ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems  (3)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress  (2)
  • American Geophysical Union  (5)
  • American Meteorological Society
  • National Academy of Sciences
  • 2005-2009  (5)
  • 1980-1984
  • 1925-1929
  • 2005  (5)
Collection
Keywords
Publisher
Years
  • 2005-2009  (5)
  • 1980-1984
  • 1925-1929
Year
  • 1
    Publication Date: 2017-04-04
    Description: Chemical and isotopic data have been used as geochemical tracers for a genetic characterization of hydrocarbon gases from a total of eleven manifestations located in Eastern and Central-Southern Sicily (Italy). The molecular analysis shows that almost all the samples are enriched in methane (up to 93.2% Vol.), with the exception of four gas samples collected around Mt. Etna showing high mantle-derived CO2 content. Methane isotope signatures suggest that these are thermogenic gases or a mixture between thermogenic gases and microbial gases. Although samples from some mud volcanoes in Southern Sicily (Macalube di Aragona) show isotope signatures consistent with a mixing model between thermogenic and microbial, by combining the molecular compositions (C1/(C2 + C3))and the methane isotope ratios (d13C1), such a process seems to be excluded. Therefore, the occurrence of secondary post-genetic processes should be invoked. Two main hypotheses have been considered: the first hypothesis includes that the gas is produced by microbial activity and altered post-genetically by microbial oxidation of methane, while according to the second hypothesis thermogenic gas have modified their molecular ratios due to vertical migration.
    Description: Published
    Description: L06607
    Description: partially_open
    Keywords: Isotopic composition/chemistry ; Organic geochemistry ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 1041380 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The Neapolitan volcanic region is located within the graben structure of the Campanian Plain (CP), which developed between the western sector of the Appenine Chain and the eastern margin of the Tyrrhenian Sea. Two volcanic areas, spaced less than 10 km apart, are situated within the CP: the Somma-Vesuvius Volcano (SVV) and the Phlegraean Volcanic District (PVD). SVV is a typical stratovolcano, whereas PVD, including Campi Flegrei, Procida, and Ischia, is composed mostly of monogenetic centers. This contrast is due to different magma supply systems: a widespread fissure-type system beneath the PVD and a central-type magma supply system for the SVV. Volcanological, geophysical, and geochemical data show that magma viscosity, magma supply rate, and depth of magma storage are comparable at PVD and SVV, whereas different structural arrangements characterize the two areas. On the basis of geophysical data and magma geochemistry, an oblique-extensional tectonic regime is proposed within the PVD, whereas in the SVVarea a compressive stress regime dominates over extension. Geophysical data suggest that the area with the maximum deformation rate extends between the EW-running 41st parallel and the NE-running Magnaghi-Sebeto fault systems. The PVD extensional area is a consequence of the Tyrrhenian Sea opening and is decoupled from the surrounding areas (Roccamonfina and Somma-Vesuvius) which are still dominated by Adriatic slab dynamics. Spatially, we argue that the contribution of the asthenospheric wedge become much less important from W-NW to E-SE in the CP. The development of the two styles of volcanism in the CP reflects the different tectonic regimes acting in the area.
    Description: Published
    Description: 1-25
    Description: partially_open
    Keywords: Volcanic styles ; Tectonic setting ; Neapolitan volcanic region ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 428 bytes
    Format: 1655376 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The Jalisco Block (JB) is a geologically and tectonically complex part of northwestern Mexico characterized by active subduction-type volcanism, rifting, and old stable structures. Thermal springs and groups of springs are widely distributed over JB. Bubbling gas from seven thermal springs located within different tectonic environments of the JB was analyzed for He, 20Ne, and N2 concentrations and d15N ratios. All gases are N2-dominant (〉84%) with the exception of one sample (Rio´ Purificacio´n), which has a significant CH4 content (about 50%). All collected gas samples are relatively high in He, up to 1500 ppm vol and with 3He/4He values ranging from 0.6 to 4.5 Ra. All measured nitrogen isotope ratios are heavier than air with d15N values ranging from 0.5 to 5.0%. The relative N2 excess with respect to air-saturated water computed on the basis of N2 and 20Ne contents indicates the contribution of a nonatmospheric N2 source. All the samples show a good correlation between d15N and the relative excess of N2 with d15N +5.3% for the maximum N2 excess of 100%. Due to a presumed lack of seafloor sediment involved in the subduction process, such a d15N positive value seems to reflect the addition to the fluids of a heavy nitrogen originating from metamorphism processes of rocks occurring within the overlying continental crust.
    Description: Published
    Description: 1-9
    Description: partially_open
    Keywords: bubbling gases ; forearc region ; Jalisco Block-Mexico ; nitrogen isotopes ; subduction-related volcanism ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 532399 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We report results on the measured high 3He/4He isotope ratio in western Sicily, interpreted together with the heat data. The study of this sector of the Europe-Africa interaction is crucial to a better understanding of the tectonics and the geodynamical evolution of the central Mediterranean area. The estimated mantle-derived helium fluxes in the investigated areas are up to 2–3 orders of magnitude greater than those of a stable continental area. The highest flux, found in the southernmost area near the Sicily Channel, where recent eruptions of the Ferdinandea Island occurred 20 miles out to sea off Sciacca, has been associated with a clear excess of heat flow. Our results indicate that there is an accumulation of magma below the continental crust of western Sicily that is possibly intruding and out-gassing through roughly N-S trending deep fault systems linked to the mantle, that have an extensional component. Although the identification of these faults is not sufficiently constrained by our data, they could possibly be linked to the pre-existing faults that originated during the Mesozoic extensional-transtensional tectonic phases.
    Description: Published
    Description: L04312
    Description: partially_open
    Keywords: helium isotopes ; heat production ; tectonics ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.07. Radioactivity and isotopes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.03. Heat generation and transport ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 503 bytes
    Format: 134391 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We present an updated present-day stress data compilation for the Italian region and discuss it with respect to the geodynamic setting and the seismicity of the area. We collected and analyzed 190 new stress data from borehole breakouts, seismicity, and active faults and checked in detail the previous compilation [Montone et al., 1999]. Our improved data set consists of 542 data, 362 of which with a reliable quality for stress maps. The Italian region is well sampled, allowing the computation of constrained smoothed stress maps; for surrounding regions we added the World Stress Map 2003 release data. These maps depict the active stress conditions and, in the areas where the data are sparse, contribute to understand the relationship between active stress, past tectonic setting, and the seismicity of the study region. The new data are particularly representative along the northern Apennine front, from the Po Plain to offshore the Adriatic, and along the southern Tyrrhenian Sea, north of Sicily, where they point out a compressive tectonic regime. In the Alps both compressive and transcurrent regimes are observed. Our data also confirm that the whole Apenninic belt and the Calabrian arc are extending. Along the central Adriatic coast, changes from one stress regime to another are shown by abrupt variations in the minimum horizontal stress directions. Other gentler stress rotations, as, for instance, from the southern Apennines to the Calabrian arc or along the northern Apennines, follow the curvature of the arcs and are not associated to a stress regime variation.
    Description: Published
    Description: (B10410)
    Description: partially_open
    Keywords: active stress ; earthquakes ; borehole breakouts ; crust and lithosphere ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3452579 bytes
    Format: 711 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...