suspected there are more unused parameters on the database than parameters that are actually used.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Summer Student Research Presentations; 35-36; JPL-Publ-05-07
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-18
    Description: The Jet Propulsion Laboratory's Advanced Design Team was formed in April 1995 to improve the quality and reduce the cost of JPL proposals and advanced mission studies. Currently a consolidation attempt is underway to develop a Model Library for use by JPL's Advanced Projects Design Team by collecting existing instrument models for inclusion in the library. This will allow users to readily find models of interest. In addition to this, there is also an attempt underway to develop a new approach to instrument model design used by the Advanced Design Team (Team X). This new approach consists of splitting up the different model parts such as orbital parameters, instrument parameters and instrument outputs into separate searchable parts. The user can then decide between design trades and use the different pieces to construct a model that will fit their needs. As well, this will lead to the opportunity for the large variety of usable instrument models.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Summer Student Research Presentations; 29; JPL-Publ-05-07
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: This grant was intended for, and has been used for, the support of the specialized CalFUSE data reduction required for these non-standard observations. The goal of the program was to search for FUV continuum radiation from T-Tauri stars, which would have affected the chemistry in the proto-planetary disk. Because of the low flux expected, the standard background subtraction method would not be appropriate. Rather on-chip background determination was expected to be required.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: I will review the current state of Cosmology with Clusters and discuss the application of microcalorimeter arrays to this field. With the launch of Astro-E2 this summer and a slew of new missions being developed, microcalorimeters are the next big thing in x-ray astronomy. I will cover the basics and not-so-basic concepts of microcalorimeter designs and look at the future to see where this technology will go.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: Massive black hole binary coalescences are among the most important astrophysical sources of gravitational waves to be observed by LISA. The ability to observe and characterize such sources with masses approximately equal to 105 M/odot and larger at high redshifts is strongly dependent on the sensitivity of LISA in the low frequency (0.1 mHz and below) regime. We examine LISA's ability to observe these systems at redshifts up to z approximately equal to 10 for various proposed values of the low frequency sensitivity, under current assumptions about the merger rates. The discussion will focus on the astrophysical information that can be gained by these observations.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-18
    Description: The Chandra X-ray Observatory had its origins in a 1963 proposal led by Riccardo Giacconi that called for a 1-meter diameter, 1-arcsecond class X-Ray telescope for studying the Universe. We will briefly discuss the history of the mission, the development of the hardware, its testing, and the launch on 1999, July 23. The majority of the talk will be an admittedly eclectic review of some of the most exciting scientific highlights. These include the detection and identification of the first source seen with Chandra - an unusual Seyfert 1 we nicknamed Leon X-1, the detailed study of the Crab Nebula and its pulsar, and spectacular images of other supernova remnants including the recent 1-Million second exposure on Cas A. We also will summarize some of the major Chandra findings for normal and active galaxies and we will illustrate the breadth of science enabled by Chandra observations of clusters of galaxies. We will close with a brief look towards the future of the field.
    Keywords: Astrophysics
    Type: 205th Meeting of the American Astronomical Society; Jan 09, 2005 - Jan 13, 2005; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-18
    Description: The first light from an extrasolar planet was recently detected. These results, obtained for two transiting extrasolar planets at different infrared wavelengths, open a new era in the field of extrasolar planet detection and characterization because for the first time we can now detect planets beyond the solar system directly. Using the Spitzer Space Telescope at 24 microns, we observed the modulation of combined light (star plus planet) from the HD 209458 system as the planet disappeared behind the star during secondary eclipse and later re-emerged, thereby isolating the light from the planet. We obtained a planet-to-star ratio of 0.26% at 24 microns, corresponding to a brightness temperature of 1130 + / - 150 K. We will describe this result in detail, explain what it can tell us about the atmosphere of HD 209458 b, and discuss implications for the field of astrobiology. These results represent a significant step on the path to detecting terrestrial planets around other stars and in understanding their atmospheres in terms of composition and temperature.
    Keywords: Astrophysics
    Type: Astrobiology and the Origins of Life; May 24, 2005 - May 28, 2005; Hamilton, Ontario; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: It has long been known that photoionization and photoabsorption play a dominant role in determining the state of gas in nebulae surrounding hot stars and in active galaxies. Recent observations of X-ray spectra demonstrate that these processes are also dominant in highly ionized gas near compact objects, and also affect the transmission of X-rays from the majority of astronomical sources. This has led to new insights into the understanding of what is going on in these sources. It has also pointed out the need for a better atomic cross sections for photoionization and absorption, notably for processes involving inner shells. In this talk I will discuss these issues, what is known and where more work is needed.
    Keywords: Astrophysics
    Type: APS/DAMOP Conference; May 18, 2005 - May 19, 2005; Lincoln, NE; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-18
    Description: In this paper, we present in situ observations of surface waves at the magnetopause and oscillatory magnetospheric field lines, and coordinated observations Pc5 waves at geosynchronous orbit by the GOES spacecraft, and on the ground by CANOPUS and 210 Degree Magnetic Meridian (210MMJ magnetometer arrays. On February 7,2002 during a highspeed solar wind stream, the Polar spacecraft was skimming the magnetopause in a post-noon meridian plane for approximately 3 hours. During this interval, it made two short excursions and a few partial crossings into the magnetosheath and observed quasi-periodic cold ion bursts in the region adjacent to the magnetopause current layer. The multiple magnetopause crossings as well as the velocity of the cold ion bursts indicate that the magnetopause was oscillating with about 6 minute period. Simultaneous observations of Pc5 waves at geosynchronous orbit by the GOES spacecraft and on the ground by the CANOPUS magnetometer array reveal that these magnetospheric pulsations were forced oscillations of magnetic field lines directly driven by the magnetopause oscillations. The magnetospheric pulsations occurred only in a limited longitudinal region in the post-noon dayside sector, and were not a global phenomenon as one would expect for global field line resonance. Thus, the magnetopause oscillations at the source were also limited to a localized region spanning about 4 hours in local time.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 2005 Chapman Conference on Magnetospheric ULF Waves; Mar 21, 2005 - Mar 25, 2005; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-18
    Description: Gravitational wave detectors on earth and in space will open up a new observational window on the universe. The new information about astrophysics and fundamental physics these observations will bring is expected to pose exciting challenges. This talk will provide an overview of this emerging area of gravitational wave science, with a focus on the challenges it will bring for numerical relativistic astrophysics and a look at some recent results.
    Keywords: Astrophysics
    Type: PCA Workshop; May 01, 2005 - May 05, 2005; CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-18
    Description: Many accreting neutron stars, including two of the millisecond pulsars, exhibit high frequency oscillations during Type I X-ray bursts. The properties of the burst oscillations reflect the nature of the thermal asymmetry on the stellar surface. The mechanism that gives rise to the aspzetry, however , remains unclear: possibilities include a hotspot due to uneven fuel distribution, modes of oscillation in the surface layers of the neutron star, or vortices driven by the Coriolis force. I will review some of the latest theory and observations, and present the results of a recent study of variability in the burst oscillations of the millisecond pulsar 51814-338.
    Keywords: Astrophysics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: The presence of dust in the interstellar medium of galaxies dramatically affects their spectral appearance, and the interpretation of their underlying physical properties. Consequently, the diagnostic of galaxy spectra depends crucially on our understanding of the nature and properties of these dust particles. Models of interstellar dust particles must be able to reproduce a basic set of observational constraints, including the general interstellar extinction and infrared emission observed in the diffuse interstellar medium (ISM). Recent analysis of the solar spectrum have resulted in a convergence between the solar and B star abundances. This development, and the steadiness in the solar abundance determination of the primary refractory elements Mg, Si, and Fe, strongly suggest that any viable dust model must also obey interstellar abundances constraints. I will present fifteen dust models that differ in composition and size distribution and that simultaneously satisfy the local extinction, infrared emission, and abundances constraints have been shown to exist. This multitude of viable dust models provides us with an increased flexibility in understanding dust evolution and the many variations in dust properties in different phases of the ISM and stellar environments.
    Keywords: Astrophysics
    Type: International Conference on Planetary Nebulae as Astronomical Tool; Jun 26, 2005 - Jul 02, 2005; Gdansk; Poland
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-18
    Description: We review the the past five years of observations of compact X-ray binaries with NASA's chandra X-Ray Observatory.
    Keywords: Astrophysics
    Type: Spectra and Timing of Compact X-Ray Binaries; Jan 17, 2005 - Jan 21, 2005; Mumbai; India
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: The nutation (wobble) of a spinning spacecraft in the presence of energy dissipation is a well-known problem in dynamics and is of particular concern for space missions. The nutation of a spacecraft spinning about its minor axis typically grows exponentially and the rate of growth is characterized by the Nutation Time Constant (NTC). For launch vehicles using spin-stabilized upper stages, fuel slosh in the spacecraft propellant tanks is usually the primary source of energy dissipation. For analytical prediction of the NTC this fuel slosh is commonly modeled using simple mechanical analogies such as pendulums or rigid rotors coupled to the spacecraft. Identifying model parameter values which adequately represent the sloshing dynamics is the most important step in obtaining an accurate NTC estimate. Analytic determination of the slosh model parameters has met with mixed success and is made even more difficult by the introduction of propellant management devices and elastomeric diaphragms. By subjecting full-sized fuel tanks with actual flight fuel loads to motion similar to that experienced in flight and measuring the forces experienced by the tanks these parameters can be determined experimentally. Currently, the identification of the model parameters is a laborious trial-and-error process in which the equations of motion for the mechanical analog are hand-derived, evaluated, and their results are compared with the experimental results. The proposed research is an effort to automate the process of identifying the parameters of the slosh model using a MATLAB/SimMechanics-based computer simulation of the experimental setup. Different parameter estimation and optimization approaches are evaluated and compared in order to arrive at a reliable and effective parameter identification process. To evaluate each parameter identification approach, a simple one-degree-of-freedom pendulum experiment is constructed and motion is induced using an electric motor. By applying the estimation approach to a simple, accurately modeled system, its effectiveness and accuracy can be evaluated. The same experimental setup can then be used with fluid-filled tanks to further evaluate the effectiveness of the process. Ultimately, the proven process can be applied to the full-sized spinning experimental setup to quickly and accurately determine the slosh model parameters for a particular spacecraft mission. Automating the parameter identification process will save time, allow more changes to be made to proposed designs, and lower the cost in the initial design stages.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA-2005-3596 , KSC-2005-072 , 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 10, 2005 - Jul 13, 2005; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: Long-term human mission to space, such as living in International Space Station (ISS), Lunar, and Martian bases, and travel to Mars, must m ake use of Advanced Life Support Systems (ALSS) to generate and recycle critical life supporting elements like oxygen and water. Oxygen Gen eration Assembly (OGA) and Water Processor Assembly (WPA), critical c omponents of ALSS, make use of series of granular material packed beds for generation and recycling of oxygen and water. Several granular m aterials can be used for generation, recycling, processing and recovery of oxygen and water. For example, they may include soft bed media, e.g. ion exchange resins for oxygen generation assembly and hard bed media such as, activated alumina, magchem (Magnesium oxide) and activa ted carbon to remove organic species like ethanol, methanol, and urea from wastewater in Water recovery/processing assembly. These beds are generally packed using a plate-spring mechanism to provide sufficien t compaction to the bed media throughout the course of operation. This paper presents results from an experimental study of a full-scale, 3 8.1 cm (15 inches) long and 3.7 cm (1.44 inches) diameter. activated alumina bed enclosed in a cylinder determining its force-displacement behavior, friction mobilizing force, and axial normal stress distribu tion under various axially applied loads and at different levels of packing. It is observed that force-displacement behavior is non-linear for low compaction level and becomes linear with increase in compaction of the bed media. Axial normal stress distribution along the length of the bed media decreased non-linearly with increase in depth from the loading end of the granular media. This paper also presents experimental results on the amount of particulates generated corresponding to various compaction levels. Particulates generated from each of the tests were measured using standard US sieves. It was found that the p articulates and the overall displacement of the bed media increased with decrease in initial compaction of the bed media. This effect could be attributed to the greater tendency for inter-particle sliding/rub bing due to smaller internal friction angles, as seen from the shear tests, at lesser initial compacted levels. Upon unloading, it was obse rved that there was no change in displacement (especially rebounding) in the bed media. This effect could be attributed to the fact that th e porous activated alumina particles fracture/break upon increase in applied load (during loading phase) and occupy void spaces in between the material grains; thereby leading to settling of the media. The lo ad-displacement curve becomes more linear with increase in initial compaction of the bed media. It is concluded that compaction considerabl y affects the load-displacement behavior of the bed media. A series of tests were also conducted on the packed bed media to determine the f orce required to mobilize the friction between the bed media and the housing cylinder. The results from these tests showed the existence of significant friction between the bed media and the encasing stainles s steel cylinder. Further, it was found that friction effects were more pronounced for media with higher initial compaction. Internal frict ion of the granular media was measured using direct shear apparatus. It was observed that the internal friction increased with increase in initial compaction of the bed media. In this study, a computational m odel (CM) is also developed using finite element software ANSYS to verify experimental results obtained for the distribution of the axial n ormal stress and axial displacement along the length of the full-scal e activated alumina bed media. In the computational model, the granular material is considered to have appropriate failure and frictional c ontact exists between the wall and the granular media. It is observed that the model predicts results closely with the experimental method. The compational results show that the axial normal stress distribution along the length of the activated alumina media decreases non-linea rly from the loading end and is negligible beyond a certain depth. Th is can be attributed to the existence of friction between the walls and the media and that the friction takes up most of the applied load.
    Keywords: Man/System Technology and Life Support
    Type: KSC-2005-018 , NASA Workshop on Granular Materials in Lunar and Martian Exploration; Feb 02, 2005 - Feb 03, 2005; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: Oral presentation sessions in this conference include: Clouds and cores; Star formation and protostars; Binaries and multiples; Newborn massive stars; jets and outflows; Clusters and associations; T Tauri stars and disks; Brown dwarfs; Planet formation and evolution; Extrasolar planets; Dust and protoplanetary disks; Early solar system and Astrobiology. Poster presentations included: Clouds and Cores. Collapse and Protostars, Binaries and Multiples, Clusters, Associations, and the IMF, Jets and Outflows, T Tauri Stars and Other Young Stars, Disks and Disk Accretion, Brown Dwarfs, Herbig Ae/Be Stars and Massive Stars, Solar System Objects, Planet Formation, Extrasolar Planets and Planet Detection, Properties of Protoplanetary Disks, Migration and Planetary Orbits and Meteoritics and Astrobiology
    Keywords: Astrophysics
    Type: LPI-Contrib-1286 , Protostars and Planets V; Oct 24, 2005 - Oct 28, 2005; Waikoloa Village, HI; United States|(ISSN 1540-7845)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-12
    Description: Aerogel composites that are both nonflammable and hydrophobic have been developed for use as lightweight thermal- insulation materials for cryogenic systems. Aerogels are well known in the industry for their effectiveness as thermal insulators under cryogenic conditions, but the treatments used heretofore to render them hydrophobic also make them flammable. Nonflammability would make it safer to use aerogel insulation, especially in oxygen-rich environments and on cryogenic systems that contain liquid oxygen. A composite of this type is a silica aerogel reinforced with fibers. In comparison with unreinforced aerogels, the aerogel composite is about ten times as stiff and strong, better able to withstand handling, and more amenable to machining to required shapes. The composite can be made hydrophobic and nonflammable by appropriate design of a sol-gel process used to synthesize the aerogel component. In addition to very low thermal conductivity needed for insulation, aerogel composites of this type have been found to exhibit high resistance to moisture and nonflammability in oxygen-rich atmospheres: Samples floating on water for months gained no weight and showed no signs of deterioration. Samples were found to be nonflammable, even in pure oxygen at atmospheric pressure [14.7 psia (0.10 MPa)]
    Keywords: Man/System Technology and Life Support
    Type: MSC-23265 , NASA Tech Briefs, September 2005; 10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-12
    Description: Holographic glass light-shaping diffusers (GLSDs) are optical components for use in special-purpose illumination systems (see figure). When properly positioned with respect to lamps and areas to be illuminated, holographic GLSDs efficiently channel light from the lamps onto specified areas with specified distributions of illumination for example, uniform or nearly uniform irradiance can be concentrated with intensity confined to a peak a few degrees wide about normal incidence, over a circular or elliptical area. Holographic light diffusers were developed during the 1990s. The development of the present holographic GLSDs extends the prior development to incorporate sol-gel optical glass. To fabricate a holographic GLSD, one records a hologram on a sol-gel silica film formulated specially for this purpose. The hologram is a quasi-random, micro-sculpted pattern of smoothly varying changes in the index of refraction of the glass. The structures in this pattern act as an array of numerous miniature lenses that refract light passing through the GLSD, such that the transmitted light beam exhibits a precisely tailored energy distribution. In comparison with other light diffusers, holographic GLSDs function with remarkably high efficiency: they typically transmit 90 percent or more of the incident lamp light onto the designated areas. In addition, they can withstand temperatures in excess of 1,000 C. These characteristics make holographic GLSDs attractive for use in diverse lighting applications that involve high temperatures and/or requirements for high transmission efficiency for ultraviolet, visible, and near-infrared light. Examples include projectors, automobile headlights, aircraft landing lights, high-power laser illuminators, and industrial and scientific illuminators.
    Keywords: Man/System Technology and Life Support
    Type: KSC-12436 , NASA Tech Briefs, September 2005; 25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: A prototype of an electroporation system for sterilizing wastewater or drinking water has been developed. In electroporation, applied electric fields cause transient and/or permanent changes in the porosities of living cells. Electroporation at lower field strengths can be exploited to increase the efficiency of chemical disinfection (as in chlorination). Electroporation at higher field strengths is capable of inactivating and even killing bacteria and other pathogens, without use of chemicals. Hence, electroporation is at least a partial alternative to chlorination. The transient changes that occur in micro-organisms at lower electric-field strengths include significantly increased uptake of ions and molecules. Such increased uptake makes it possible to achieve disinfection at lower doses of chemicals (e.g., chlorine or ozone) than would otherwise be needed. Lower doses translate to lower costs and reduced concentrations of such carcinogenic chemical byproducts as trichloromethane. Higher electric fields cause cell membranes to lose semipermeability and thereby become unable to function as selective osmotic barriers between the cells and the environment. This loss of function is the cause of the cell death at higher electric-field intensities. Experimental evidence does not indicate cell lysis but, rather, combined leaking of cell proteins out of the cells as well as invasion of foreign chemical compounds into the cells. The concept of electroporation is not new: it has been applied in molecular biology and genetic engineering for decades. However, the laboratory-scale electroporators used heretofore have been built around small (400-microliter) cuvettes, partly because the smallness facilitates the generation of electric fields of sufficient magnitude to cause electroporation. Moreover, most laboratory- scale electroporators have been designed for testing static water. In contrast, the treatment cell in the present system is much larger and features a flow-through geometry, such that electric fields strong enough to effect 99.9- percent disinfection can be applied to water flowing in a pipe.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23377 , NASA Tech Briefs, October 2005; 25-26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-12
    Description: yourSkyG is the second generation of the software described in yourSky: Custom Sky-Image Mosaics via the Internet (NPO-30556), NASA Tech Briefs, Vol. 27, No. 6 (June 2003), page 45. Like its predecessor, yourSkyG supplies custom astronomical image mosaics of sky regions specified by requesters using client computers connected to the Internet. Whereas yourSky constructs mosaics on a local multiprocessor system, yourSkyG performs the computations on NASA s Information Power Grid (IPG), which is capable of performing much larger mosaicking tasks. (The IPG is high-performance computation and data grid that integrates geographically distributed 18 NASA Tech Briefs, September 2005 computers, databases, and instruments.) A user of yourSkyG can specify parameters describing a mosaic to be constructed. yourSkyG then constructs the mosaic on the IPG and makes it available for downloading by the user. The complexities of determining which input images are required to construct a mosaic, retrieving the required input images from remote sky-survey archives, uploading the images to the computers on the IPG, performing the computations remotely on the Grid, and downloading the resulting mosaic from the Grid are all transparent to the user
    Keywords: Man/System Technology and Life Support
    Type: NPO-40761 , NASA Tech Briefs, September 2005; 17-18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: A rugged iris mechanism has been designed to satisfy several special requirements, including a wide aperture in the "open" position, full obscuration in the "closed" position, ability to function in a cryogenic or other harsh environment, and minimization of friction through minimization of the number of components. An important element of the low-friction aspect of the design is maximization of the flatness of, and provision of small gaps between, adjacent iris blades. The tolerances of the design can be very loose, accommodating thermal expansions and contractions associated with large temperature excursions. The design is generic in that it is adaptable to a wide range of aperture sizes and can be implemented in a variety of materials to suit the thermal, optical, and mechanical requirements of various applications. The mechanism (see figure) includes an inner flat ring, an outer flat ring, and an even number of iris blades. The iris blades shown in front in the figure are denoted as "upper," and the iris blades shown partly hidden behind the front ones are denoted as "lower." Each iris blade is attached to the inner ring by a pivot assembly and to the outer ring by a roller/slider assembly. The upper and lower rings are co-centered and are kept in sliding contact. The iris is opened or closed by turning the outer ring around the center while holding the inner ring stationary. The mechanism is enclosed in a housing (not shown in the figure) that comprises an upper and a lower housing shell. The housing provides part of the sliding support for the outer ring and keeps the two rings aligned as described above. The aforementioned pivot assemblies at the inner ring also serve as spacers for the housing. The lower housing shell contains part of the lower sliding surface and features for mounting the overall mechanism and housing assembly. The upper housing shell contains part of the upper sliding surface.
    Keywords: Man/System Technology and Life Support
    Type: GSC-14550 , NASA Tech Briefs, September 2005; 19-20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-12
    Description: Spacecraft Engineering Simulation II (SES II) is a C-language computer program for simulating diverse aspects of operation of a spacecraft characterized by either three or six degrees of freedom. A functional model in SES can include a trajectory flight plan; a submodel of a flight computer running navigational and flight-control software; and submodels of the environment, the dynamics of the spacecraft, and sensor inputs and outputs. SES II features a modular, object-oriented programming style. SES II supports event-based simulations, which, in turn, create an easily adaptable simulation environment in which many different types of trajectories can be simulated by use of the same software. The simulation output consists largely of flight data. SES II can be used to perform optimization and Monte Carlo dispersion simulations. It can also be used to perform simulations for multiple spacecraft. In addition to its generic simulation capabilities, SES offers special capabilities for space-shuttle simulations: for this purpose, it incorporates submodels of the space-shuttle dynamics and a C-language version of the guidance, navigation, and control components of the space-shuttle flight software.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23537 , NASA Tech Briefs, September 2005; 16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-12
    Description: Filter disks made of glass frit have been found to be effective as means of high-throughput collection of metal oxide particles, ranging in size from a few to a few hundred nanometers, produced in gas-phase condensation reactors. In a typical application, a filter is placed downstream of the reactor and a valve is used to regulate the flow of reactor exhaust through the filter. The exhaust stream includes a carrier gas, particles, byproducts, and unreacted particle-precursor gas. The filter selectively traps the particles while allowing the carrier gas, the byproducts, and, in some cases, the unreacted precursor, to flow through unaffected. Although the pores in the filters are much larger than the particles, the particles are nevertheless trapped to a high degree: Anecdotal information from an experiment indicates that 6-nm-diameter particles of MnO2 were trapped with greater than 99-percent effectiveness by a filtering device comprising a glass-frit disk having pores 70 to 100 micrometer wide immobilized in an 8-cm-diameter glass tube equipped with a simple twist valve at its downstream end.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23425 , NASA Tech Briefs, August 2005; 15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-12
    Description: A portable electron-beam free-form fabrication (EB F3) system, now undergoing development, is intended to afford a capability for manufacturing metal parts in nearly net sizes and shapes. Although the development effort is oriented toward the eventual use of systems like this one to supply spare metal parts aboard spacecraft in flight, the basic system design could also be adapted to terrestrial applications in which there are requirements to supply spare parts on demand at locations remote from warehouses and conventional manufacturing facilities. Prior systems that have been considered for satisfying the same requirements (including prior free-form fabrication systems) are not easily portable because of their bulk and massive size. The mechanical properties of the components that such systems produce are often inferior to the mechanical properties of the corresponding original, conventionally fabricated components. In addition, the prior systems are not efficient in the utilization of energy and of feedstock. In contrast, the present developmental system is designed to be sufficiently compact and lightweight to be easily portable, to utilize both energy and material more efficiently, and to produce components that have mechanical properties approximating those of the corresponding original components. The developmental EB F3 system will include a vacuum chamber and associated vacuum pumps, an electron-beam gun and an associated power supply, a multiaxis positioning subsystem, a precise wire feeder, and an instrumentation system for monitoring and control. The electron-beam gun, positioning subsystem, and wire feeder will be located inside the vacuum chamber (see figure). The electron beam gun and the wire feeder will be mounted in fixed positions inside the domed upper portion of the vacuum chamber. The positioning subsystem and ports for the vacuum pumps will be located on a base that could be dropped down to provide full access to the interior of the chamber when not under vacuum. During operation, wire will be fed to a fixed location, entering the melted pool created by the electron beam. Heated by the electron beam, the wire will melt and fuse to either the substrate or with the previously deposited metal wire fused on top of the positioning table. Based on a computer aided design (CAD) model and controlled by a computer, the positioning subsystem
    Keywords: Man/System Technology and Life Support
    Type: MSC-23518 , NASA Tech Briefs, August 2005; 17-18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-12
    Description: The variable-pressure washer (VPW) is a proposed device that is so named because (1) it would play the role similar to that played by an ordinary washer, except that (2) the clamping pressure applied by it would vary with either circumferential or radial position. In a typical contemplated application, the radially varying clamping pressure would be used to obtain more nearly uniform compression on a pair of concentric seals (e.g., an O-ring or a gasket) in an assembly that experiences larger deformations normal to the sealing surface for locations around the outer diameter of the attachment flange when compared to locations around the inner diameter. The VPW (see figure) would include two interlocking channel rings pushed axially away from each other by compression spring-like components located at two or more radial positions. Each spring would have a different stiffness based on the radial location. Overlapping splits in each interlocking channel ring would allow for the non-uniform deformation in the rings. Each spring would be held in place by retaining cups attached to the inner flat surfaces of the channel rings. A plunger attached to one channel ring on the central axis would be captured in a plunger housing attached to the other channel ring: The capture of the plunger would hold the VPW together. When the VPW was clamped between two flat surfaces, the clamping force would be distributed unevenly across the face of the washer in the radial direction. The different stiffnesses of the springs would be chosen, in conjunction with other design parameters, to obtain a specified radial variation of clamping pressure in the presence of a specified clamping force.
    Keywords: Man/System Technology and Life Support
    Type: MFS-31323 , NASA Tech Briefs, July 2005; 18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-12
    Description: Three improvements have been devised for the cold-box process, which is a special molding process used to make sand/binder cores for casting hollow metal parts. These improvements are: The use of fiber-reinforced composite binder materials (in contradistinction to the non-fiber-reinforced binders used heretofore), The substitution of a directed-vortex core-blowing subprocess for a prior core-blowing process that involved a movable gassing plate, and The use of filters made from filtration-grade fabrics to prevent clogging of vents. For reasons that exceed the scope of this article, most foundries have adopted the cold-box process for making cores for casting metals. However, this process is not widely known outside the metal-casting industry; therefore, a description of pertinent aspects of the cold-box process is prerequisite to a meaningful description of the aforementioned improvements. In the cold-box process as practiced heretofore, sand is first mixed with a phenolic resin (considered to be part 1 of a three-part binder) and an isocyanate resin (part 2 of the binder). Then by use of compressed air, the mixture is blown into a core box, which is a mold for forming the core. Next, an amine gas (part 3 of the binder) that acts as a catalyst for polymerization of parts 1 and 2 is blown through the core box. Alternatively, a liquid amine that vaporizes during polymerization can be incorporated into the sand/resin mixture. Once polymerization is complete, the amine gas is purged from the core box by use of compressed air. The finished core is then removed from the core box.
    Keywords: Man/System Technology and Life Support
    Type: MFS-31819/20/21 , NASA Tech Briefs, July 2005; 21-22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-12
    Description: Composite solid freeform fabrication (C-SFF) or composite layer manufacturing (CLM) is an automated process in which an advanced composite material (a matrix reinforced with continuous fibers) is formed into a freestanding, possibly complex, three-dimensional object. In CLM, there is no need for molds, dies, or other expensive tooling, and there is usually no need for machining to ensure that the object is formed to the desired net size and shape. CLM is a variant of extrusion-type rapid prototyping, in which a model or prototype of a solid object is built up by controlled extrusion of a polymeric or other material through an orifice that is translated to form patterned layers. The second layer is deposited on top of the first layer, the third layer is deposited on top of the second layer, and so forth, until the stack of layers reaches the desired final thickness and shape. The elements of CLM include (1) preparing a matrix resin in a form in which it will solidify subsequently, (2) mixing the fibers and matrix material to form a continuous pre-impregnated tow (also called "towpreg"), and (3) dispensing the pre-impregnated tow from a nozzle onto a base while moving the nozzle to form the dispensed material into a patterned layer of controlled thickness. When the material deposited into a given layer has solidified, the material for the next layer is deposited and patterned similarly, and so forth, until the desired overall object has been built up as a stack of patterned layers. Preferably, the deposition apparatus is controlled by a computer-aided design (CAD) system. The basic CLM concept can be adapted to the fabrication of parts from a variety of matrix materials. It is conceivable that a CLM apparatus could be placed at a remote location on Earth or in outer space where (1) spare parts are expected to be needed but (2) it would be uneconomical or impractical to store a full inventory of spare parts. A wide variety of towpregs could be prepared and stored on spools until needed. Long-shelf-life towpreg materials suitable for such use could include thermoplastic-coated carbon fibers and metal-coated SiC fibers. When a spare part was needed, the part could be fabricated by CLM under control by a CAD data file; thus, the part could be built automatically, at the scene, within hours or minutes.
    Keywords: Man/System Technology and Life Support
    Type: MSC-22993 , NASA Tech Briefs, July 2005; 22-23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-12
    Description: An electronic instrument has been developed as a prototype of a portable crane-load contact sensor. Such a sensor could be helpful in an application in which the load rests on a base in a horizontal position determined by vertical alignment pins (see Figure 1). If the crane is not positioned to lift the load precisely vertically, then the load can be expected to swing once it has been lifted clear of the pins. If the load is especially heavy, large, and/or fragile, it could hurt workers and/or damage itself and nearby objects. By indicating whether the load remains in contact with the pins when it has been lifted a fraction of the length of the pins, the crane-load contact sensor helps the crane operator determine whether it is safe to lift the load clear of the pins: If there is contact, then the load is resting against the sides of the pins and, hence, it may not be safe to lift; if contact is occasionally broken, then the load is probably not resting against the pins, so it should be safe to lift. It is assumed that the load and base, or at least the pins and the surfaces of the alignment holes in the load, are electrically conductive, so the instrument can use electrical contact to indicate mechanical contact. However, DC resistance cannot be used as an indicator of contact for the following reasons: The load and the base are both electrically grounded through cables (the load is grounded through the lifting cable of the crane) to prevent discharge of static electricity. In other words, the DC resistance between the load and the pins is always low, as though they were always in direct contact. Therefore, instead of DC resistance, the instrument utilizes the AC electrical impedance between the pins and the load. The signal frequency used in the measurement is high enough (.1 MHz) that the impedance contributed by the cables and the electrical ground network of the building in which the crane and the base are situated is significantly greater than the contact impedance between the pins and the load. The instrument includes a signal generator and voltage-measuring circuitry, and is connected to the load and the base as shown in Figure 2. The output of the signal generator (typically having amplitude of the order of a volt) is applied to the load via a 50-resistor, and the voltage between the load and the pins is measured. When the load and the pins are not in contact, the impedance between them is relatively high, causing the measured voltage to exceed a threshold value. When the load and the pins are in contact, the impedance between them falls to a much lower value, causing the voltage to fall below the threshold value. The voltage-measuring circuitry turns on a red light-emitting diode (LED) to indicate the lower-voltage/ contact condition. Whenever the contact has been broken and the non-contact/higher-voltage condition has lasted for more than 2 ms, the voltage-measuring circuitry indicates this condition by blinking a green LED.
    Keywords: Man/System Technology and Life Support
    Type: KSC-12702 , NASA Tech Briefs, July 2005; 7-8
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-12
    Description: Units of superconducting circuitry that exploit the concept of the single- Cooper-pair box (SCB) have been built and are undergoing testing as prototypes of logic gates that could, in principle, constitute building blocks of clocked quantum computers. These units utilize quantized charge states as the quantum information-bearing degrees of freedom. An SCB is an artificial two-level quantum system that comprises a nanoscale superconducting electrode connected to a reservoir of Cooper-pair charges via a Josephson junction. The logical quantum states of the device, .0. and .1., are implemented physically as a pair of charge-number states that differ by 2e (where e is the charge of an electron). Typically, some 109 Cooper pairs are involved. Transitions between the logical states are accomplished by tunneling of Cooper pairs through the Josephson junction. Although the two-level system contains a macroscopic number of charges, in the superconducting regime, they behave collectively, as a Bose-Einstein condensate, making possible a coherent superposition of the two logical states. This possibility makes the SCB a candidate for the physical implementation of a qubit. A set of quantum logic operations and the gates that implement them is characterized as universal if, in principle, one can form combinations of the operations in the set to implement any desired quantum computation. To be able to design a practical quantum computer, one must first specify how to decompose any valid quantum computation into a sequence of elementary 1- and 2-qubit quantum gates that are universal and that can be realized in hardware that is feasible to fabricate. Traditionally, the set of universal gates has been taken to be the set of all 1-qubit quantum gates in conjunction with the controlled-NOT (CNOT) gate, which is a 2-qubit gate. Also, it has been known for some time that the SWAP gate, which implements square root of the simple 2-qubit exchange interaction, is as computationally universal as is the CNOT operation.
    Keywords: Man/System Technology and Life Support
    Type: NPO-30213 , NASA Tech Briefs, July 2005; 12-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Three documents discuss a method of controlling the diameter of a laser beam projected from Earth to any altitude ranging from low orbit around the Earth to geosynchronous orbit. Such laser beams are under consideration as means of supplying power to orbiting spacecraft at levels of the order of tens of kilowatts apiece. Each such beam would be projected by use of a special purpose telescope having an aperture diameter of 15 m or more. Expanding the laser beam to such a large diameter at low altitude would prevent air breakdown and render the laser beam eyesafe. Typically, the telescope would include an adaptive-optics concave primary mirror and a convex secondary mirror. The laser beam transmitted out to the satellite would remain in the near field on the telescope side of the beam waist, so that the telescope focal point would remain effective in controlling the beam width. By use of positioning stages having submicron resolution and repeatability, the relative positions of the primary and secondary mirrors would be adjusted to change the nominal telescope object and image distances to obtain the desired beam diameter (typically about 6 m) at the altitude of the satellite. The limiting distance D(sub L) at which a constant beam diameter can be maintained is determined by the focal range of the telescope 4 lambda f(sup 2) where lambda is the wavelength and f the f/number of the primary mirror. The shorter the wavelength and the faster the mirror, the longer D(sub L) becomes.
    Keywords: Man/System Technology and Life Support
    Type: MFS-32039-1 , NASA Tech Briefs, July 2005; 31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-12
    Description: A report presents an overview of an architecture for a software-reconfigurable network data processor for a spacecraft engaged in scientific exploration. When executed on suitable electronic hardware, the software performs the functions of a physical layer (in effect, acts as a software radio in that it performs modulation, demodulation, pulse-shaping, error correction, coding, and decoding), a data-link layer, a network layer, a transport layer, and application-layer processing of scientific data. The software-reconfigurable network processor is undergoing development to enable rapid prototyping and rapid implementation of communication, navigation, and scientific signal-processing functions; to provide a long-lived communication infrastructure; and to provide greatly improved scientific-instrumentation and scientific-data-processing functions by enabling science-driven in-flight reconfiguration of computing resources devoted to these functions. This development is an extension of terrestrial radio and network developments (e.g., in the cellular-telephone industry) implemented in software running on such hardware as field-programmable gate arrays, digital signal processors, traditional digital circuits, and mixed-signal application-specific integrated circuits (ASICs).
    Keywords: Man/System Technology and Life Support
    Type: NPO-30357 , NASA Tech Briefs, July 2005; 31-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-12
    Description: Multicomponent, rare-earth-doped, perovskite-type thermal-barrier coating materials have been developed in an effort to obtain lower thermal conductivity, greater phase stability, and greater high-temperature capability, relative to those of the prior thermal-barrier coating material of choice, which is yttria-partially stabilized zirconia. As used here, "thermal-barrier coatings" (TBCs) denotes thin ceramic layers used to insulate air-cooled metallic components of heat engines (e.g., gas turbines) from hot gases. These layers are generally fabricated by plasma spraying or physical vapor deposition of the TBC materials onto the metal components. A TBC as deposited has some porosity, which is desirable in that it reduces the thermal conductivity below the intrinsic thermal conductivity of the fully dense form of the material. Undesirably, the thermal conductivity gradually increases because the porosity gradually decreases as a consequence of sintering during high-temperature service. Because of these and other considerations such as phase transformations, the maximum allowable service temperature for yttria-partially stabilized zirconia TBCs lies in the range of about 1,200 to 1,300 C. In contrast, the present multicomponent, rare-earth-doped, perovskite-type TBCs can withstand higher temperatures.
    Keywords: Man/System Technology and Life Support
    Type: LEW-17432-1 , NASA Tech Briefs, June 2005; 17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-12
    Description: A report presents a short discussion of one company's effort to develop composites of carbon nanotubes in epoxy and other polymer matrices. The focus of the discussion is on the desirability of chemically modifying carbon nanotubes to overcome their inherent chemical nonreactivity and thereby enable the formation of strong chemical bonds between nanotubes and epoxies (or other polymeric matrix materials or their monomeric precursors). The chemical modification is effected in a process in which discrete functional groups are covalently attached to the nanotube surfaces. The functionalization process was proposed by the company and demonstrated in practice for the first time during this development effort. The covalently attached functional groups are capable of reacting with the epoxy or other matrix resin to form covalent bonds. Furthermore, the company uses this process to chemically modify the nanotube surfaces, affording tunable adhesion to polymers and solubility in select solvents. Flat-sheet composites containing functionalized nanotubes demonstrate significantly improved mechanical, thermal, and electrical properties.
    Keywords: Man/System Technology and Life Support
    Type: MSC-23428 , NASA Tech Briefs, June 2005; 31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the initiation of a low-current, high-voltage cathode spot. Plasma pressure associated with the cathode spot as well as the large voltage drop at the cathode spot accelerates the charged particles toward the substrate. The ultimate kinetic energy attained by particles exiting the particle holder depends in part on the magnitude of the cathode spot sheath potential difference, which is proportional to the magnitude of the voltage pulse, and the on the electric charge on the dust. The magnitude of the voltage pulse can be controlled directly, whereas the particle s electric charge can be controlled indirectly by controlling the operating parameters of the plasma apparatus.
    Keywords: Man/System Technology and Life Support
    Type: LEW-17438 , NASA Tech Briefs, June 2005; 28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-12
    Description: Shapes different from the traditional ones have been proposed for face worm gears and for conical and cylindrical worms that mesh with them. The proposed shapes are based on the concept of generating a face worm gear surface by use of a tilted head cutter instead of by the traditional use of a hob. (As used here, head cutter is also meant to signify, alternatively, a head grinding tool.) The gear-surface-generation equipment would be similar to that used for generation of spiral bevel and hypoid gears. In comparison with the corresponding traditional hob, a tilted head cutter according to the proposal would be larger, could be fabricated with greater precision, and would enable the generation of gear surfaces with greater precision and greater productivity. A face worm gear would be generated (see figure) by use of a tilted head cutter, the blades or grinding surfaces of which would have straight-line profiles. The tilt of the head cutter would prevent interference with teeth adjacent to the groove being cut or ground. A worm to mesh with the face worm gear would be generated by use of a tilted head cutter mounted on the cradle of a generating machine. The blades or grinding surfaces of the head cutter would have a parabolic profile and would deviate from the straight-line profiles of the head cutter for the face worm gear. The shortest distance between the worm and the cradle would follow a parabolic function during the cycle of meshing in the generating process to provide a parabolic function of transmission errors to the gear drive. The small mismatch between the profiles of the face-worm-gear and worm head cutters would make it possible to localize the bearing contact in the worm gear drive. The parabolic function of transmission errors could absorb discontinuous linear functions of transmission errors caused by errors of alignment; this could afford a significant benefit, in that such errors are main sources of noise and vibration in gear drives. The main advantage of using tilted head cutters is that cutting speeds are independent of the shape-generation processes, making it possible to choose cutting speeds that are optimum with respect to requirements to minimize temperatures and deformations during fabrication and improve the quality of finished parts.
    Keywords: Man/System Technology and Life Support
    Type: LEW-17596-1 , NASA Tech Briefs, June 2005; 19-20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-12
    Description: Thin, transparent layers comprising mats of carbon nanotubes have been proposed for providing lateral (that is, inplane) electrical conductivities for collecting electric currents from the front surfaces of the emitter layers of thin-film solar photovoltaic cells. Traditionally, thin, semitransparent films of other electrically conductive materials (usually, indium tin oxide, zinc oxide, or cadmium sulfide) have been used for this purpose. As in the cases of the traditional semitransparent conductive films, the currents collected by the nanotube layers would, in turn, be further collected by front metal contact stripes. Depending on details of a specific solar-cell design, the layer of carbon nanotubes would be deposited in addition to, or instead of, a semitransparent layer of one of these traditional conductive materials (see figure). The proposal is expected to afford the following advantages: The electrical conductivity of the carbon- nanotube layer would exceed that of the corresponding semitransparent layer of traditional electrically conductive material. The greater electrical conductivity of the carbon-nanotube layer would make it possible to retain adequate lateral electrical conductivity while reducing the thickness of, or eliminating entirely, the traditional semitransparent conductive layer. As a consequence of thinning or elimination of the traditional semitransparent conductive layer, less light would be absorbed, so that more of the incident light would be available for photovoltaic conversion. The greater electrical conductivity of the carbon-nanotube layer would make it possible to increase the distance between front metal contact stripes, in addition to (or instead of) thinning or eliminating the layer of traditional semitransparent conductive material. Consequently, the fraction of solar-cell area shadowed by front metal contact stripes would be reduced again, making more of the incident light available for photovoltaic conversion. The electrical conductivities of individual carbon nanotubes can be so high that the mat of carbon nanotubes could be made sparse enough to be adequately transparent while affording adequate lateral electrical conductivity of the mat as a whole. The thickness of the nanotube layer would be chosen so that the layer would contribute significant lateral electrical conductivity, yet would be as nearly transparent as possible to incident light. A typical thickness for satisfying these competing requirements is expected to lie between 50 and 100 nm. The optimum thickness must be calculated by comparing the lateral electrical conductivity, the distance between front metal stripes, and the amount of light lost by absorption in the nanotube layer.
    Keywords: Man/System Technology and Life Support
    Type: LEW-17562/3-1 , NASA Tech Briefs, June 2005; 11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-12
    Description: Two short reports discuss modifications of a small, lightweight combustion chamber that comprises a carbon/carbon composite outer shell and an iridium/ rhenium inner liner. The first report discusses chamber design modifications made as results of hot-fire tests and post-test characterization. The Books & Reports 32 NASA Tech Briefs, June 2005 modifications were intended to serve a variety of purposes, including improving fabrication, reducing thermal-expansion mismatch stresses, increasing strength-to-weight ratios of some components, and improving cooling of some components. The second report discusses (1) the origin of stress in the mismatch between the thermal expansions of the Ir/Re liner and a niobium sleeve and flange attached to the carbon/ carbon shell and (2) a modification intended to relieve the stress. The modification involves the redesign of an inlet connection to incorporate a compressible seal between the Ir/Re liner and the Nb flange. A nickel alloy was selected as the seal material on the basis of its thermal-expansion properties and its ability to withstand the anticipated stresses, including the greatest stresses caused by the high temperatures to be used in brazing during fabrication.
    Keywords: Man/System Technology and Life Support
    Type: MSC-22981/82 , NASA Tech Briefs, June 2005; 31-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...