ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,980)
  • Blackwell Publishing Ltd  (1,301)
  • Annual Reviews  (679)
  • 2005-2009
  • 2000-2004  (1,980)
  • 1980-1984
  • 1925-1929
  • 2002  (1,980)
  • Biology  (1,980)
Collection
  • Articles  (1,980)
Years
  • 2005-2009
  • 2000-2004  (1,980)
  • 1980-1984
  • 1925-1929
Year
Journal
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 49 (2002), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: . Microtubule dynamics in Paramecium caudatum were investigated with an anti-α-tubulin antibody and a microinjection technique to determine the function of microtubules on micronuclear behavior during conjugation. After meiosis, all four haploid micronuclei were connected by microtubular filaments to the paroral region and moved close to this region. This nuclear movement was micronucleus-specific, because some small macronuclear fragments transplanted from exconjugants never moved to the region. Only one of the four germ nuclei moved into the paroral cone and was covered by microtubule assembly (the so-called first assembly of microtubules, AM-I). This nucleus survived there, while the other three not in this region degenerated. The movement of germ nucleus was inhibited by the injection of the anti-α-tubulin antibody. The surviving germ nucleus divided once and produced a migratory pronucleus and a stationary pronucleus. Prior to the reciprocal exchange of the migratory nuclei, microtubules assembled around the migratory pronuclei again (the so-called second assembly of microtubules, AM-II). Then, the migratory pronucleus moved into the partner cell and fused with the stationary pronucleus. Thus, microtubules appear to be indispensable for nuclear behavior: they enable migration of postmeiotic nuclei to the paroral region and they permit the survival of the nucleus at the paroral cone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 49 (2002), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 49 (2002), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 49 (2002), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: . This work reports the characterization of an arginine kinase in the unicellular parasitic flagellate Trypanosoma brucei, the etiological agent of human sleeping sickness and Nagana in livestock. The arginine kinase activity, detected in the soluble fraction obtained from procyclic forms, had a specific activity similar to that observed in Trypanosoma cruzi, about 0.2 μmol min−1mg−1. Western blot analysis of T. brucei extracts revealed two bands of 40 and 45 kDa. The putative gene sequence of this enzyme had an open reading frame for a 356-amino acid polypeptide, one less than the equivalent enzyme of T. cruzi. The deduced amino acid sequence has an 82% identity with the arginine kinase of T. cruzi, and highest amino acid identities of both trypanosomatids sequences, about 70%, were with arginine kinases from the phylum Arthropoda. In addition, the amino acid sequence possesses the five arginine residues critical for interaction with ATP as well as two glutamic acids and one cysteine required for arginine binding. The finding in trypanosomatids of a new phosphagen biosynthetic pathway, which is not present in mammalian host tissues, suggests this enzyme as a possible target for chemotherapy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 1-44 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 177-206 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Early NMR structural studies of serum lipoproteins were based on 1H, 13C, 31P, and 2H studies of lipid components. From the early studies information on composition, lipid chain dynamics and order parameters, and monolayer organization resulted. More recently, selective or complete isotopic labeling techniques, combined with multidimensional NMR spectroscopy, have resulted in structural information of apoprotein fragments. Finally, use of heteronuclear three- and four-dimensional experiments have yielded solution structures and protein-lipid interactions of intact apolipoproteins C-I, C-II, and A-I.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 235-256 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract During the course of their biological function, proteins undergo different types of structural rearrangements ranging from local to large-scale conformational changes. These changes are usually triggered by their interactions with small-molecular-weight ligands or other macromolecules. Because binding interactions occur at specific sites and involve only a small number of residues, a chain of cooperative interactions is necessary for the propagation of binding signals to distal locations within the protein structure. This process requires an uneven structural distribution of protein stability and cooperativity as revealed by NMR-detected hydrogen/deuterium exchange experiments under native conditions. The distribution of stabilizing interactions does not only provide the architectural foundation to the three-dimensional structure of a protein, but it also provides the required framework for functional cooperativity. In this review, the statistical thermodynamic linkage between protein stability, functional cooperativity, and ligand binding is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 73-95 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Active transport requires the alternation of substrate uptake and release with a switch in the access of the substrate binding site to the two sides of the membrane. Both the transfer and switch aspects of the photocycle have been subjects of magnetic resonance studies in bacteriorhodopsin. The results for ion transfer indicate that the Schiff base of the chromophore is hydrogen bonded before, during, and after its deprotonation. This suggests that the initial complex counterion of the Schiff base decomposes in such a way that the Schiff base carries its immediate hydrogen-bonding partner with it as it rotates during the first half of the photocycle. If so, bacteriorhodopsin acts as an inward-directed hydroxide pump rather than as an outward-directed proton pump. The studies of the access switch explore both protein-based and chromophore-based mechanisms. Combined with evidence from functional studies of mutants and other forms of spectroscopy, the results suggest that maintaining access to the extracellular side of the protein after photoisomerization involves twisting of the chromophore and that the decisive switch in access to the cytoplasmic side results from relaxation of the chromophore when the constraints on the Schiff base are released by decomposition of the complex counterion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 151-175 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract We review the physical properties of phosphatidylinositol 4,5-bisphosphate (PIP2) that determine both its specific interactions with protein domains of known structure and its nonspecific electrostatic sequestration by unstructured domains. Several investigators have postulated the existence of distinct pools of PIP2 within the cell to account for the myriad functions of this lipid. Recent experimental work indicates certain regions of the plasma membrane-membrane ruffles and nascent phagosomes-do indeed concentrate PIP2. We consider two mechanisms that could account for this phenomenon: local synthesis and electrostatic sequestration. We conclude by considering the hypothesis that proteins such as MARCKS bind a significant fraction of the PIP2 in a cell, helping to sequester it in lateral membrane domains, then release this lipid in response to local signals such as an increased concentration of Ca++/calmodulin or activation of protein kinase C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 121-149 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The first crystal structures of intact T cell receptors (TCRs) bound to class I peptide-MHC (pMHCs) antigens were determined in 1996. Since then, further structures of class I TCR/pMHC complexes have explored the degree of structural variability in the TCR-pMHC system and the structural basis for positive and negative selection. The recent determination of class II and allogeneic class I TCR/pMHC structures, as well as those of accessory molecules (e.g., CD3), has pushed our knowledge of TCR/pMHC interactions into new realms, shedding light on clinical pathologies, such as graft rejection and graft-versus-host disease. Furthermore, the determination of coreceptor structures lays the foundation for a more comprehensive structural description of the supramolecular TCR signaling events and those assemblies that arise in the immunological synapse. While these telling photodocumentaries of the TCR/pMHC interaction are composed mainly from static crystal structures, a full description of the biological snapshots in T cell signaling requires additional analytical methods that record the dynamics of the process. To this end, surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), and ultracentrifugation (UC) have furnished both affinities and kinetics of the TCR/pMHC association. In the past year, structural, biochemical, and molecular biological data describing TCR/pMHC interactions have sublimely coalesced into a burgeoning well of understanding that promises to deliver further insights into T cell recognition. The coming years will, through a more intimate union of structural and kinetic data, allow many pressing questions to be addressed, such as how TCR/pMHC ligation is affected by coreceptor binding and what is the mechanism of TCR signaling in both early and late stages of T cell engagement with antigen-presenting cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 207-233 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The structures of an increasing number of channels and other alpha-helical membrane proteins have been determined recently, including the KcsA potassium channel, the MscL mechanosensitive channel, and the AQP1 and GlpF members of the aquaporin family. In this chapter, the orientation and packing characteristics of bilayer-spanning helices are surveyed in integral membrane proteins. In the case of channels, alpha-helices create the sealed barrier that separates the hydrocarbon region of the bilayer from the permeation pathway for solutes. The helices surrounding the permeation pathway tend to be rather steeply tilted relative to the membrane normal and are consistently arranged in a right-handed bundle. The helical framework further provides a supporting scaffold for nonmembrane-spanning structures associated with channel selectivity. Although structural details remain scarce, the conformational changes associated with gating transitions between closed and open states of channels are reviewed, emphasizing the potential roles of helix-helix interactions in this process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 275-302 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Using luminescent lanthanides, instead of conventional fluorophores, as donor molecules in resonance energy transfer measurements offers many technical advantages and opens up a wide range of new applications. Advantages include farther measurable distances (~100 A) with greater accuracy, insensitivity to incomplete labeling, and the ability to use generic relatively large labels, when necessary. Applications highlighted include the study of ion channels in living cells, protein-protein interaction in cells, DNA-protein complexes, and high-throughput screening assays to measure peptide dimerization associated with DNA transcription factors and ligand-receptor interactions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 303-319 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Cryo-electron microscopy (cryo-EM) of biological molecules in single-particle (i.e., unordered, nonaggregated) form is a new approach to the study of molecular assemblies, which are often too large and flexible to be amenable to X-ray crystallography. New insights into biological function on the molecular level are expected from cryo-EM applied to the study of such complexes "trapped" at different stages of their conformational changes and dynamical interactions. Important molecular machines involved in the fundamental processes of transcription, mRNA splicing, and translation are examples for successful applications of the new technique, combined with structural knowledge gained by conventional techniques of structure determination, such as X-ray crystallography and NMR.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 443-484 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The recent report of the crystal structure of rhodopsin provides insights concerning structure-activity relationships in visual pigments and related G protein-coupled receptors (GPCRs). The seven transmembrane helices of rhodopsin are interrupted or kinked at multiple sites. An extensive network of interhelical interactions stabilizes the ground state of the receptor. The ligand-binding pocket of rhodopsin is remarkably compact, and several chromophore-protein interactions were not predicted from mutagenesis or spectroscopic studies. The helix movement model of receptor activation, which likely applies to all GPCRs of the rhodopsin family, is supported by several structural elements that suggest how light-induced conformational changes in the ligand-binding pocket are transmitted to the cytoplasmic surface. The cytoplasmic domain of the receptor includes a helical domain extending from the seventh transmembrane segment parallel to the bilayer surface. The cytoplasmic surface appears to be approximately large enough to bind to the transducin heterotrimer in a one-to-one complex. The structural basis for several unique biophysical properties of rhodopsin, including its extremely low dark noise level and high quantum efficiency, can now be addressed using a combination of structural biology and various spectroscopic methods. Future high-resolution structural studies of rhodopsin and other GPCRs will form the basis to elucidate the detailed molecular mechanism of GPCR-mediated signal transduction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 485-516 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Integrins are a structurally elaborate family of heterodimers that mediate divalent cation-dependent cell adhesion in a wide range of biological contexts. The inserted (I) domain binds ligand in the subset of integrins in which it is present. Its structure has been determined in two alternative conformations, termed open and closed. In striking similarity to signaling G proteins, rearrangement of a Mg2+-binding site is linked to large conformational movements in distant backbone regions. Mutations have been used to stabilize either the closed or open structures. These show that the snapshots of the open conformation seen only in the presence of a ligand or a ligand mimetic represent a high-affinity, ligand-binding conformation, whereas those of the closed conformation correspond to a low-affinity conformation. The C-terminal alpha-helix moves 10 A down the side of the domain in the open conformation. Locking in the conformation of the preceding loop is sufficient to increase affinity for ligand 9000-fold. This C-terminal "bell-rope" provides a mechanism for linkage to conformational movements in other domains. The transition from the closed to open conformation has been implicated in fast (〈1 s) regulation of integrin affinity in response to activation signals from inside the cell. Recent integrin structures and functional studies reveal interactions between beta-propeller, I, and I-like domains in the headpiece, and a critical role for integrin EGF domains in the stalk region. These studies suggest that the headpiece of the integrin faces down toward the membrane in the inactive conformation and extends upward in a "switchblade"-like opening motion upon activation. These long-range structural rearrangements of the entire integrin molecule involving multiple interdomain contacts appear closely linked to conformational changes in the I domain, which result in increased affinity and competence for ligand binding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 25-51 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The amyloid precursor protein and the proteases cleaving this protein are important players in the pathogenesis of Alzheimer's disease via the generation of the amyloid peptide. Physiologically, the amyloid precursor protein is implied in axonal vesicular trafficking and the proteases are implicated in developmentally important signaling pathways, most significantly those involving regulated intramembrane proteolysis or RIP. We discuss the cell biology behind the amyloid and tangle hypothesis for Alzheimer's disease, drawing on the many links to the fields of cell biology and developmental biology that have been established in the recent years.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 107-133 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The type III mechanism of protein secretion is a pathogenic strategy shared by a number of gram-negative pathogens of plants and animals that has evolved in order to inject virulence proteins into the cytosol of target eukaryotic cells. The pathogens of the Yersinia genus represent a model system where much progress has been made in understanding this secretion pathway. Herein, we review what has been recently learned in yersiniae about the various environmental signals that induce type III secretion, how the synthesis of secretion substrates is regulated, and how such a diverse group of proteins is recognized as a substrate for secretion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 135-161 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The host cytoskeleton plays important roles in the entry, replication, and egress of viruses. An assortment of viruses hijack cellular motor proteins to move on microtubules toward the cell interior during the entry process; others reverse this transport during egress to move assembling virus particles toward the plasma membrane. Polymerization of actin filaments is sometimes used to propel viruses from cell to cell, while many viruses induce the destruction of select cytoskeletal filaments apparently to effect efficient egress. Indeed, the tactics used by any given virus to achieve its infectious life cycle are certain to involve multiple cytoskeletal interactions. Understanding these interactions, and their orchestration during viral infections, is providing unexpected insights into basic virology, viral pathogenesis, and the biology of the cytoskeleton.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 193-219 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Spindle microtubules interact with mitotic chromosomes, binding to their kinetochores to generate forces that are important for accurate chromosome segregation. Motor enzymes localized both at kinetochores and spindle poles help to form the biologically significant attachments between spindle fibers and their cargo, but microtubule-associated proteins without motor activity contribute to these junctions in important ways. This review examines the molecules necessary for chromosome-microtubule interaction in a range of well-studied organisms, using biological diversity to identify the factors that are essential for organized chromosome movement. We conclude that microtubule dynamics and the proteins that control them are likely to be more important for mitosis than the current enthusiasm for motor enzymes would suggest.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 221-245 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Chlamydiae, bacterial obligate intracellular pathogens, are the etiologic agents of several human diseases. A large part of the chlamydial intracellular survival strategy involves the formation of a unique organelle called the inclusion that provides a protected site within which they replicate. The chlamydial inclusion is effectively isolated from endocytic pathways but is fusogenic with a subset of exocytic vesicles that deliver sphingomyelin from the Golgi apparatus to the plasma membrane. A combination of host and parasite functions contribute to the biogenesis of this compartment. Establishment of the mature inclusion is accompanied by the insertion of multiple chlamydial proteins, suggesting that chlamydiae actively modify the inclusion to define its interactions with the eukaryotic host cell. Despite being sequestered within a membrane-bound vacuole, chlamydiae clearly communicate with and manipulate the host cell from within this privileged intracellular niche.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 463-493 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Epithelial morphogenesis comprises the various processes by which epithelia contribute to organ formation and body shape. These complex and diverse events play a central role in animal development and regeneration. Recently, the characterization of some of the molecular mechanisms involved in epithelial morphogenesis has provided an abundance of new information on the role and regulation of the cytoskeleton, cell-cell adhesion, and cell-matrix adhesion in these processes. In this review, we discuss our current understanding of the molecular mechanisms driving cell shape changes, cell intercalation, fusion of epithelia, ingression, egression, and cell migration. Our discussion is mostly focused on results from Drosophila and mammalian tissue culture but also draws on the insights gained from other organisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 379-420 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Golgi inheritance proceeds via sequential biogenesis and partitioning phases. Although little is known about Golgi growth and replication (biogenesis), ultrastructural and fluorescence analyses have provided a detailed, though still controversial, perspective of Golgi partitioning during mitosis in mammalian cells. Partitioning requires the fragmentation of the juxtanuclear ribbon of interconnected Golgi stacks into a multitude of tubulovesicular clusters. This process is choreographed by a cohort of mitotic kinases and an inhibition of heterotypic and homotypic Golgi membrane-fusion events. Our model posits that accurate partitioning occurs early in mitosis by the equilibration of Golgi components on either side of the metaphase plate. Disseminated Golgi components then coalesce to regenerate Golgi stacks during telophase. Semi-intact cell and cell-free assays have accurately recreated these processes and allowed their molecular dissection. This review attempts to integrate recent findings to depict a more coherent, synthetic molecular picture of mitotic Golgi fragmentation and reassembly. Of particular importance is the emerging concept of a highly regulated and dynamic Golgi structural matrix or template that interfaces with cargo receptors, Golgi enzymes, Rab-GTPases, and SNAREs to tightly couple biosynthetic transport to Golgi architecture. This structural framework may be instructive for Golgi biogenesis and may encode sufficient information to ensure accurate Golgi inheritance, thereby helping to resolve some of the current discrepancies between different workers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 557-615 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Cryptococcus neoformans is a pathogenic fungus that primarily afflicts immunocompromised patients, infecting the central nervous system to cause meningoencephalitis that is uniformly fatal if untreated. C. neoformans is a basidiomycetous fungus with a defined sexual cycle that has been linked to differentiation and virulence. Recent advances in classical and molecular genetic approaches have allowed molecular descriptions of the pathways that control cell type and virulence. An ongoing genome sequencing project promises to reveal much about the evolution of this human fungal pathogen into three distinct varieties or species. C. neoformans shares features with both model ascomycetous yeasts (Saccharomyces cerevisiae, Schizosaccharomyces pombe) and basidiomycetous pathogens and mushrooms (Ustilago maydis, Coprinus cinereus, Schizophyllum commune), yet ongoing studies reveal unique features associated with virulence and the arrangement of the mating type locus. These advances have catapulted C. neoformans to center stage as a model of both fungal pathogenesis and the interesting approaches to life that the kingdom of fungi has adopted.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 521-556 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract An unusual feature of the Diptera is that homologous chromosomes are intimately synapsed in somatic cells. At a number of loci in Drosophila, this pairing can significantly influence gene expression. Such influences were first detected within the bithorax complex (BX-C) by E.B. Lewis, who coined the term transvection to describe them. Most cases of transvection involve the action of enhancers in trans. At several loci deletion of the promoter greatly increases this action in trans, suggesting that enhancers are normally tethered in cis by the promoter region. Transvection can also occur by the action of silencers in trans or by the spreading of position effect variegation from rearrangements having heterochromatic breakpoints to paired unrearranged chromosomes. Although not demonstrated, other cases of transvection may involve the production of joint RNAs by trans-splicing. Several cases of transvection require Zeste, a DNA-binding protein that is thought to facilitate homolog interactions by self-aggregation. Genes showing transvection can differ greatly in their response to pairing disruption. In several cases, transvection appears to require intimate synapsis of homologs. However, in at least one case (transvection of the iab-5,6,7 region of the BX-C), transvection is independent of synapsis within and surrounding the interacting gene. The latter example suggests that transvection could well occur in organisms that lack somatic pairing. In support of this, transvection-like phenomena have been described in a number of different organisms, including plants, fungi, and mammals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 617-656 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract DNA checkpoints play a significant role in cancer pathology, perhaps most notably in maintaining genome stability. This review summarizes the genetic and molecular mechanisms of checkpoint activation in response to DNA damage. The major checkpoint proteins common to all eukaryotes are identified and discussed, together with how the checkpoint proteins interact to induce arrest within each cell cycle phase. Also discussed are the molecular signals that activate checkpoint responses, including single-strand DNA, double-strand breaks, and aberrant replication forks. We address the connection between checkpoint proteins and damage repair mechanisms, how cells recover from an arrest response, and additional roles that checkpoint proteins play in DNA metabolism. Finally, the connection between checkpoint gene mutation and genomic instability is considered.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 687-720 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Long-term potentiation (LTP) is the predominant experimental model for the synaptic plasticity mechanisms thought to underlie learning and memory. This review is focused on the contributions of genetics to the understanding of the role of LTP in learning and memory. These studies have used a combination of genetics, molecular biology, neurophysiology, and psychology to demonstrate that molecular mechanisms of synaptic plasticity are critical for learning and memory. Because of the large scope of this literature, we focus primarily on genetic studies of hippocampal-dependent learning. Altogether, these findings not only demonstrate a role for plasticity in learning, they also lay down the foundations for the new field of molecular and cellular cognition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 657-686 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract The compilation of a dense gene map and eventually a whole genome sequence (WGS) of the domestic cat holds considerable value for human genome annotation, for veterinary medicine, and for insight into the evolution of genome organization among mammals. Human association and veterinary studies of the cat, its domestic breeds, and its charismatic wild relatives of the family Felidae have rendered the species a powerful model for human hereditary diseases, for infectious disease agents, for adaptive evolutionary divergence, for conservation genetics, and for forensic applications. Here we review the advantages, rationale, and present strategy of a feline genome project, and we describe the disease models, comparative genomics, and biological applications posed by the full resolution of the cat's genome.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 721-750 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract A moment estimator of theta, the coancestry coefficient for alleles within a population, was described by Weir & Cockerham in 1984 (100) and is still widely cited. The estimate is used by population geneticists to characterize population structure, by ecologists to estimate migration rates, by animal breeders to describe genetic variation, and by forensic scientists to quantify the strength of matching DNA profiles. This review extends the work of Weir & Cockerham by allowing different levels of coancestry for different populations, and by allowing non-zero coancestries between pairs of populations. All estimates are relative to the average value of theta between pairs of populations. Moment estimates for within- and between-population theta values are likely to have large sampling variances, although these may be reduced by combining information over loci. Variances also decrease with the numbers of alleles at a locus, and with the numbers of populations sampled. This review also extends the work of Weir & Cockerham by employing maximum likelihood methods under the assumption that allele frequencies follow the normal distribution over populations. For the case of equal theta values within populations and zero theta values between populations, the maximum likelihood estimate is the same as that given by Robertson & Hill in 1984 (70). The review concludes by relating functions of theta values to times of population divergence under a pure drift model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 257-273 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract We determined the high-resolution structures of large and small ribosomal subunits from mesophilic and thermophilic bacteria and compared them with those of the thermophilic ribosome and the halophilic large subunit. We confirmed that the elements involved in intersubunit contacts and in substrate binding are inherently flexible and that a common ribosomal strategy is to utilize this conformational variability for optimizing its functional efficiency and minimizing nonproductive interactions. Under close-to-physiological conditions, these elements maintain well-ordered characteristic conformations. In unbound subunits, the features creating intersubunit bridges within associated ribosomes lie on the interface surface, and the features that bind factors and substrates reach toward the binding site only when conditions are ripe.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 361-392 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Chromatin fibers are dynamic macromolecular assemblages that are intimately involved in nuclear function. This review focuses on recent advances centered on the molecular mechanisms and determinants of chromatin fiber dynamics in solution. Major points of emphasis are the functions of the core histone tail domains, linker histones, and a new class of proteins that assemble supramolecular chromatin structures. The discussion of important structural issues is set against a background of possible functional significance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 393-422 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The review deals with recent advances in magnetic resonance spectroscopy (hf EPR and NMR) of paramagnetic metal centers in biological macromolecules. In the first half of our chapter, we present an overview of recent technical developments in the NMR of paramagnetic bio-macromolecules. These are illustrated by a variety of examples deriving mainly from the spectroscopy of metalloproteins and their complexes. The second half focuses on recent developments in high-frequency EPR spectroscopy and the application of the technique to copper, iron, and manganese proteins. Special attention is given to the work on single crystals of copper proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 321-341 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Fungal pathogens of plants or animals invade their hosts either by secretion of lytic enzymes, exerting force, or by a combination of both. Although many fungi are thought to rely mostly on lysis of the host tissue, some plant pathogenic fungi differentiate complex infection cells that develop enormous turgor pressure, which in turn is translated into force used for invasion. In order to understand mechanisms of fungal infection in detail, methods have been developed that indirectly or directly measure turgor pressure and force. In this article, these methods are described and critically discussed, and their importance in analysis of fungal infection are outlined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 423-441 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The field of computational cell biology has emerged within the past 5 years because of the need to apply disciplined computational approaches to build and test complex hypotheses on the interacting structural, physical, and chemical features that underlie intracellular processes. To meet this need, newly developed software tools allow cell biologists and biophysicists to build models and generate simulations from them. The construction of general-purpose computational approaches is especially challenging if the spatial complexity of cellular systems is to be explicitly treated. This review surveys some of the existing efforts in this field with special emphasis on a system being developed in the authors' laboratory, Virtual Cell. The theories behind both stochastic and deterministic simulations are discussed. Examples of respective applications to cell biological problems in RNA trafficking and neuronal calcium dynamics are provided to illustrate these ideas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 53-80 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Co-option occurs when natural selection finds new uses for existing traits, including genes, organs, and other body structures. Genes can be co-opted to generate developmental and physiological novelties by changing their patterns of regulation, by changing the functions of the proteins they encode, or both. This often involves gene duplication followed by specialization of the resulting paralogous genes into particular functions. A major role for gene co-option in the evolution of development has long been assumed, and many recent comparative developmental and genomic studies have lent support to this idea. Although there is relatively less known about the molecular basis of co-option events involving developmental pathways, much can be drawn from well-studied examples of the co-option of structural proteins. Here, we summarize several case studies of both structural gene and developmental genetic circuit co-option and discuss how co-option may underlie major episodes of adaptive change in multicellular organisms. We also examine the phenomenon of intraspecific variability in gene expression patterns, which we propose to be one form of material for the co-option process. We integrate this information with recent models of gene family evolution to provide a framework for understanding the origin of co-optive evolution and the mechanisms by which natural selection promotes evolutionary novelty by inventing new uses for the genetic toolkit.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 81-105 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract In flowering plants, pollen grains germinate to form pollen tubes that transport male gametes (sperm cells) to the egg cell in the embryo sac during sexual reproduction. Pollen tube biology is complex, presenting parallels with axon guidance and moving cell systems in animals. Pollen tube cells elongate on an active extracellular matrix in the style, ultimately guided by stylar and embryo sac signals. A well-documented recognition system occurs between pollen grains and the stigma in sporophytic self-incompatibility, where both receptor kinases in the stigma and their peptide ligands from pollen are now known. Complex mechanisms act to precisely target the sperm cells into the embryo sac. These events initiate double fertilization in which the two sperm cells from one pollen tube fuse to produce distinctly different products: one with the egg to produce the zygote and embryo and the other with the central cell to produce the endosperm.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 163-192 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The Arabidopsis genome sequence has revealed that plants contain a much larger complement of receptor kinase genes than other organisms. Early analysis of these genes revealed involvement in a diverse array of developmental and defense functions that included gametophyte development, pollen-pistil interactions, shoot apical meristem equilibrium, hormone perception, and cell morphogenesis. Amino acid sequence motifs and binding studies indicate that the ectodomains are capable of binding, either directly or indirectly, various classes of molecules including proteins, carbohydrates, and steroids. Genetic and biochemical approaches have begun to identify other components of several signal transduction pathways. Some receptor-like kinases (RLKs) appear to function with coreceptors lacking kinase domains, and genome analysis suggests this might be true for many RLKs. The KAPP protein phosphatase functions as a negative regulator of at least two RLK systems, and in vitro studies suggest it could be a common component of more. Whether plant signaling systems display a modularity similar to animal systems remains to be determined. Future efforts will reveal unknown functions of other RLKs and elucidate the relationships among their signaling networks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 247-288 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Eukaryotic cells use actin polymerization to change shape, move, and internalize extracellular materials by phagocytosis and endocytosis, and to form contractile structures. In addition, several pathogens have evolved to use host cell actin assembly for attachment, internalization, and cell-to-cell spread. Although cells possess multiple mechanisms for initiating actin polymerization, attention in the past five years has focused on the regulation of actin nucleation-the formation of new actin filaments from actin monomers. The Arp2/3 complex and the multiple nucleation-promoting factors (NPFs) that regulate its activity comprise the only known cellular actin-nucleating factors and may represent a universal machine, conserved across eukaryotic phyla, that nucleates new actin filaments for various cellular structures with numerous functions. This review focuses on our current understanding of the mechanism of actin nucleation by the Arp2/3 complex and NPFs and how these factors work with other cytoskeletal proteins to generate structurally and functionally diverse actin arrays in cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 289-314 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Membrane fusion is a fundamental biochemical reaction and the final step in all vesicular trafficking events. It is crucial for the transfer of proteins and lipids between different compartments and for exo- and endocytic traffic of signaling molecules and receptors. It leads to the reconstruction of organelles such as the Golgi or the nuclear envelope, which decay into fragments during mitosis. Hence, controlled membrane fusion reactions are indispensible for the compartmental organization of eukaryotic cells; for their communication with the environment via hormones, neurotransmitters, growth factors, and receptors; and for the integration of cells into multicellular organisms. Intracellular pathogenic bacteria, such as Mycobacteria or Salmonellae, have developed means to control fusion reactions in their host cells. They persist in phagosomes whose fusion with lysosomes they actively suppress-a means to ensure survival inside host cells. The past decade has witnessed rapid progress in the elucidation of parts of the molecular machinery involved in these membrane fusion reactions. Whereas some elements of the fusion apparatus are remarkably similar in several compartments, there is an equally striking divergence of others. The purpose of this review is to highlight common features of different fusion reactions and the concepts that emerged from them but also to stress the differences and challenge parts of the current hypotheses. This review covers only the endoplasmic fusion reactions mentioned above, i.e., reactions initiated by contacts of membranes with their cytoplasmic faces. Ectoplasmic fusion events, which depend on an initial contact of the fusion partners via the membrane surfaces exposed to the surrounding medium are not discussed, nor are topics such as the entry of enveloped viruses, formation of syncytia, gamete fusion, or vesicle scission (a fusion reaction that leads to the fission of, e.g., transport vesicles).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 315-344 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Bacterial pathogens utilize several strategies to modulate the organization of the actin cytoskeleton. Some bacterial toxins catalyze the covalent modification of actin or the Rho GTPases, which are involved in the control of the actin cytoskeleton. Other bacteria produce toxins that act as guanine nucleotide exchange factors or GTPase-activating proteins to modulate the nucleotide state of the Rho GTPases. This latter group of toxins provides a temporal modulation of the actin cytoskeleton. A third group of bacterial toxins act as adenylate cyclases, which directly elevate intracellular cAMP to supra-physiological levels. Each class of toxins gives the bacterial pathogen a selective advantage in modulating host cell resistance to infection.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 345-378 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The mammalian cell continuously adjusts its sterol content by regulating levels of key sterol synthetic enzymes and levels of LDL receptors that mediate uptake of cholesterol-laden particles. Control is brought about by sterol-regulated transcription of relevant genes and by regulated degradation of the committed step enzyme HMG-CoA reductase (HMGR). Current work has revealed that proteolysis is at the heart of each of these mechanistically distinct axes. Transcriptional control is effected by regulated cleavage of the membrane-bound transcription factor sterol regulatory element binding protein (SREBP), and HMGR degradation is brought about by ubiquitin-mediated degradation. In each case, ongoing cell biological processes are being harnessed to bring about regulation. The secretory pathway plays a central role in allowing sterol-mediated control of transcription. The constitutively active endoplasmic reticulum (ER) quality control apparatus is employed to bring about regulated destruction of HMGR. This review describes the methods and results of various studies to understand the mechanisms and molecules involved in these distinct but interrelated aspects of sterol regulation and the intriguing similarities that appear to exist at the levels of protein sequence and cell biology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 1-18 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: In order to understand both the past and future directions of research in evolutionary biology we need to begin by understanding in what way these programs of research differ from the model of most scientific work. The study of evolutionary processes and, in particular, the genetics of the evolutionary process must confront special difficulties in both the conceptual and the methodological aspects of research. On the conceptual side, unlike for molecular, cellular, and developmental biology, there is no basic mechanism that evolutionists are attempting to elucidate. There is no single cause of the evolutionary change in the properties of members of a species. Natural selection may be involved but so are random events, patterns of migration and interbreeding, mutational events, and horizontal transfer of genes across species boundaries. The change in each character of each species is a consequence of a particular mixture of these causal pathways.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 19-45 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Fish species have diverse breeding behaviors that make them valuable for testing theories on genetic mating systems and reproductive tactics. Here we review genetic appraisals of paternity and maternity in wild fish populations. Behavioral phenomena quantified by genetic markers in various species include patterns of multiple mating by both sexes; frequent cuckoldry by males and rare cuckoldry by females in nest-tending species; additional routes to surrogate parentage via nest piracy and egg-thievery; egg mimicry by nest-tending males; brood parasitism by helper males in cooperative breeders; clutch mixing in oral brooders; kinship in schooling fry of broadcast spawners; sperm storage by dams in female-pregnant species; and sex-role reversal, polyandry, and strong sexual selection on females in some male-pregnant species. Additional phenomena addressed by genetic parentage analyses in fishes include clustered mutations, filial cannibalism, and local population size. All results are discussed in the context of relevant behavioral and evolutionary theory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 75-97 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Recombination can be a dominant force in shaping genomes and associated phenotypes. To better understand the impact of recombination on genomic evolution, we need to be able to identify recombination in aligned sequences. We review bioinformatic approaches for detecting recombination and measuring recombination rates. We also examine the impact of recombination on the reconstruction of evolutionary histories and the estimation of population genetic parameters. Finally, we review the role of recombination in the evolutionary history of bacteria, viruses, and human mitochondria. We conclude by highlighting a number of areas for future development of tools to help quantify the role of recombination in genomic evolution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 47-73 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Spirochetes are a medically important and ecologically significant group of motile bacteria with a distinct morphology. Outermost is a membrane sheath, and within this sheath is the protoplasmic cell cylinder and subterminally attached periplasmic flagella. Here we address specific and unique aspects of their motility and chemotaxis. For spirochetes, translational motility requires asymmetrical rotation of the two internally located flagellar bundles. Consequently, they have swimming modalities that are more complex than the well-studied paradigms. In addition, coordinated flagellar rotation likely involves an efficient and novel signaling mechanism. This signal would be transmitted over the length of the cell, which in some cases is over 100-fold greater than the cell diameter. Finally, many spirochetes, including Treponema, Borrelia, and Leptospira, are highly invasive pathogens. Motility is likely to play a major role in the disease process. This review summarizes the progress in the genetics of motility and chemotaxis of spirochetes, and points to new directions for future experimentation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 99-124 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract The plant life cycle alternates between a diploid sporophyte generation and a haploid gametophyte generation. The angiosperm female gametophyte is critical to the reproductive process. It is the structure within which egg cell production and fertilization take place. In addition, the female gametophyte plays a role in pollen tube guidance, the induction of seed development, and the maternal control of seed development. Genetic analysis in Arabidopsis has uncovered mutations that affect female gametophyte development and function. Mutants defective in almost all stages of development have been identified, and analysis of these mutants is beginning to reveal features of the female gametophyte developmental program. Other mutations that affect female gametophyte function have uncovered regulatory genes required for the induction of endosperm development. From these studies, we are beginning to understand the regulatory networks involved in female gametophyte development and function. Further investigation of the female gametophyte will require complementary approaches including expression-based approaches to obtain a complete profile of the genes functioning within this critical structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 125-151 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract The idea that the ancestors of modern cells were RNA cells (ribocytes) can be investigated by asking whether all essential cellular functions might be performed by RNAs. This requires isolating suitable molecules by selection-amplification when the predicted molecules are presently extinct. In fact, RNAs with many properties required during a period in which RNA was the major macromolecular agent in cells (an RNA world) have been selected in modern experiments. There is, accordingly, reason to inquire how such a ribocyte might appear, based on the properties of the RNAs that composed it. Combining the intrinsic qualities of RNA with the fundamental characteristics of selection from randomized sequence pools, one predicts ribocytes with a cell cycle measured (roughly) in weeks. Such cells likely had a rapidly varying genome, composed of many small genetic and catalytic elements made of tens of ribonucleotides. There are substantial arguments that, at the mid-RNA era, a subset of these nucleotides are reproducibly available and resemble the modern four. Such cells are predicted to evolve rapidly. Instead of modifying preexisting genes, ribocytes frequently draw new functions from an internal pool containing zeptomoles (〈1 attomole) of predominantly inactive random sequences.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 153-173 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract The prospect of specifically controlling gene activities in vivo has become a defining hallmark of many model organisms of biological research. Where once the aim was to gain control over gene activities using endogenous control elements, new technologies have emerged that owe their remarkable specificity to heterologous components derived from evolutionarily distant species. This review highlights inducible transcriptional systems and site-specific recombination. Their quantitative and qualitative characteristics are discussed, with examples of how recent developments have expanded the spectrum of cells and organisms that are now accessible to genetic dissection of unprecedented precision. Transgenesis has already converted the mouse into a prime model for mammalian genetics. Combined with the new approaches of conditional activation or inactivation of genes, this model has opened up new horizons for the analysis of gene function in mammals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 175-203 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Because the level of DNA superhelicity varies with the cellular energy charge, it can change rapidly in response to a wide variety of altered nutritional and environmental conditions. This is a global alteration, affecting the entire chromosome and the expression levels of all operons whose promoters are sensitive to superhelicity. In this way, the global pattern of gene expression may be dynamically tuned to changing needs of the cell under a wide variety of circumstances. In this article, we propose a model in which chromosomal superhelicity serves as a global regulator of gene expression in Escherichia coli, tuning expression patterns across multiple operons, regulons, and stimulons to suit the growth state of the cell. This model is illustrated by the DNA supercoiling-dependent mechanisms that coordinate basal expression levels of operons of the ilv regulon both with one another and with cellular growth conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 205-232 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract In this review, we describe the pathway for generating meiotic crossovers in Drosophila melanogaster females and how these events ensure the segregation of homologous chromosomes. As appears to be common to meiosis in most organisms, recombination is initiated with a double-strand break (DSB). The interesting differences between organisms appear to be associated with what chromosomal events are required for DSBs to form. In Drosophila females, the synaptonemal complex is required for most DSB formation. The repair of these breaks requires several DSB repair genes, some of which are meiosis-specific, and defects at this stage can have effects downstream on oocyte development. This has been suggested to result from a checkpoint-like signaling between the oocyte nucleus and gene products regulating oogenesis. Crossovers result from genetically controlled modifications to the DSB repair pathway. Finally, segregation of chromosomes joined by a chiasma requires a bipolar spindle. At least two kinesin motor proteins are required for the assembly of this bipolar spindle, and while the meiotic spindle lacks traditional centrosomes, some centrosome components are found at the spindle poles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 305-332 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Influenza A viruses contain genomes composed of eight separate segments of negative-sense RNA. Circulating human strains are notorious for their tendency to accumulate mutations from one year to the next and cause recurrent epidemics. However, the segmented nature of the genome also allows for the exchange of entire genes between different viral strains. The ability to manipulate influenza gene segments in various combinations in the laboratory has contributed to its being one of the best characterized viruses, and studies on influenza have provided key contributions toward the understanding of various aspects of virology in general. However, the genetic plasticity of influenza viruses also has serious potential implications regarding vaccine design, pathogenicity, and the capacity for novel viruses to emerge from natural reservoirs and cause global pandemics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 279-303 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Spontaneous mutations are derived from various sources, including errors made during replication of undamaged template DNA, mutagenic nucleotide substrates, and endogenous DNA lesions. These sources vary in their frequencies and resultant mutations, and are differently affected by the DNA sequence, DNA transactions, and cellular metabolism. Organisms possess a variety of cellular functions to suppress spontaneous mutagenesis, and the specificity and effectiveness of each function strongly affect the pattern of spontaneous mutations. Base substitutions and single-base frameshifts, two major classes of spontaneous mutations, occur non-randomly throughout the genome. Within target DNA sequences there are hotspots for particular types of spontaneous mutations; outside of the hotspots, spontaneous mutations occur more randomly and much less frequently. Hotspot mutations are attributable more to endogenous DNA lesions than to replication errors. Recently, a novel class of mutagenic pathway that depends on short inverted repeats was identified as another important source of hotspot mutagenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 333-360 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Introns are removed from precursor messenger RNAs in the cell nucleus by a large ribonucleoprotein complex called the spliceosome. The spliceosome contains five subcomplexes called snRNPs, each with one RNA and several protein components. Interactions of the snRNPs with each other and the intron are highly dynamic, changing in an ordered progression throughout the splicing process. This allosteric cascade of interactions is programmed into the RNA and protein components of the spliceosome, and is driven by a family of DExD/H-box RNA-dependent ATPases. The dependence of cascade progression on multiple intron-recognition events likely serves to enforce the accuracy of splicing. Here, the progression of the allosteric cascade from the first recognition event to the first catalytic step of splicing is reviewed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 233-278 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Dosage compensation in mammals is achieved by the transcriptional inactivation of one X chromosome in female cells. From the time X chromosome inactivation was initially described, it was clear that several mechanisms must be precisely integrated to achieve correct regulation of this complex process. X-inactivation appears to be triggered upon differentiation, suggesting its regulation by developmental cues. Whereas any number of X chromosomes greater than one is silenced, only one X chromosome remains active. Silencing on the inactive X chromosome coincides with the acquisition of a multitude of chromatin modifications, resulting in the formation of extraordinarily stable facultative heterochromatin that is faithfully propagated through subsequent cell divisions. The integration of all these processes requires a region of the X chromosome known as the X-inactivation center, which contains the Xist gene and its cis-regulatory elements. Xist encodes an RNA molecule that plays critical roles in the choice of which X chromosome remains active, and in the initial spread and establishment of silencing on the inactive X chromosome. We are now on the threshold of discovering the factors that regulate and interact with Xist to control X-inactivation, and closer to an understanding of the molecular mechanisms that underlie this complex process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 389-410 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract There has been limited corroboration to date for McClintock's vision of gene regulation by transposable elements (TEs), although her proposition on the origin of species by TE-induced complex chromosome reorganizations in combination with gene mutations, i.e., the involvement of both factors in relatively sudden formations of species in many plant and animal genera, has been more promising. Moreover, resolution is in sight for several seemingly contradictory phenomena such as the endless reshuffling of chromosome structures and gene sequences versus synteny and the constancy of living fossils (or stasis in general). Recent wide-ranging investigations have confirmed and enlarged the number of earlier cases of TE target site selection (hot spots for TE integration), implying preestablished rather than accidental chromosome rearrangements for nonhomologous recombination of host DNA. The possibility of a partly predetermined generation of biodiversity and new species is discussed. The views of several leading transposon experts on the rather abrupt origin of new species have not been synthesized into the macroevolutionary theory of the punctuated equilibrium school of paleontology inferred from thoroughly consistent features of the fossil record.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 455-488 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Much of our knowledge of the actin cytoskeleton has been derived from biochemical and cell biological approaches, through which actin-binding proteins have been identified and their in vitro interactions with actin have been characterized. The study of actin-binding proteins (ABPs) in genetic model systems has become increasingly important for validating and extending our understanding of how these proteins function. New ABPs have been identified through genetic screens, and genetic results have informed the interpretation of in vitro experiments. In this review, we describe the molecular and ultrastructural characteristics of the actin cytoskeleton in the Drosophila ovary, and discuss recent genetic analyses of actin-binding proteins that are required for oogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 489-519 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Although initially recognized as a handy tool to reduce gene expression, RNA silencing, triggered by double-stranded RNA molecules, is now recognized as a mechanism for cellular protection and cleansing: It defends the genome against molecular parasites such as viruses and transposons, while removing abundant but aberrant nonfunctional messenger RNAs. The underlying mechanisms in distinct gene silencing phenomena in different genetic systems, such as cosuppression in plants and RNAi in animals, are very similar. There are common RNA intermediates, and similar genes are required in RNA silencing pathways in protozoa, plants, fungi, and animals, thus indicating an ancient pathway. This chapter gives an overview of both biochemical and genetic approaches leading to the current understanding of the molecular mechanism of RNA silencing and its probable biological function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 45-71 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Genome sequencing and structural genomics projects are providing new insights into the evolutionary history ofprote in domains. As methods for sequence and structure comparison improve, more distantly related domains are shown to be homologous. Thus there is a need for domain families to be classified within a hierarchy similar to Linnaeus' Systema Naturae, the classification of species. With such a hierarchy in mind, we discuss the evolution of domains, their combination into proteins, and evidence as to the likely origin of protein domains. We also discuss when and how analysis of domains can be used to understand details of protein function. Unconventional features of domain evolution such as intragenomic competition, domain insertion, horizontal gene transfer, and convergent evolution are seen as analogs of organismal evolutionary events. These parallels illustrate how the concept of domains can be applied to provide insights into evolutionary biology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 343-360 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Nearly twenty years after the first high-resolution crystal structures of specific protein-DNA complexes were determined, the stereo-chemical basis for protein-DNA recognition remains an active area of investigation. One outstanding question is, how are proteins able to detect noncontacted sequences in their binding sites? The papillomavirus E2 proteins represent a particularly suitable group of proteins in which to examine the mechanisms of "indirect readout." Coordinated structural and thermodynamic studies of the E2-DNA interaction conducted over the past five years are summarized in this review. The data support a model in which the electrostatic properties of the individual E2 proteins correlate with their affinities for intrinsically flexible or rigidly prebent DNA targets.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 1-24 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract A large number of protein toxins having enzymatically active A- and B-moieties that bind to cell surface receptors must be endocytosed before the A-moiety is translocated into the cytosol where it exerts its cytotoxic action. The accumulated information about the most well-studied toxins has provided a detailed picture of how they exploit the membrane trafficking systems of cells, and studies of toxin trafficking have revealed the existance of new pathways. The complexity of different endocytic mechanisms, as well as the multiple routes between endosomes and the Golgi apparatus and retrogradely to the endoplasmic reticulum (ER), are being unravelled by investigations of how toxins gain access to their targets. With increasing information about the internalization and intracellular trafficking of these opportunistic toxins, new avenues have been opened for their application in areas of medicine such as drug delivery and therapy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 421-462 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Autoinhibitory domains are regions of proteins that negatively regulate the function of other domains via intramolecular interactions. Autoinhibition is a potent regulatory mechanism that provides tight "on-site" repression. The discovery of autoinhibition generates valuable clues to how a protein is regulated within a biological context. Mechanisms that counteract the autoinhibition, including proteolysis, post-translational modifications, as well as addition of proteins or small molecules in trans, often represent central regulatory pathways. In this review, we document the diversity of instances in which autoinhibition acts in cell regulation. Seven well-characterized examples (e.g., sigma70, Ets-1, ERM, SNARE and WASP proteins, SREBP, Src) are covered in detail. Over thirty additional examples are listed. We present experimental approaches to characterize autoinhibitory domains and discuss the implications of this widespread phenomenon for biological regulation in both the normal and diseased states.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 495-513 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract In Caenorhabditis elegans the timing of many developmental events is regulated by heterochronic genes. Such genes orchestrate the timing of cell divisions and fates appropriate for the developmental stage of an organism. Analyses of heterochronic mutations in the nematode C. elegans have revealed a genetic pathway that controls the timing of post-embryonic cell divisions and fates. Two of the genes in this pathway encode small regulatory RNAs. The 22 nucleotide (nt) RNAs downregulate the expression of protein-coding mRNAs of target heterochronic genes. Analogous variations in the timing of appearance of particular features have been noted among closely related species, suggesting that such explicit control of developmental timing may not be exclusive to C. elegans. In fact, some of the genes that globally pattern the temporal progression of C. elegans development, including one of the tiny RNA genes, are conserved and temporally regulated across much of animal phylogeny, suggesting that the molecular mechanisms of temporal control are ancient and universal. A very large family of tiny RNA genes called microRNAs, which are similar in structure to the heterochronic regulatory RNAs, have been detected in diverse animal species and are likely to be present in most metazoans. Functions of the newly discovered microRNAs are not yet known. Other examples of temporal programs during growth include the exquisitely choreographed temporal sequences of developmental fates in neurogenesis in Drosophila and the sequential programs of epidermal coloration in insect wing patterning. An interesting possibility is that microRNAs mediate transitions on a variety of time scales to pattern the activities of particular target protein-coding genes and in turn generate sets of cells over a period of time. Plasticity in these microRNA genes or their targets may lead to changes in relative developmental timing between related species, or heterochronic change. Instead of inventing new gene functions, even subtle changes in temporal expression of pre-existing control genes can result in speciation by altering the time at which they function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 515-539 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Signaling between cells is a widely used mechanism by which cell fate and tissue patterning is determined in development. We review the mechanisms by which signaling between cells is regulated so that a cell receives the right amount of signal, at the right time, to achieve its intended developmental fate and position. In nearly all cases, we find that the supply of signal factor (ligand) is the limiting step in initiating a signaling process. Ligand supply is regulated by the transcription and localization of RNA, the spread of ligand from a source, and by inhibitors that operate at several different levels. We emphasize the different regulatory strategies that operate for threshold as opposed to concentration-dependent (morphogen) signaling. Threshold signaling is extensively regulated by feedback mechanisms. Morphogen signaling is regulated quantitatively by receptor loading and transduction flow.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 575-599 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Cells monitor the physiological load placed on their endoplasmic reticulum (ER) and respond to perturbations in ER function by a process known as the unfolded protein response (UPR). In metazoans the UPR has a transcriptional component that up-regulates expression of genes that enhance the capacity of the organelle to deal with the load of client proteins and a translational component that insures tight coupling between protein biosynthesis on the cytoplasmic side and folding in the ER lumen. Together, these two components adapt the secretory apparatus to physiological load and protect cells from the consequences of protein malfolding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 541-573 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The vasculature is one of the most important and complex organs in the mammalian body. The first functional organ to form during embryonic development, the intricately branched network of endothelial and supporting periendothelial cells is essential for the transportation of oxygen and nutrients to and the removal of waste products from the tissues. Serious disruptions in the formation of the vascular network are lethal early in post-implantation development, while the maintenance of vessel integrity and the control of vessel physiology and hemodynamics have important consequences throughout embryonic and adult life. A full understanding of the signaling pathways of vascular development is important not just for understanding normal development but because of the importance of reactivation of angiogenic pathways in disease states. Clinically there is a need to develop therapies to promote new blood vessel formation in situations of severe tissue ischemia, such as coronary heart disease. In addition, there is considerable interest in developing angiogenic inhibitors to block the new vessel growth that solid tumors promote in host tissue to enhance their own growth. Already studies on the signaling pathways of normal vascular development have provided new targets for therapeutic intervention in both situations. Further understanding of the complexities of the pathways should help refine such strategies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 601-635 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The actin cytoskeleton plays a major role in morphological development of neurons and in structural changes of adult neurons. This article reviews the myriad functions of actin and myosin in axon initiation, growth, guidance and branching, in morphogenesis of dendrites and dendritic spines, in synapse formation and stability, and in axon and dendrite retraction. Evidence is presented that signaling pathways involving the Rho family of small GTPases are key regulators of actin polymerization and myosin function in the context of different aspects of neuronal morphogenesis. These studies support an emerging theme: Different aspects of neuronal morphogenesis may involve regulation of common core signaling pathways, in particular the Rho GTPases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 637-706 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Striated muscle is an intricate, efficient, and precise machine that contains complex interconnected cytoskeletal networks critical for its contractile activity. The individual units of the sarcomere, the basic contractile unit of myofibrils, include the thin, thick, titin, and nebulin filaments. These filament systems have been investigated intensely for some time, but the details of their functions, as well as how they are connected to other cytoskeletal elements, are just beginning to be elucidated. These investigations have advanced significantly in recent years through the identification of novel sarcomeric and sarcomeric-associated proteins and their subsequent functional analyses in model systems. Mutations in these cytoskeletal components account for a large percentage of human myopathies, and thus insight into the normal functions of these proteins has provided a much needed mechanistic understanding of these disorders. In this review, we highlight the components of striated muscle cytoarchitecture with respect to their interactions, dynamics, links to signaling pathways, and functions. The exciting conclusion is that the striated muscle cytoskeleton, an exquisitely tuned, dynamic molecular machine, is capable of responding to subtle changes in cellular physiology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 707-746 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Chromatin remodeling in plants has usually been discussed in relation to aspects of genome defense such as transgene silencing and the resetting of transposon activity. The role of remodeling in controlling development has been less emphasized, although well established in animal systems. This is because cell fate in plants is often held to be entirely specified on the basis of position, apparently excluding any significant role for cell ancestry and chromatin remodeling. We argue that chromatin remodeling is used to confer mitotically heritable cell fates at late stages in pattern formation. Several examples in which chromatin remodeling factors are used to confer a memory of transient events in plant development are discussed. Because the precise biochemical functions of most remodeling factors are obscure, and little is known of plant chromatin structure, the underlying mechanisms remain poorly understood.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 747-783 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Embryological and genetic studies of mouse, bird, zebrafish, and frog embryos are providing new insights into the regulatory functions of the myogenic regulatory factors, MyoD, Myf5, Myogenin, and MRF4, and the transcriptional and signaling mechanisms that control their expression during the specification and differentiation of muscle progenitors. Myf5 and MyoD genes have genetically redundant, but developmentally distinct regulatory functions in the specification and the differentiation of somite and head muscle progenitor lineages. Myogenin and MRF4 have later functions in muscle differentiation, and Pax and Hox genes coordinate the migration and specification of somite progenitors at sites of hypaxial and limb muscle formation in the embryo body. Transcription enhancers that control Myf5 and MyoD activation in muscle progenitors and maintain their expression during muscle differentiation have been identified by transgenic analysis. In epaxial, hypaxial, limb, and head muscle progenitors, Myf5 is controlled by lineage-specific transcription enhancers, providing evidence that multiple mechanisms control progenitor specification at different sites of myogenesis in the embryo. Developmental signaling ligands and their signal transduction effectors function both interactively and independently to control Myf5 and MyoD activation in muscle progenitor lineages, likely through direct regulation of their transcription enhancers. Future investigations of the signaling and transcriptional mechanisms that control Myf5 and MyoD in the muscle progenitor lineages of different vertebrate embryos can be expected to provide a detailed understanding of the developmental and evolutionary mechanisms for anatomical muscles formation in vertebrates. This knowledge will be a foundation for development of stem cell therapies to repair diseased and damaged muscles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 361-388 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract In the past few years, in vivo technologies have emerged that, due to their efficiency and simplicity, may one day replace standard genetic engineering techniques. Constructs can be made on plasmids or directly on the Escherichia coli chromosome from PCR products or synthetic oligonucleotides by homologous recombination. This is possible because bacteriophage-encoded recombination functions efficiently recombine sequences with homologies as short as 35 to 50 base pairs. This technology, termed recombineering, is providing new ways to modify genes and segments of the chromosome. This review describes not only recombineering and its applications, but also summarizes homologous recombination in E. coli and early uses of homologous recombination to modify the bacterial chromosome. Finally, based on the premise that phage-mediated recombination functions act at replication forks, specific molecular models are proposed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 411-453 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract The molecular mechanisms for the transduction of light and chemical signals in animals are fairly well understood. In contrast, the processes by which the senses of touch, balance, hearing, and proprioception are transduced are still largely unknown. Biochemical approaches to identify transduction components are difficult to use with mechanosensory systems, but genetic approaches are proving more successful. Genetic research in several organisms has demonstrated the importance of cytoskeletal, extracellular, and membrane components for sensory mechanotransduction. In particular, researchers have identified channel proteins in the DEG/ENaC and TRP families that are necessary for signaling in a variety of mechanosensory cells. Proof that these proteins are components of the transduction channel, however, is incomplete.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Interactions between staphylococci and the joint tissues of the host lead typically to rapidly progressing and highly destructive processes. Staphylococci possess a vast arsenal of components and products that contribute to the pathogenesis of joint infection. Occasionally these compounds have overlapping activities and act either in concert or alone. Host responsiveness to staphylococcal infection displays an even more complex pattern. Most of the cells and molecules that participate in the innate immune system protect the host against bacteria. However, the staphylococci have developed systems that counteract endogenous protective mechanisms. Interestingly, certain cells and molecules of the acquired immune system potentiate the severity of infection by triggering exaggerated responses to the staphylococcal danger signals. This review deals with the intricate host–bacterium interactions that occur during experimental septic arthritis, and outlines potential preventive and treatment modalities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The previously isolated T-even type coliphage PP01, specifically infective to Escherichia coli O157:H7, uses the outer membrane protein OmpC as a receptor. The characterization of a spontaneous PP01-resistant strain indicated that it had lost ompC due to the deletion of a 14-kbp region upstream of and partially including ompC. Two host range mutants, able to infect an ompC null mutant, were isolated. Sequencing of gene 38, which codes for the receptor recognition protein Gp38, indicated three mutations in one mutant and two in the other. Both mutant proteins had a Gly208Arg, a Gly161Arg or Gly101His replacement, respectively, and the one mutant phage in addition a Trp189Arg replacement. These alterations suggest that the host range was mediated by a more positively charged Gp38.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The gene (open reading frame Tm1155, g6pd) encoding glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) of the hyperthermophilic bacterium Thermotoga maritima was cloned and functionally expressed in Escherichia coli. The purified recombinant enzyme is a homodimer with an apparent molecular mass of 95 kDa composed of 60-kDa subunits. Rate dependence (at 80°C) on glucose-6-phosphate and NADP+ followed Michaelis–Menten kinetics with apparent Km values of 0.15 mM and 0.03 mM, respectively; apparent Vmax values were about 20 U mg−1. The enzyme also reduced NAD+ (apparent Km 12 mM, Vmax 12 U mg−1). The 1000-fold higher catalytic activity (kcat/Km) with NADP+ over NAD+ defines the G6PD as NADP+ specific in vivo. G6PD activity was competitively inhibited by NADPH with a Ki value of 0.11 mM. With a temperature optimum of 92°C the enzyme is the most thermoactive G6PD described.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 216 (2002), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The β subunit of Escherichia coli DNA polymerase III holoenzyme was fused to the green fluorescent protein GFP. The gene fusion under the control of the heterologous lac promoter was used to replace the wild-type allele in the chromosome. The formation of GFP-β fluorescent foci in GFP-β expressing cells required DNA replication and their number per cell was dependent on cell growth. Examination of GFP-β foci in a synchronous round of replication suggested that DNA replication was accompanied by the recruitment of GFP-β foci near the midcell, followed by the rapid migration of the foci in opposite directions to the 1/4 and 3/4 positions during DNA replication.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 216 (2002), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A rosy-pigmented Gram-negative, thermophilic bacterium with an optimum growth temperature of about 55°C was isolated from Tengchong hot springs in Yunnan province, China. Its growth scarcely occurred below 40°C or above 70°C. Phylogenetic and secondary structural analyses of 16S rRNA and DNA–DNA hybridization showed that the organism represented a new species of the genus Meiothermus. This new species could be distinguished easily from other species of the genus Meiothermus by the following phenotypic characteristics: rosy pigment, expanded body, sucrose and maltose were not utilized, gelatin and starch were not hydrolyzed. On the basis of the above data, the name Meiothermus rosaceus sp. nov. was proposed for the species represented by the strain RH9901T(CCTCC-AB200291).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 216 (2002), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Enterococci are increasingly important causes of nosocomial disease. Also, they are associated with food and have a history of use as dairy starter and probiotic cultures. An enterococcal surface protein Espfs is involved the virulence and biofilm-forming capacity of Enterococcus faecalis and recently we demonstrated the presence of a homologue Espfm in E. faecium. Here we describe the complete structure of Espfm and demonstrate that its distribution in E. faecium correlates with disease associated strains from a range of pathological sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Mycorrhizas of Tuber brumale on Quercus pubescens and Tilia americana were obtained in vitro using micropropagated plantlets. Mycelium pure cultures were used for inoculation. Both the mycelium used for the inoculations, as well as the mycorrhizas which were obtained, were identified using several molecular approaches: analysis of the ITS region, polymerase chain reaction (PCR) specific primers and sequencing. The mycorrhizas were described from a morphological standpoint. Some of their biometric characteristics were different in bass-wood than they were in oak, thus showing the influence of the host plant on several of the morphological features believed to be necessary for the identification of the species. Considering the variability of their morphological characteristics, molecular analysis proved to be a necessary tool for the recognition of the mycorrhizas of Tuber spp.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 216 (2002), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The bacterial genus Streptomyces forms chains of spores by septation at intervals in aerial hyphae and subsequent maturation on solid medium. Substrate hyphae undergo extensive lysis, liberating nutrients on which aerial hyphae develop. Some mutant strains, however, ectopically form spores by septation in substrate hyphae on solid medium or in vegetative hyphae in liquid medium, which suggests that all hyphae have the potential to differentiate into spores. A Streptomyces griseus mutant strain NP4, which has a mutation in the regulatory system for an ATP-binding cassette (ABC) transporter gene, forms ectopic spores in substrate hyphae only on glucose-containing medium. In addition, overexpression of a substrate-binding protein of the ABC transporter in the wild-type strain causes ectopic septation in very young substrate hyphae and subsequent sporulation in response to glucose. These ectopic spores germinate normally. The ectopic sporulation is independent of A-factor, a microbial hormone that determines the timing of aerial mycelium formation during normal development. Thus, substrate hyphae of Streptomyces have a potential to develop into spores without formation of aerial hyphae. For programmed development, therefore, the strict repression of septum formation in substrate mycelium should be necessary, as well as the positive signal relay leading to aerial mycelium formation followed by septation and sporulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The catalase gene katA of Staphylococcus xylosus was cloned. It encodes a protein of 494 amino acids with a molecular mass of 56.9 kDa, closely related to monofunctional catalases. A katA mutant still showed a relatively high catalase activity demonstrating that S. xylosus possesses more than one enzyme. By Southern blot analysis using a katA probe, a second genetic locus distinct from katA was detected that probably contained the additional catalase gene. To analyse katA expression, a transcriptional fusion of the katA promoter region to a promoterless β-galactosidase gene was integrated into the genome of S. xylosus. katA expression is induced upon entry into stationary phase, by oxygen and hydrogen peroxide. Iron and manganese depletion induced katA transcription. Comparing the resistance of S. xylosus wild-type and the katA mutant strain to hydrogen peroxide clearly showed that KatA is essential for S. xylosus to cope with hydrogen peroxide stress. Therefore, S. xylosus has at least two differentially expressed catalases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 216 (2002), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The KEM1/XRN1 gene was originally identified because of its functions in microtubule-mediated processes, and is also known to be a major cytoplasmic 5′-3′ exoribonuclease gene, which is involved in RNA turnover. Here we present evidence that KEM1 plays a role in filamentous growth. In Saccharomyces cerevisiae, the filamentation signalling shares multiple components of the MAP kinase cascade (STE7, STE11, and KSS1) and the transcription factor STE12 with mating process. Both haploid invasive growth and diploid pseudohyphal growth were found to be greatly impaired in kem1 mutant strains. KEM1 affected the level of FLO11 transcripts and the expression of the filamentation-associated reporter genes, Ty1-lacZ and FLO11-lacZ. Suppression analysis implies that KEM1 does not affect the RAS/PKA pathway, but that it possibly functions downstream of the MAP kinase pathway during filamentation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Xylella fastidiosa strains are responsible for several plant diseases and since such isolates display a broad host range and complex biological behavior, genomic comparisons employing microarray hybridizations may provide an effective method to compare them. Thus, we performed a thorough validation of this type of approach using two recently sequenced strains of this phytopathogen. By matching microarray hybridization results to direct sequence comparisons, we were able to establish precise cutoff ratios for common and exclusive sequences, allowing the identification of exclusive genes involved in important biological traits. This validation will enable the use of microarray-based comparisons across a wide variety of microorganisms
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 216 (2002), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Infections with bacteria producing shiga toxin are responsible for widespread disease and for the death of a large number of people. In the present study, we have developed a rapid method of high specificity for the detection of Shigella dysenteriae by combining immuno-capture of the bacteria and polymerase chain reaction (PCR) amplification of their toxin gene. We compared the sensitivity of our new method, referred to as immuno-capture toxin gene PCR (iTGPCR), with a conventional TGPCR (cTGPCR) method in detecting S. dysenteriae. Approximately 100 colony forming units (CFU) of bacteria in a volume of 400 μl were divided into 20 tubes with 5 CFU (20 μl). One group of 10 tubes was analyzed by iTGPCR and the other by cTGPCR amplification. All were positive in the 10 tubes using iTGPCR but, in contrast, only half were positive in the 10 tubes with the cTGPCR method. This method was used to detect S. dysenteriae type I in sewage samples without the normal tedious preparation methods. These findings suggest that iTGPCR gives enhanced test sensitivity, and allows determination of pathogen serotype, and differentiation of toxin-producing strains from non toxin-producing strains.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 216 (2002), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A 3.5-kb native plasmid (pND103) was identified in Streptococcus thermophilus ST2-1. Preliminary sequence analysis indicated that pND103 belongs to group I S. thermophilus plasmids. A region of approximately 2 kb appears to contain three components: a plus origin of replication (ori) typical of plasmids that replicate via rolling circle replication; a gene encoding a replication protein (rep); and a gene encoding a small heat shock protein (hsp). pND103 was then used to construct S. thermophilus/Escherichia coli hybrid cloning vectors by ligating different portions of pND103 to an origin-probe vector (pND330) composed of pUC19 and a Gram-positive erythromycin resistance gene. The shuttle vectors (pND913, pND914 and pND915) were successfully introduced back into plasmid-free S. thermophilus ST3–1 as well as to Lactococcus lactis LM0230 and E. coli JM109. Segregational and structural stability study indicated that these vectors can be maintained in these hosts. The results indicated that pND913, pND914 and pND915 are potential shuttle cloning vectors for S. thermophilus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Itaconate is known as a potent inhibitor of isocitrate lyase. Unexpectedly, itaconate was a strong inhibitor of acetate and propionate assimilation in isocitrate lyase-negative purple non-sulfur bacterium Rhodospirillum rubrum. It was shown that in cell extracts of R. rubrum itaconate inhibited propionyl-CoA carboxylase (PCC) activity. The participation of PCC in propionate assimilation in R. rubrum is well-documented, but the inhibition of acetate assimilation suggests that PCC is also involved in acetate metabolism. PCC is one of the enzymes of the citramalate cycle, the anaplerotic pathway proposed for R. rubrum as a substitute for the glyoxylate cycle. These results provide further support for the hypothesis of the occurrence of the citramalate cycle in R. rubrum. PCC from other isocitrate lyase-negative phototrophs, Rhodobacter sphaeroides and Phaeospirillum fulvum, was not inhibited by itaconate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: An efficient method was developed to assign cloned genes to individual chromosomes of the fungus Podospora anserina. The chromosomes were separated by pulsed-field gel electrophoresis and the DNA was isolated from the gel bands. The DNA from the isolated chromosomes was slotted onto membranes; the resulting chromoslots were used to confirm that genetically mapped genes could be detected in the expected position. Then, 20 genes, not yet assigned to a linkage group, were attributed to individual chromosomes while six were attributed to a band containing two chromosomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Primers were designed and successfully used to screen aromatic hydrocarbon-degrading bacteria for the presence of class II aromatic ring-hydroxylating dioxygenase (RHD) genes and to amplify novel RHD genes from DNA extracted from soil using the polymerase chain reaction. Two previously undiscovered groups of genes encoding putative class II RHDs, designated the S and T clusters, were found in RHD different soil samples. Only one of 70 RHD gene fragments amplified from these soil samples could be assigned to a cluster of previously reported RHD genes. These results suggest that distinct and potentially numerically dominant groups of as-yet unrecognized aromatic hydrocarbon-degrading bacteria exist in soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Escherichia coli producing heat-labile enterotoxin is responsible for numerous cases of diarrhea worldwide, leading to considerable morbidity and mortality. The B subunits of this toxin are responsible for the binding to the receptor, the complex ganglioside GM1 which has galactose as its terminal sugar. In this study we showed that analogs of galactose (gal) and N-acetylgalactosamine (GalNAc) interfere with the binding of heat-labile toxin to GM1. Antibodies to lectins which mimic sugar structures and neoglycoprotein were employed. These compounds were able to inhibit heat-labile toxin activity efficiently in Vero cells: 37 μg of IgG-enriched fraction from an antiserum inhibited up to 70% of this activity, and 50% of the binding of heat-labile toxin to GM1. Neoglycoprotein was more efficient than antibodies, since 2.5 μg of this ligand completely abolished the activity of heat-labile toxin on Vero cells. These data suggest that these molecules could be developed for prophylaxis and diagnosis of diarrhea caused by heat-labile toxin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Bacillus anthracis was isolated and identified from a bacterial collection of samples from the Amazon river bank. Type II restriction endonuclease activity was detected in this prokaryote, the enzyme was purified, the molecular mass of the native protein estimated by gel filtration, and optima pH, temperature and salt requirements were determined. Quality control assays showed complete absence of ‘non-specific nucleases’. Restriction cleavage analysis and DNA sequencing of restriction fragments allowed unequivocal demonstration of 5′-GG↓CC-3′ as the recognition sequence. This enzyme was named Ban AI and is therefore an isoschizomer of the prototype restriction endonuclease Hae III. This is the first report of a type II restriction endonuclease identified, purified from a natural isolate of B. anthracis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 215 (2002), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A 3.9-kb fragment of the genome of Pseudomonas putida H, containing the complete zwf-pgl-eda-operon, encoding glucose 6-phosphate dehydrogenase, 6-phosphogluconolactonase and 2-keto-3-deoxy-6-phosphogluconate–aldolase, respectively, and part of the divergently transcribed regulatory gene, hex R, was cloned and analyzed. The nucleotide sequences of these genes showed high similarities to the corresponding DNA sequences of P. putida KT2440 and also to sequences of Pseudomonas aeruginosa PAO1. Derivatives of strains H and KT2440, containing transcriptional lacZ fusions to Pzwf were generated and used to study the expression of these operons. In both strains, this operon was induced by carbohydrates such as glucose, gluconate, fructose and glycerol. The transcription rate of the zwf-pgl-eda-operon was found to be about three times higher in the KT2440 background than in strain H. In both strains the induction of the zwf-pgl-eda-operon by carbohydrates during growth on carboxylic acids was not affected by carbon catabolite repression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 215 (2002), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In Saccharomyces cerevisiae, there are two isoenzymes of fumarate reductase (FRDS1 and FRDS2), encoded by the FRDS and OSM1 genes, respectively. Simultaneous disruption of these two genes results in a growth defect of the yeast under anaerobic conditions, while disruption of the OSM1 gene causes slow growth. However, the metabolic role of these isoenzymes has been unclear until now. In the present study, we found that the anaerobic growth of the strain disrupted for both the FRDS and OSM1 genes was fully restored by adding the oxidized form of methylene blue or phenazine methosulfate, which non-enzymatically oxidize cellular NADH to NAD+. When methylene blue was added at growth-limiting concentrations, growth was completely arrested after exhaustion of oxidized methylene blue. In the double-disrupted strain, the accumulation of succinate in the supernatant was markedly decreased during anaerobic growth in the presence of methylene blue. These results suggest that fumarate reductase isoenzymes are required for the reoxidation of intracellular NADH under anaerobic conditions, but not aerobic conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 215 (2002), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Bacterial adherence is a complex phenomenon involving specific interactions between receptors, including matricial fibronectin, and bacterial ligands. We show here that fibronectin and outer membrane proteins of Pseudomonas fluorescens were able to inhibit adherence of P. fluorescens to fibronectin-coated wells. We identified at least six fibronectin-binding proteins with molecular masses of 70, 55, 44, 37, 32 and 28 kDa. The presence of native (32 kDa) and heat-modified forms (37 kDa) of OprF was revealed by immuno-analysis and the 44-kDa band was composed of three proteins, their N-terminal sequences showing homologies with Pseudomonas aeruginosa porins (OprD, OprE1 and OprE3).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Corynebacterium diphtheriae, generally considered an extracellular coloniser, was evaluated for its ability to enter and survive within HEp-2 monolayers by gentamicin protection assay. Intracellular viability of HC01 strain, isolated from endocarditis, was more expressive (2.59%) than observed in 241 (0.21%) and CDC-E8392 (1.93%) strains. Electron microscopy of C. diphtheriae-infected HEp-2 cells revealed intracellular bacteria inside membrane-bound vacuoles. Bacterial internalisation was totally inhibited by 5 μM cytochalasin E and significantly inhibited by 100 μM genistein (P〈0.05). Therefore, C. diphtheriae presents the ability to survive within cultured epithelial cells and signalling cascade as well as actin polymerisation are required for entry of diphtheria bacilli into HEp-2 cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A genetically altered variant of Cry9Ca from Bacillus thuringiensis shows high potency against the spruce budworm, Choristoneura fumiferana Clemens. Its activity, as measured by feeding inhibition in frass-failure assays, is estimated to be four to seven times greater than B. thuringiensis subsp. kurstaki HD-1, the strain currently used in commercial products to control this insect. Bioassays against budworm of mixtures of the modified Cry9Ca and two of the Cry1A endotoxin proteins produced by HD-1 show neither synergism nor antagonism. Experiments with brush border membrane vesicles from budworm midgut revealed that Cry9Ca and the Cry1A toxins share a common binding site and that bound Cry9Ca can be displaced from the membrane to some extent by the Cry1A toxins. However, it is uncertain whether the binding site is actually the receptor molecule or a membrane protein associated with pore formation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Each of the genomic sequences of Methanosarcina acetivorans, Methanosarcina mazei, and Methanosarcina thermophila revealed two homologs of mtaA, three homologs of mtaB, and three homologs of mtaC encoding enzymes specific for methanogenesis from methanol. Two-dimensional gel electrophoretic analyses of polypeptides from M. thermophila established that methanol induces the expression of mtaA-1, mtaB-1, mtaB-2, mtaB-3, mtaC-1, mtaC-2, and mtaC-3 whereas mtaB-3 and mtaC-3 are constitutively expressed in acetate-grown cells. The gene product of one of three mttC homologs, encoding trimethylamine-specific methyltransferase I, was detected in methanol- but not acetate-grown M. thermophila. A postulated role for the multiple homologs is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 215 (2002), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Zoocin A is a lysostaphin-like streptococcolytic enzyme produced by Streptococcus equi subsp. zooepidemicus 4881 that specifically targets the cell walls of some closely related species. On the basis of sequence homology it was suggested that zoocin A was a domain-structured enzyme with the N-terminal domain responsible for catalysis (CAT) and the C-terminal domain for target recognition (SBD). Polypeptides corresponding to zoocin A (rZooA) and each of the putative domains (rCAT and rSBD) were prepared by use of recombinant technology. The biological activities of each was compared by use of a dye-release assay and a cell-binding assay. Cell wall hydrolysis was shown to be a function of CAT and target recognition a function of the SBD. Expression of the zoocin A immunity factor gene produced cell walls resistant to hydrolysis by either rZooA or its component domains, and with reduced capacity to bind rZooA and rSBD.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 215 (2002), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: An effort is presented to create expression vectors which would allow expression of an inserted gene fragment in three reading frames in a single vector from a single promoter but with three separate ribosome binding sites (RBS). Each expression frame would generate an in-frame fusion with an affinity tag to allow efficient recovery of the produced fusion proteins. In the first generation vector, three identical polyhistidyl tags (His6) were used as affinity tags for the three expression frames. In the second generation vector, three different tags, an albumin binding domain derived from streptococcal protein G, an IgG binding Staphylococcus aureus protein A-derived domain (Z) and a His6 tag, were employed to allow frame-specific affinity recovery. To evaluate the systems, model genes have been inserted in three different frames in both vectors. The first vector was demonstrated to produce fusion proteins in all three frames, whereas for the second, with a much wider spacing between the RBSs and affinity tags, expression could only be demonstrated from the first two translational start sites. For both systems, the first translation start was found to be significantly favored over the others. Nevertheless, we believe that the presented results represent the first successful attempt to create single-vector three-frame expression systems, a concept that could become valuable in future combined cloning–expression vectors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: NahR, a LysR-type transcriptional regulator, is required for expression of naphthalene catabolic operons. However, detailed mechanisms of transcriptional activation by NahR are poorly understood. Many transcriptional activators make direct contact with RNA polymerase (RNAP) to initiate transcription. We investigated the hypothesis that direct contact between NahR and the α subunit of RNAP (αRNAP) may be involved in expression of the naphthalene catabolic operons in Pseudomonas putida NCIB 9816-4. Interactions between the NahR and αRNAP in P. putida NCIB 9816–4 were analyzed using the yeast two-hybrid system. The results obtained indicate that protein–protein interactions occur between αRNAP and the NahR. Gene activation by NahR is consistent with the general transcriptional mechanism of class I transcription factors, which function by contacting αRNAP.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: An oligonucleotide-microarray method was developed for the detection of intestinal bacteria in fecal samples collected from human subjects. The 16S rDNA sequences of 20 predominant human intestinal bacterial species were used to design oligonucleotide probes. Three 40-mer oligonucleotides specific for each bacterial species (total 60 probes) were synthesized and applied to glass slides. Cyanine5 (CY5)-labeled 16S rDNAs were amplified by polymerase chain reaction (PCR) from human fecal samples or bacterial DNA using two universal primers and were hybridized to the oligo-microarray. The 20 intestinal bacterial species tested were Bacteroides thetaiotaomicron, Bacteroides vulgatus, Bacteroides fragilis, Bacteroides distasonis, Clostridium clostridiiforme, Clostridium leptum, Fusobacterium prausnitzii, Peptostreptococcus productus, Ruminococcus obeum, Ruminococcus bromii, Ruminococcus callidus, Ruminococcus albus, Bifidobacterium longum, Bifidobacterium adolescentis, Bifidobacterium infantis, Eubacterium biforme, Eubacterium aerofaciens, Lactobacillus acidophilus, Escherichia coli, and Enterococcus faecium. The two universal primers were able to amplify full size 16S rDNA from all of the 20 bacterial species tested. The hybridization results indicated that the oligo-microarray method developed in this study is a reliable method for the detection of predominant human intestinal bacteria in the fecal samples.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Using differential display, we identified the Anabaena sp. PCC 7120 ribulose 1,5-bisphosphate carboxylase transcriptional regulator (rbcR1) gene, a member of the LysR family of positive transcription factors. The rbcR1 transcript and its putative target gene ribulose 1,5-bisphosphate carboxylase/oxygenase (rbcL/S) were repressed by cold (20°C) and osmotic (sucrose and salt) stress. Cold stress also induced a transient downregulation of the Anabaena 7120 ntcA transcriptional regulator. Expression of the ntcA gene, however, returned to normal levels 2 h after initiation of cold stress and increased significantly above normal levels 24 h after growth at 20°C. The early decline in the expression of the ntcA, rbcR1, and rbcL/S transcripts appears to be part of the Anabaena 7120 global adaptation response to stress. The substantial increase in the ntcA gene expression 24 h following cold stress suggests that Anabaena 7120 experiences substantial nitrogen limitation under these conditions. These data suggest that in response to stress, Anabaena 7120 decreases its metabolic activity through regulation of the CO2 fixation machinery while enhancing its nitrogen assimilation by inducing the expression of the nitrogen global transcriptional regulator, NtcA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 213 (2002), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A moderate halophilic Marinobacter sp. (designated strain DPUZ) able to metabolize 1,3-diphenylurea (DPU) was isolated from a contaminated ephemeral desert stream bed near an industrial complex in the northern part of the Negev Desert (Israel). Metabolism of DPU was accompanied by a transient accumulation of a metabolite identified as aniline using gas chromatography–mass spectrometry, thus indicating a metabolic pathway involving cleavage of the urea bridge between the phenyl structures. Aniline was further degraded without detection of other metabolites suggesting a complete degradation. Strain DPUZ grows at NaCl concentrations between 0.2 and 2.6 M with an optimum at 0.51 M. It grows at a temperature range between 20 and 40°C with an optimum at 35°C. This is the first study on bacterial metabolism of DPU.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...