ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer Nature  (18,288)
  • American Meteorological Society
  • Annual Reviews
  • 2015-2019
  • 2000-2004  (23,197)
  • 2003  (11,807)
  • 2002  (11,390)
Collection
Years
  • 2015-2019
  • 2000-2004  (23,197)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 1-44 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 177-206 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Early NMR structural studies of serum lipoproteins were based on 1H, 13C, 31P, and 2H studies of lipid components. From the early studies information on composition, lipid chain dynamics and order parameters, and monolayer organization resulted. More recently, selective or complete isotopic labeling techniques, combined with multidimensional NMR spectroscopy, have resulted in structural information of apoprotein fragments. Finally, use of heteronuclear three- and four-dimensional experiments have yielded solution structures and protein-lipid interactions of intact apolipoproteins C-I, C-II, and A-I.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 235-256 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract During the course of their biological function, proteins undergo different types of structural rearrangements ranging from local to large-scale conformational changes. These changes are usually triggered by their interactions with small-molecular-weight ligands or other macromolecules. Because binding interactions occur at specific sites and involve only a small number of residues, a chain of cooperative interactions is necessary for the propagation of binding signals to distal locations within the protein structure. This process requires an uneven structural distribution of protein stability and cooperativity as revealed by NMR-detected hydrogen/deuterium exchange experiments under native conditions. The distribution of stabilizing interactions does not only provide the architectural foundation to the three-dimensional structure of a protein, but it also provides the required framework for functional cooperativity. In this review, the statistical thermodynamic linkage between protein stability, functional cooperativity, and ligand binding is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 73-95 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Active transport requires the alternation of substrate uptake and release with a switch in the access of the substrate binding site to the two sides of the membrane. Both the transfer and switch aspects of the photocycle have been subjects of magnetic resonance studies in bacteriorhodopsin. The results for ion transfer indicate that the Schiff base of the chromophore is hydrogen bonded before, during, and after its deprotonation. This suggests that the initial complex counterion of the Schiff base decomposes in such a way that the Schiff base carries its immediate hydrogen-bonding partner with it as it rotates during the first half of the photocycle. If so, bacteriorhodopsin acts as an inward-directed hydroxide pump rather than as an outward-directed proton pump. The studies of the access switch explore both protein-based and chromophore-based mechanisms. Combined with evidence from functional studies of mutants and other forms of spectroscopy, the results suggest that maintaining access to the extracellular side of the protein after photoisomerization involves twisting of the chromophore and that the decisive switch in access to the cytoplasmic side results from relaxation of the chromophore when the constraints on the Schiff base are released by decomposition of the complex counterion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 151-175 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract We review the physical properties of phosphatidylinositol 4,5-bisphosphate (PIP2) that determine both its specific interactions with protein domains of known structure and its nonspecific electrostatic sequestration by unstructured domains. Several investigators have postulated the existence of distinct pools of PIP2 within the cell to account for the myriad functions of this lipid. Recent experimental work indicates certain regions of the plasma membrane-membrane ruffles and nascent phagosomes-do indeed concentrate PIP2. We consider two mechanisms that could account for this phenomenon: local synthesis and electrostatic sequestration. We conclude by considering the hypothesis that proteins such as MARCKS bind a significant fraction of the PIP2 in a cell, helping to sequester it in lateral membrane domains, then release this lipid in response to local signals such as an increased concentration of Ca++/calmodulin or activation of protein kinase C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 121-149 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The first crystal structures of intact T cell receptors (TCRs) bound to class I peptide-MHC (pMHCs) antigens were determined in 1996. Since then, further structures of class I TCR/pMHC complexes have explored the degree of structural variability in the TCR-pMHC system and the structural basis for positive and negative selection. The recent determination of class II and allogeneic class I TCR/pMHC structures, as well as those of accessory molecules (e.g., CD3), has pushed our knowledge of TCR/pMHC interactions into new realms, shedding light on clinical pathologies, such as graft rejection and graft-versus-host disease. Furthermore, the determination of coreceptor structures lays the foundation for a more comprehensive structural description of the supramolecular TCR signaling events and those assemblies that arise in the immunological synapse. While these telling photodocumentaries of the TCR/pMHC interaction are composed mainly from static crystal structures, a full description of the biological snapshots in T cell signaling requires additional analytical methods that record the dynamics of the process. To this end, surface plasmon resonance (SPR), isothermal titration calorimetry (ITC), and ultracentrifugation (UC) have furnished both affinities and kinetics of the TCR/pMHC association. In the past year, structural, biochemical, and molecular biological data describing TCR/pMHC interactions have sublimely coalesced into a burgeoning well of understanding that promises to deliver further insights into T cell recognition. The coming years will, through a more intimate union of structural and kinetic data, allow many pressing questions to be addressed, such as how TCR/pMHC ligation is affected by coreceptor binding and what is the mechanism of TCR signaling in both early and late stages of T cell engagement with antigen-presenting cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 207-233 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The structures of an increasing number of channels and other alpha-helical membrane proteins have been determined recently, including the KcsA potassium channel, the MscL mechanosensitive channel, and the AQP1 and GlpF members of the aquaporin family. In this chapter, the orientation and packing characteristics of bilayer-spanning helices are surveyed in integral membrane proteins. In the case of channels, alpha-helices create the sealed barrier that separates the hydrocarbon region of the bilayer from the permeation pathway for solutes. The helices surrounding the permeation pathway tend to be rather steeply tilted relative to the membrane normal and are consistently arranged in a right-handed bundle. The helical framework further provides a supporting scaffold for nonmembrane-spanning structures associated with channel selectivity. Although structural details remain scarce, the conformational changes associated with gating transitions between closed and open states of channels are reviewed, emphasizing the potential roles of helix-helix interactions in this process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 275-302 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Using luminescent lanthanides, instead of conventional fluorophores, as donor molecules in resonance energy transfer measurements offers many technical advantages and opens up a wide range of new applications. Advantages include farther measurable distances (~100 A) with greater accuracy, insensitivity to incomplete labeling, and the ability to use generic relatively large labels, when necessary. Applications highlighted include the study of ion channels in living cells, protein-protein interaction in cells, DNA-protein complexes, and high-throughput screening assays to measure peptide dimerization associated with DNA transcription factors and ligand-receptor interactions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 303-319 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Cryo-electron microscopy (cryo-EM) of biological molecules in single-particle (i.e., unordered, nonaggregated) form is a new approach to the study of molecular assemblies, which are often too large and flexible to be amenable to X-ray crystallography. New insights into biological function on the molecular level are expected from cryo-EM applied to the study of such complexes "trapped" at different stages of their conformational changes and dynamical interactions. Important molecular machines involved in the fundamental processes of transcription, mRNA splicing, and translation are examples for successful applications of the new technique, combined with structural knowledge gained by conventional techniques of structure determination, such as X-ray crystallography and NMR.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 443-484 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The recent report of the crystal structure of rhodopsin provides insights concerning structure-activity relationships in visual pigments and related G protein-coupled receptors (GPCRs). The seven transmembrane helices of rhodopsin are interrupted or kinked at multiple sites. An extensive network of interhelical interactions stabilizes the ground state of the receptor. The ligand-binding pocket of rhodopsin is remarkably compact, and several chromophore-protein interactions were not predicted from mutagenesis or spectroscopic studies. The helix movement model of receptor activation, which likely applies to all GPCRs of the rhodopsin family, is supported by several structural elements that suggest how light-induced conformational changes in the ligand-binding pocket are transmitted to the cytoplasmic surface. The cytoplasmic domain of the receptor includes a helical domain extending from the seventh transmembrane segment parallel to the bilayer surface. The cytoplasmic surface appears to be approximately large enough to bind to the transducin heterotrimer in a one-to-one complex. The structural basis for several unique biophysical properties of rhodopsin, including its extremely low dark noise level and high quantum efficiency, can now be addressed using a combination of structural biology and various spectroscopic methods. Future high-resolution structural studies of rhodopsin and other GPCRs will form the basis to elucidate the detailed molecular mechanism of GPCR-mediated signal transduction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 485-516 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Integrins are a structurally elaborate family of heterodimers that mediate divalent cation-dependent cell adhesion in a wide range of biological contexts. The inserted (I) domain binds ligand in the subset of integrins in which it is present. Its structure has been determined in two alternative conformations, termed open and closed. In striking similarity to signaling G proteins, rearrangement of a Mg2+-binding site is linked to large conformational movements in distant backbone regions. Mutations have been used to stabilize either the closed or open structures. These show that the snapshots of the open conformation seen only in the presence of a ligand or a ligand mimetic represent a high-affinity, ligand-binding conformation, whereas those of the closed conformation correspond to a low-affinity conformation. The C-terminal alpha-helix moves 10 A down the side of the domain in the open conformation. Locking in the conformation of the preceding loop is sufficient to increase affinity for ligand 9000-fold. This C-terminal "bell-rope" provides a mechanism for linkage to conformational movements in other domains. The transition from the closed to open conformation has been implicated in fast (〈1 s) regulation of integrin affinity in response to activation signals from inside the cell. Recent integrin structures and functional studies reveal interactions between beta-propeller, I, and I-like domains in the headpiece, and a critical role for integrin EGF domains in the stalk region. These studies suggest that the headpiece of the integrin faces down toward the membrane in the inactive conformation and extends upward in a "switchblade"-like opening motion upon activation. These long-range structural rearrangements of the entire integrin molecule involving multiple interdomain contacts appear closely linked to conformational changes in the I domain, which result in increased affinity and competence for ligand binding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 32 (2003), S. 47-67 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Optical single transporter recording (OSTR) is an emerging technique for the fluorescence microscopic measurement of transport kinetics in membrane patches. Membranes are attached to transparent microarrays of cylindrical test compartments (TCs) ~0.1-100 mum in diameter and ~10-100 mum in depth. Transport across membrane patches that may contain single transporters or transporter populations is recorded by confocal microscopy. By these means transport of proteins through single nuclear pore complexes has been recorded at rates of 〈1 translocation/s. In addition to the high sensitivity in terms of measurable transport rates OSTR features unprecedented spatial selectivity and parallel processing. This article reviews the conceptual basis of OSTR and its realization. Applications to nuclear transport are summarized. The further development of OSTR is discussed and its extension to a diversity of transporters, including translocases and ATP-binding cassette (ABC) pumps, projected.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 32 (2003), S. 93-114 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Since mid-1990, with cloning and identification of several families of natural killer (NK) receptors, research on NK cells began to receive appreciable attention. Determination of structures of NK cell surface receptors and their ligand complexes led to a fast growth in our understanding of the activation and ligand recognition by these receptors as well as their function in innate immunity. Functionally, NK cell surface receptors are divided into two groups, the inhibitory and the activating receptors. Structurally, they belong to either the immunoglobulin (Ig)-like receptor superfamily or the C-type lectin-like receptor (CTLR) superfamily. Their ligands are either members of class I major histocompatibility complexes (MHC) or homologs of class I MHC molecules. The inhibitory form of NK receptors provides the protective immunity through recognizing class I MHC molecules with self-peptides on healthy host cells. The activating, or the noninhibitory, NK receptors mediate the killing of tumor or virally infected cells through their specific ligand recognition. The structures of activating and inhibitory NK cell surface receptors and their complexes with the ligands determined to date, including killer immunoglobulin-like receptors (KIRs) and their complexes with HLA molecules, CD94, Ly49A, and its complex with H-2Dd, and NKG2D receptors and their complexes with class I MHC homologs, are reviewed here.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 32 (2003), S. 161-182 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Recent years have witnessed a renaissance of fluorescence microscopy techniques and applications, from live-animal multiphoton confocal microscopy to single-molecule fluorescence spectroscopy and imaging in living cells. These achievements have been made possible not so much because of improvements in microscope design, but rather because of development of new detectors, accessible continuous wave and pulsed laser sources, sophisticated multiparameter analysis on one hand, and the development of new probes and labeling chemistries on the other. This review tracks the lineage of ideas and the evolution of thinking that have led to the actual developments, and presents a comprehensive overview of the field, with emphasis put on our laboratory's interest in single-molecule microscopy and spectroscopy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 32 (2003), S. 135-159 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The lamba integrase, or tyrosine-based family of site-specific recombinases, plays an important role in a variety of biological processes by inserting, excising, and inverting DNA segments. Flp, encoded by the yeast 2-mum plasmid, is the best-characterized eukaryotic member of this family and is responsible for maintaining the copy number of this plasmid. Over the past several years, structural and biochemical studies have shed light on the details of a common catalytic scheme utilized by these enzymes with interesting variations under different biological contexts. The emergence of new Flp structures and solution data provides insights not only into its unique mechanism of active site assembly and activity regulation but also into the specific contributions of certain protein residues to catalysis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 32 (2003), S. 285-310 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The past decade has witnessed increasingly detailed insights into the structural mechanism of the bacteriorhodopsin photocycle. Concurrently, there has been much progress within our knowledge pertaining to the lipids of the purple membrane, including the discovery of new lipids and the overall effort to localize and identify each lipid within the purple membrane. Therefore, there is a need to classify this information to generalize the findings. We discuss the properties and roles of haloarchaeal lipids and present the structural data as individual case studies. Lipid-protein interactions are discussed in the context of structure-function relationships. A brief discussion of the possibility that bacteriorhodopsin functions as a light-driven inward hydroxide pump rather than an outward proton pump is also presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 32 (2003), S. 375-397 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract G protein-coupled receptors (GPCRs) are integral membrane proteins that respond to environmental signals and initiate signal transduction pathways activating cellular processes. Rhodopsin is a GPCR found in rod cells in retina where it functions as a photopigment. Its molecular structure is known from cryo-electron microscopic and X-ray crystallographic studies, and this has reshaped many structure/function questions important in vision science. In addition, this first GPCR structure has provided a structural template for studies of other GPCRs, including many known drug targets. After presenting an overview of the major structural elements of rhodopsin, recent literature covering the use of the rhodopsin structure in analyzing other GPCRs will be summarized. Use of the rhodopsin structural model to understand the structure and function of other GPCRs provides strong evidence validating the structural model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 32 (2003), S. 399-424 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The coupling of high-performance mass spectrometry instrumentation with highly efficient chromatographic and electrophoretic separations has enabled rapid qualitative and quantitative analysis of thousands of proteins from minute samples of biological materials. Here, we review recent progress in the development and application of mass spectrometry-based techniques for the qualitative and quantitative analysis of global proteome samples derived from whole cells, tissues, or organisms. Techniques such as multidimensional peptide and protein separations coupled with mass spectrometry, accurate mass measurement of peptides from global proteome digests, and mass spectrometric characterization of intact proteins hold great promise for characterization of highly complex protein mixtures. Advances in chemical tagging and isotope labeling techniques have enabled quantitative analysis of proteomes, and highly specific isolation strategies have been developed aimed at selective analysis of posttranslationally modified proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 25-51 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The amyloid precursor protein and the proteases cleaving this protein are important players in the pathogenesis of Alzheimer's disease via the generation of the amyloid peptide. Physiologically, the amyloid precursor protein is implied in axonal vesicular trafficking and the proteases are implicated in developmentally important signaling pathways, most significantly those involving regulated intramembrane proteolysis or RIP. We discuss the cell biology behind the amyloid and tangle hypothesis for Alzheimer's disease, drawing on the many links to the fields of cell biology and developmental biology that have been established in the recent years.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 107-133 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The type III mechanism of protein secretion is a pathogenic strategy shared by a number of gram-negative pathogens of plants and animals that has evolved in order to inject virulence proteins into the cytosol of target eukaryotic cells. The pathogens of the Yersinia genus represent a model system where much progress has been made in understanding this secretion pathway. Herein, we review what has been recently learned in yersiniae about the various environmental signals that induce type III secretion, how the synthesis of secretion substrates is regulated, and how such a diverse group of proteins is recognized as a substrate for secretion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 135-161 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The host cytoskeleton plays important roles in the entry, replication, and egress of viruses. An assortment of viruses hijack cellular motor proteins to move on microtubules toward the cell interior during the entry process; others reverse this transport during egress to move assembling virus particles toward the plasma membrane. Polymerization of actin filaments is sometimes used to propel viruses from cell to cell, while many viruses induce the destruction of select cytoskeletal filaments apparently to effect efficient egress. Indeed, the tactics used by any given virus to achieve its infectious life cycle are certain to involve multiple cytoskeletal interactions. Understanding these interactions, and their orchestration during viral infections, is providing unexpected insights into basic virology, viral pathogenesis, and the biology of the cytoskeleton.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 193-219 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Spindle microtubules interact with mitotic chromosomes, binding to their kinetochores to generate forces that are important for accurate chromosome segregation. Motor enzymes localized both at kinetochores and spindle poles help to form the biologically significant attachments between spindle fibers and their cargo, but microtubule-associated proteins without motor activity contribute to these junctions in important ways. This review examines the molecules necessary for chromosome-microtubule interaction in a range of well-studied organisms, using biological diversity to identify the factors that are essential for organized chromosome movement. We conclude that microtubule dynamics and the proteins that control them are likely to be more important for mitosis than the current enthusiasm for motor enzymes would suggest.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 221-245 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Chlamydiae, bacterial obligate intracellular pathogens, are the etiologic agents of several human diseases. A large part of the chlamydial intracellular survival strategy involves the formation of a unique organelle called the inclusion that provides a protected site within which they replicate. The chlamydial inclusion is effectively isolated from endocytic pathways but is fusogenic with a subset of exocytic vesicles that deliver sphingomyelin from the Golgi apparatus to the plasma membrane. A combination of host and parasite functions contribute to the biogenesis of this compartment. Establishment of the mature inclusion is accompanied by the insertion of multiple chlamydial proteins, suggesting that chlamydiae actively modify the inclusion to define its interactions with the eukaryotic host cell. Despite being sequestered within a membrane-bound vacuole, chlamydiae clearly communicate with and manipulate the host cell from within this privileged intracellular niche.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 463-493 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Epithelial morphogenesis comprises the various processes by which epithelia contribute to organ formation and body shape. These complex and diverse events play a central role in animal development and regeneration. Recently, the characterization of some of the molecular mechanisms involved in epithelial morphogenesis has provided an abundance of new information on the role and regulation of the cytoskeleton, cell-cell adhesion, and cell-matrix adhesion in these processes. In this review, we discuss our current understanding of the molecular mechanisms driving cell shape changes, cell intercalation, fusion of epithelia, ingression, egression, and cell migration. Our discussion is mostly focused on results from Drosophila and mammalian tissue culture but also draws on the insights gained from other organisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 379-420 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Golgi inheritance proceeds via sequential biogenesis and partitioning phases. Although little is known about Golgi growth and replication (biogenesis), ultrastructural and fluorescence analyses have provided a detailed, though still controversial, perspective of Golgi partitioning during mitosis in mammalian cells. Partitioning requires the fragmentation of the juxtanuclear ribbon of interconnected Golgi stacks into a multitude of tubulovesicular clusters. This process is choreographed by a cohort of mitotic kinases and an inhibition of heterotypic and homotypic Golgi membrane-fusion events. Our model posits that accurate partitioning occurs early in mitosis by the equilibration of Golgi components on either side of the metaphase plate. Disseminated Golgi components then coalesce to regenerate Golgi stacks during telophase. Semi-intact cell and cell-free assays have accurately recreated these processes and allowed their molecular dissection. This review attempts to integrate recent findings to depict a more coherent, synthetic molecular picture of mitotic Golgi fragmentation and reassembly. Of particular importance is the emerging concept of a highly regulated and dynamic Golgi structural matrix or template that interfaces with cargo receptors, Golgi enzymes, Rab-GTPases, and SNAREs to tightly couple biosynthetic transport to Golgi architecture. This structural framework may be instructive for Golgi biogenesis and may encode sufficient information to ensure accurate Golgi inheritance, thereby helping to resolve some of the current discrepancies between different workers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 557-579 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Combinatorial methods provide a means for accelerating the discovery of fuel cell catalysts. The first example of parallel fuel cell catalysts screening was an indirect method that used fluorescent chemosensors to detect changes in pH in proximity to electrocatalyst spots. Serial direct electrochemical methods have been developed that use voltammetry, chronoamperometry, and scanning electrochemical microscopy. An array fuel cell screens catalysts simultaneously, using high-performance fuel cell components. Heuristic models based on mechanistic and spectroscopic studies provide guidance for library development, and detailed studies of discovered catalysts can help to refine these models. The remaining challenges are the development of high throughput synthetic methods that can enable the use of discovery level and focus level screening. Until these synthetic methods are developed, a greater emphasis should be placed on smaller libraries with design of experiment strategies leveraged with informatics and data mining.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 503-555 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The past 10 years have witnessed a tremendous acceleration in research devoted to non-fluorinated polymer membranes, both as competitive alternatives to commercial perfluorosulfonic acid membranes operating in the same temperature range and with the objective of extending the range of operation of polymer fuel cells toward those more generally occupied by phosphoric acid fuel cells. Important requirements are adequate membrane mechanical strength at levels of functionalization (generally sulfonation) and hydration allowing high proton conductivity, and stability in the aggressive environment of a working fuel cell, in particular thermohydrolytic and chemical stability. This review provides an overview of progress made in the development of proton-conducting hydrocarbon and heterocyclic-based polymers for proton exchange and direct methanol fuel cells and describes the various approaches made to polymer modification/synthesis and salient properties of the materials formed, including those relating to proton transport and proton conductivity, e.g., water diffusion and electro-osmotic drag. The microstructure, deduced from small angle X-ray and neutron diffraction measurements of representative non-fluorinated polymers is compared with that of perfluorosulfonic acid membranes. Different degradation mechanisms and aging processes that can result in chemical and morphological alteration are considered, and recent characterization of membrane-electrode assemblies (MEAs) in direct methanol and hydrogen-air (oxygen) fuel cells completes this review of the state of the art. While several types of non-fluorinated polymer membrane have demonstrated lifetimes of 500-4000 h, only a limited number of systems exist that hold promise for long-term operation above 100oC.1
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 40 (2002), S. 63-101 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Abstract The Kuiper Belt consists of a large number of small, solid bodies in heliocentric orbit beyond Neptune. Discovered as recently as 1992, the Kuiper Belt objects (KBOs) are thought to hold the keys to understanding the early solar system, as well as the origin of outer solar system objects, such as the short-period comets and the Pluto-Charon binary. The KBOs are probably best viewed as aged relics of the Sun's accretion disk. Dynamical structures in the Kuiper Belt provide evidence for processes operative in the earliest days of the solar system, including a phase of planetary migration and a clearing phase, in which substantial mass was lost from the disk. Dust is produced to this day by collisions between KBOs. In its youth, the Kuiper Belt may have compared to the dust rings observed now around such stars as GG Tau and HR 4796A. This review presents the basic physical parameters of the KBOs and makes connections with the disks observed around nearby stars.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 40 (2002), S. 171-216 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Abstract Cosmic microwave background (CMB) temperature anisotropies have and will continue to revolutionize our understanding of cosmology. The recent discovery of the previously predicted acoustic peaks in the power spectrum has established a working cosmological model: a critical density universe consisting of mainly dark matter and dark energy, which formed its structure through gravitational instability from quantum fluctuations during an inflationary epoch. Future observations should test this model and measure its key cosmological parameters with unprecedented precision. The phenomenology and cosmological implications of the acoustic peaks are developed in detail. Beyond the peaks, the yet to be detected secondary anisotropies and polarization present opportunities to study the physics of inflation and the dark energy. The analysis techniques devised to extract cosmological information from voluminous CMB data sets are outlined, given their increasing importance in experimental cosmology as a whole.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 40 (2002), S. 539-577 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Abstract Considerable progress has been made over the past decade in the study of the evolutionary trends of the population of galaxy clusters in the Universe. In this review we focus on observations in the X-ray band. X-ray surveys with the ROSAT satellite, supplemented by follow-up studies with ASCA and Beppo-SAX, have allowed an assessment of the evolution of the space density of clusters out to z= 1 and the evolution of the physical properties of the intracluster medium out to z= 0.5. With the advent of Chandra and Newton-XMM and their unprecedented sensitivity and angular resolution, these studies have been extended beyond redshift unity and have revealed the complexity of the thermodynamical structure of clusters. The properties of the intracluster gas are significantly affected by nongravitational processes including star formation and Active Galactic Nuclei (AGN) activity. Convincing evidence has emerged for modest evolution of both the bulk of the X-ray cluster population and their thermodynamical properties since redshift unity. Such an observational scenario is consistent with hierarchical models of structure formation in a flat low-density universe with Omegam= 0.3 and sigma8= 0.7-0.8 for the normalization of the power spectrum. Basic methodologies for construction of X-ray-selected cluster samples are reviewed, and implications of cluster evolution for cosmological models are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 40 (2002), S. 103-136 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Abstract Giant planet research has moved from the study of a handful of solar system objects to that of a class of bodies with dozens of known members. Since the original 1995 discovery of the first extrasolar giant planets (EGPs), the total number of known examples has increased to ~80 (circa November 2001). Current theoretical studies of giant planets emphasize predicted observable properties, such as luminosity, effective temperature, radius, external gravity field, atmospheric composition, and emergent spectra as a function of mass and age. This review focuses on the general theory of hydrogen-rich giant planets; smaller giant planets with the mass and composition of Uranus and Neptune are not covered. We discuss the status of the theory of the nonideal thermodynamics of hydrogen and hydrogen-helium mixtures under the conditions found in giant-planet interiors, and the experimental constraints on it. We provide an overview of observations of extrasolar giant planets and our own giant planets by which the theory can be validated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 40 (2002), S. 319-348 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Abstract Magnetic fields in the intercluster medium have been measured using a variety of techniques, including studies of synchrotron relic and halo radio sources within clusters, studies of inverse Compton X-ray emission from clusters, surveys of Faraday rotation measures of polarized radio sources both within and behind clusters, and studies of cluster cold fronts in X-ray images. These measurements imply that most cluster atmospheres are substantially magnetized, with typical field strengths of order 1 muGauss with high areal filling factors out to Mpc radii. There is likely to be considerable variation in field strengths and topologies both within and between clusters, especially when comparing dynamically relaxed clusters to those that have recently undergone a merger. In some locations, such as the cores of cooling flow clusters, the magnetic fields reach levels of 10-40 muG and may be dynamically important. In all clusters the magnetic fields have a significant effect on energy transport in the intracluster medium. We also review current theories on the origin of cluster magnetic fields.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 37-49 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract David Crighton, a greatly admired figure in fluid mechanics, Head of the Department of Applied Mathematics and Theoretical Physics at Cambridge, and Master of Jesus College, Cambridge, died at the peak of his career. He had made important contributions to the theory of waves generated by unsteady flow. Crighton's work was always characterized by the application of rigorous mathematical approximations to fluid mechanical idealizations of practically relevant problems. At the time of his death, he was certainly the most influential British applied mathematical figure, and his former collaborators and students form a strong school that continues his special style of mathematical application. Rigorous analysis of well-posed aeroacoustical problems was transformed by David Crighton.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 143-175 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Cavitation in vortical structures is a common, albeit complex, problem in engineering applications. Cavitating vortical structures can be found on the blade surfaces, in the clearance passages, and at the hubs of various types of turbomachinery. Cavitating microvortices at the trailing edge of attached sheet cavitation can be highly erosive. Cavitating hub vortices in the draft tubes of hydroturbines can cause major surges and power swings. There is also mounting evidence that vortex cavitation is a dominant factor in the inception process in a broad range of turbulent flows. Most research has focused on the inception process, with limited attention paid to developed vortex cavitation. Wave-like disturbances on the surfaces of vapor cores are an important feature. Vortex core instabilities in microvortices are found to be important factors in the erosion mechanisms associated with sheet/cloud cavitation. Under certain circumstances, intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation. Vortex breakdown phenomena that have some commonalities are also noted, as are some differences with vortex breakdown in fully wetted flow. Simple vortex models can sometimes be used to describe the cavitation process in complex turbulent flows such as bluff body wakes and in plug valves. Although a vortex model for cavitation in jets does not exist, the mechanism of inception appears to be related to the process of vortex pairing. The pairing process can produce negative peaks in pressure that can exceed the rms value by a factor of ten, sometimes exceeding the dynamic pressure by a factor of two. A new and important issue is that cavitation is not only induced in vortical structures but is also a mechanism for vorticity generation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 177-210 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Microstructure in an immiscible polymer blend consists of the size, shape, and orientation of the phases. Blends exhibit many interesting behaviors, including enhanced elasticity at small strains, drop-size hysteresis, enhanced shear thinning, and stress relaxation curves whose shapes are sensitive to deformation history. These behaviors are directly related to changes in the microstructure, which result from phase deformation, coalescence, retraction, and different types of breakup. These phenomena are reviewed, together with models that describe them. Rheological measurements can probe the microstructure because microstructure contributes directly to stress through interfacial tension. Rheo-optical experiments also provide important insights. Droplet theories explain most of the phenomena for Newtonian phases at low concentrations. Behaviors at high volume fractions or with strongly non-Newtonian phases are less well understood.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 417-444 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Recent advances in the computational modeling of molecular conformational and orientational effects in the flow of viscoelastic fluids are described. These advances involve the coupling of molecular models for the underlying microstructure of macromolecules with the macroscopic equations of change. The kinetic theory for polymeric liquids is described along with the most useful micromechanical models for computing the fluid flow of polymeric liquids. Three levels of description are covered for the computation of molecular orientation effects: methods for molecular models for which closed-form, continuum-like evolution equations for average quantities describing molecular conformations can be obtained, hybrid methods that involve coupling direct solution of the Fokker-Planck equation describing the distribution function for molecular orientations with the equations of change, and hybrid methods that couple stochastic simulations of individual molecule trajectories with the macroscopic equations of change. Illustrative results for rheometric flows (flows with homogeneous, fixed kinematics) and complex flows are given.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 531-558 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The El Nino variability in the equatorial Tropical Pacific is characterized by sea-surface temperature anomalies and associated changes in the atmospheric circulation. Through an enormous monitoring effort over the last decades, the relevant time scales and spatial patterns are fairly well documented. In the meantime, a hierarchy of models has been developed to understand the physics of this phenomenon and to make predictions of future variability. In this review, the robust and relevant details of the observations, the fluid mechanical "building blocks," the theory of the deterministic part of the variability, and the impact of small-scale ("noise") and remote ("external") processes are evaluated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 1-10 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 45-62 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Drag reduction in wall-bounded flows can be achieved by transverse motions imposed by passive means, e.g., riblets, or by external forcing, such as wall oscillation or transverse traveling-wave excitation. In this article, we review possible physical mechanisms responsible for turbulent drag reduction and corresponding near-wall flow modification.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 89-111 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract In this review we describe the aerodynamic problems that must be addressed in order to design a successful small aerial vehicle. The effects of Reynolds number and aspect ratio (AR) on the design and performance of fixed-wing vehicles are described. The boundary-layer behavior on airfoils is especially important in the design of vehicles in this flight regime. The results of a number of experimental boundary-layer studies, including the influence of laminar separation bubbles, are discussed. Several examples of small unmanned aerial vehicles (UAVs) in this regime are described. Also, a brief survey of analytical models for oscillating and flapping-wing propulsion is presented. These range from the earliest examples where quasi-steady, attached flow is assumed, to those that account for the unsteady shed vortex wake as well as flow separation and aeroelastic behavior of a flapping wing. Experiments that complemented the analysis and led to the design of a successful ornithopter are also described.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 135-167 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The issue of the physical mechanism(s) that control the efficiency with which the density field in stably stratified fluid is mixed by turbulent processes has remained enigmatic. Similarly enigmatic has been an explanation of the numerical value of ~0.2, which is observed to characterize this efficiency experimentally. We review recent work on the turbulence transition in stratified parallel flows that demonstrates that this value is not only numerically predictable but also that it is expected to be a nonmonotonic function of the Richardson number that characterizes preturbulent stratification strength. This value of the mixing efficiency appears to be characteristic of the late-time behavior of the turbulent flow that develops after an initially laminar shear flow has undergone the transition to turbulence through an intermediate instability of Kelvin-Helmholtz type.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 373-412 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Recent small-scale turbulence observations allow the mixing regimes in lakes, reservoirs, and other enclosed basins to be categorized into the turbulent surface and bottom boundary layers as well as the comparably quiet interior. The surface layer consists of an energetic wave-affected thin zone at the very top and a law-of-the-wall layer right below, where the classical logarithmic-layer characteristic applies on average. Short-term current and dissipation profiles, however, deviate strongly from any steady state. In contrast, the quasi-steady bottom boundary layer behaves almost perfectly as a logarithmic layer, although periodic seiching modifies the structure in the details. The interior stratified turbulence is extremely weak, even though much of the mechanical energy is contained in baroclinic basin-scale seiching and Kelvin waves or inertial currents (large lakes). The transformation of large-scale motions to turbulence occurs mainly in the bottom boundary and not in the interior, where the local shear remains weak and the Richardson numbers are generally large.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 469-496 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Increasing urbanization and concern about sustainability and quality of life issues have produced considerable interest in flow and dispersion in urban areas. We address this subject at four scales: regional, city, neighborhood, and street. The flow is one over and through a complex array of structures. Most of the local fluid mechanical processes are understood; how these combine and what is the most appropriate framework to study and quantify the result is less clear. Extensive and structured experimental databases have been compiled recently in several laboratories. A number of major field experiments in urban areas have been completed very recently and more are planned. These have aided understanding as well as model development and evaluation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 295-315 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract It is classically assumed that the far field of a round turbulent jet discharging into quiescent fluid has a unique behavior characterized only by its momentum flux. However, there is now considerable evidence that different discharge conditions at the jet nozzle exit can give rise to very different far-field flows. Perhaps the most striking examples of these are the bifurcating and blooming jets produced by appropriate combinations of controlled axial and circumferential excitations at the nozzle exit. With the right excitations, a jet can be made to divide into two separate jets (bifurcating jet), each of which carries half the axial momentum and spreads in a manner similar to a single jet. Trifurcating jets can also be produced. Other excitations can produce blooming jets, in which the jet explodes into a shower of vortex rings, producing a far-field flow that is quite unlike a normal unexcited jet. Bifurcating and blooming jets exhibit much greater mixing than normal jets, suggesting possible applications in flow control. This article summarizes our work on bifurcating and blooming jets, which began with our discovery of them in the early 1980s and continued through the mid- 1990s. One of us (D.E.P.) continued exploration of flow control using excited jets, first at the McDonnell Douglas Corporation, and more recently at the Georgia Institute of Technology. The key to flow control is the manipulation of the large vortical structures in the near field of the jet. Ultimately this work, and that of others, led to full-scale testing of jet engine exhaust mixing control. There it was shown that the jet temperature downstream of the engine can be very significantly reduced by application of well-designed and easily implemented excitation at the engine discharge, thereby solving problems encountered during ground operations. Related jet control work by other investigators is included in this review.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 413-440 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The recent progress in three-dimensional boundary-layer stability and transition is reviewed. The material focuses on the crossflow instability that leads to transition on swept wings and rotating disks. Following a brief overview of instability mechanisms and the crossflow problem, a summary of the important findings of the 1990s is given.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 557-615 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Cryptococcus neoformans is a pathogenic fungus that primarily afflicts immunocompromised patients, infecting the central nervous system to cause meningoencephalitis that is uniformly fatal if untreated. C. neoformans is a basidiomycetous fungus with a defined sexual cycle that has been linked to differentiation and virulence. Recent advances in classical and molecular genetic approaches have allowed molecular descriptions of the pathways that control cell type and virulence. An ongoing genome sequencing project promises to reveal much about the evolution of this human fungal pathogen into three distinct varieties or species. C. neoformans shares features with both model ascomycetous yeasts (Saccharomyces cerevisiae, Schizosaccharomyces pombe) and basidiomycetous pathogens and mushrooms (Ustilago maydis, Coprinus cinereus, Schizophyllum commune), yet ongoing studies reveal unique features associated with virulence and the arrangement of the mating type locus. These advances have catapulted C. neoformans to center stage as a model of both fungal pathogenesis and the interesting approaches to life that the kingdom of fungi has adopted.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 521-556 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract An unusual feature of the Diptera is that homologous chromosomes are intimately synapsed in somatic cells. At a number of loci in Drosophila, this pairing can significantly influence gene expression. Such influences were first detected within the bithorax complex (BX-C) by E.B. Lewis, who coined the term transvection to describe them. Most cases of transvection involve the action of enhancers in trans. At several loci deletion of the promoter greatly increases this action in trans, suggesting that enhancers are normally tethered in cis by the promoter region. Transvection can also occur by the action of silencers in trans or by the spreading of position effect variegation from rearrangements having heterochromatic breakpoints to paired unrearranged chromosomes. Although not demonstrated, other cases of transvection may involve the production of joint RNAs by trans-splicing. Several cases of transvection require Zeste, a DNA-binding protein that is thought to facilitate homolog interactions by self-aggregation. Genes showing transvection can differ greatly in their response to pairing disruption. In several cases, transvection appears to require intimate synapsis of homologs. However, in at least one case (transvection of the iab-5,6,7 region of the BX-C), transvection is independent of synapsis within and surrounding the interacting gene. The latter example suggests that transvection could well occur in organisms that lack somatic pairing. In support of this, transvection-like phenomena have been described in a number of different organisms, including plants, fungi, and mammals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 617-656 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract DNA checkpoints play a significant role in cancer pathology, perhaps most notably in maintaining genome stability. This review summarizes the genetic and molecular mechanisms of checkpoint activation in response to DNA damage. The major checkpoint proteins common to all eukaryotes are identified and discussed, together with how the checkpoint proteins interact to induce arrest within each cell cycle phase. Also discussed are the molecular signals that activate checkpoint responses, including single-strand DNA, double-strand breaks, and aberrant replication forks. We address the connection between checkpoint proteins and damage repair mechanisms, how cells recover from an arrest response, and additional roles that checkpoint proteins play in DNA metabolism. Finally, the connection between checkpoint gene mutation and genomic instability is considered.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 687-720 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Long-term potentiation (LTP) is the predominant experimental model for the synaptic plasticity mechanisms thought to underlie learning and memory. This review is focused on the contributions of genetics to the understanding of the role of LTP in learning and memory. These studies have used a combination of genetics, molecular biology, neurophysiology, and psychology to demonstrate that molecular mechanisms of synaptic plasticity are critical for learning and memory. Because of the large scope of this literature, we focus primarily on genetic studies of hippocampal-dependent learning. Altogether, these findings not only demonstrate a role for plasticity in learning, they also lay down the foundations for the new field of molecular and cellular cognition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 657-686 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract The compilation of a dense gene map and eventually a whole genome sequence (WGS) of the domestic cat holds considerable value for human genome annotation, for veterinary medicine, and for insight into the evolution of genome organization among mammals. Human association and veterinary studies of the cat, its domestic breeds, and its charismatic wild relatives of the family Felidae have rendered the species a powerful model for human hereditary diseases, for infectious disease agents, for adaptive evolutionary divergence, for conservation genetics, and for forensic applications. Here we review the advantages, rationale, and present strategy of a feline genome project, and we describe the disease models, comparative genomics, and biological applications posed by the full resolution of the cat's genome.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 721-750 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract A moment estimator of theta, the coancestry coefficient for alleles within a population, was described by Weir & Cockerham in 1984 (100) and is still widely cited. The estimate is used by population geneticists to characterize population structure, by ecologists to estimate migration rates, by animal breeders to describe genetic variation, and by forensic scientists to quantify the strength of matching DNA profiles. This review extends the work of Weir & Cockerham by allowing different levels of coancestry for different populations, and by allowing non-zero coancestries between pairs of populations. All estimates are relative to the average value of theta between pairs of populations. Moment estimates for within- and between-population theta values are likely to have large sampling variances, although these may be reduced by combining information over loci. Variances also decrease with the numbers of alleles at a locus, and with the numbers of populations sampled. This review also extends the work of Weir & Cockerham by employing maximum likelihood methods under the assumption that allele frequencies follow the normal distribution over populations. For the case of equal theta values within populations and zero theta values between populations, the maximum likelihood estimate is the same as that given by Robertson & Hill in 1984 (70). The review concludes by relating functions of theta values to times of population divergence under a pure drift model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 257-273 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract We determined the high-resolution structures of large and small ribosomal subunits from mesophilic and thermophilic bacteria and compared them with those of the thermophilic ribosome and the halophilic large subunit. We confirmed that the elements involved in intersubunit contacts and in substrate binding are inherently flexible and that a common ribosomal strategy is to utilize this conformational variability for optimizing its functional efficiency and minimizing nonproductive interactions. Under close-to-physiological conditions, these elements maintain well-ordered characteristic conformations. In unbound subunits, the features creating intersubunit bridges within associated ribosomes lie on the interface surface, and the features that bind factors and substrates reach toward the binding site only when conditions are ripe.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 361-392 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Chromatin fibers are dynamic macromolecular assemblages that are intimately involved in nuclear function. This review focuses on recent advances centered on the molecular mechanisms and determinants of chromatin fiber dynamics in solution. Major points of emphasis are the functions of the core histone tail domains, linker histones, and a new class of proteins that assemble supramolecular chromatin structures. The discussion of important structural issues is set against a background of possible functional significance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 393-422 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The review deals with recent advances in magnetic resonance spectroscopy (hf EPR and NMR) of paramagnetic metal centers in biological macromolecules. In the first half of our chapter, we present an overview of recent technical developments in the NMR of paramagnetic bio-macromolecules. These are illustrated by a variety of examples deriving mainly from the spectroscopy of metalloproteins and their complexes. The second half focuses on recent developments in high-frequency EPR spectroscopy and the application of the technique to copper, iron, and manganese proteins. Special attention is given to the work on single crystals of copper proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 321-341 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Fungal pathogens of plants or animals invade their hosts either by secretion of lytic enzymes, exerting force, or by a combination of both. Although many fungi are thought to rely mostly on lysis of the host tissue, some plant pathogenic fungi differentiate complex infection cells that develop enormous turgor pressure, which in turn is translated into force used for invasion. In order to understand mechanisms of fungal infection in detail, methods have been developed that indirectly or directly measure turgor pressure and force. In this article, these methods are described and critically discussed, and their importance in analysis of fungal infection are outlined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 31 (2002), S. 423-441 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The field of computational cell biology has emerged within the past 5 years because of the need to apply disciplined computational approaches to build and test complex hypotheses on the interacting structural, physical, and chemical features that underlie intracellular processes. To meet this need, newly developed software tools allow cell biologists and biophysicists to build models and generate simulations from them. The construction of general-purpose computational approaches is especially challenging if the spatial complexity of cellular systems is to be explicitly treated. This review surveys some of the existing efforts in this field with special emphasis on a system being developed in the authors' laboratory, Virtual Cell. The theories behind both stochastic and deterministic simulations are discussed. Examples of respective applications to cell biological problems in RNA trafficking and neuronal calcium dynamics are provided to illustrate these ideas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 32 (2003), S. 183-206 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Cyclooxygenases-1 and -2 (COX-1 and COX-2, also known as prostaglandin H2 synthases-1 and -2) catalyze the committed step in prostaglandin synthesis. COX-1 and -2 are of particular interest because they are the major targets of nonsteroidal antiinflammatory drugs (NSAIDs) including aspirin, ibuprofen, and the new COX-2-selective inhibitors. Inhibition of the COXs with NSAIDs acutely reduces inflammation, pain, and fever, and long-term use of these drugs reduces the incidence of fatal thrombotic events, as well as the development of colon cancer and Alzheimer's disease. In this review, we examine how the structures of COXs relate mechanistically to cyclooxygenase and peroxidase catalysis and how alternative fatty acid substrates bind within the COX active site. We further examine how NSAIDs interact with COXs and how differences in the structure of COX-2 result in enhanced selectivity toward COX-2 inhibitors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 32 (2003), S. 425-443 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Understanding the action of enzymes on an atomistic level is one of the important aims of modern biophysics. This review describes the state of the art in addressing this challenge by simulating enzymatic reactions. It considers different modeling methods including the empirical valence bond (EVB) and more standard molecular orbital quantum mechanics/molecular mechanics (QM/MM) methods. The importance of proper configurational averaging of QM/MM energies is emphasized, pointing out that at present such averages are performed most effectively by the EVB method. It is clarified that all properly conducted simulation studies have identified electrostatic preorganization effects as the source of enzyme catalysis. It is argued that the ability to simulate enzymatic reactions also provides the chance to examine the importance of nonelectrostatic contributions and the validity of the corresponding proposals. In fact, simulation studies have indicated that prominent proposals such as desolvation, steric strain, near attack conformation, entropy traps, and coherent dynamics do not account for a major part of the catalytic power of enzymes. Finally, it is pointed out that although some of the issues are likely to remain controversial for some time, computer modeling approaches can provide a powerful tool for understanding enzyme catalysis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 53-80 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Co-option occurs when natural selection finds new uses for existing traits, including genes, organs, and other body structures. Genes can be co-opted to generate developmental and physiological novelties by changing their patterns of regulation, by changing the functions of the proteins they encode, or both. This often involves gene duplication followed by specialization of the resulting paralogous genes into particular functions. A major role for gene co-option in the evolution of development has long been assumed, and many recent comparative developmental and genomic studies have lent support to this idea. Although there is relatively less known about the molecular basis of co-option events involving developmental pathways, much can be drawn from well-studied examples of the co-option of structural proteins. Here, we summarize several case studies of both structural gene and developmental genetic circuit co-option and discuss how co-option may underlie major episodes of adaptive change in multicellular organisms. We also examine the phenomenon of intraspecific variability in gene expression patterns, which we propose to be one form of material for the co-option process. We integrate this information with recent models of gene family evolution to provide a framework for understanding the origin of co-optive evolution and the mechanisms by which natural selection promotes evolutionary novelty by inventing new uses for the genetic toolkit.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 81-105 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract In flowering plants, pollen grains germinate to form pollen tubes that transport male gametes (sperm cells) to the egg cell in the embryo sac during sexual reproduction. Pollen tube biology is complex, presenting parallels with axon guidance and moving cell systems in animals. Pollen tube cells elongate on an active extracellular matrix in the style, ultimately guided by stylar and embryo sac signals. A well-documented recognition system occurs between pollen grains and the stigma in sporophytic self-incompatibility, where both receptor kinases in the stigma and their peptide ligands from pollen are now known. Complex mechanisms act to precisely target the sperm cells into the embryo sac. These events initiate double fertilization in which the two sperm cells from one pollen tube fuse to produce distinctly different products: one with the egg to produce the zygote and embryo and the other with the central cell to produce the endosperm.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 163-192 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The Arabidopsis genome sequence has revealed that plants contain a much larger complement of receptor kinase genes than other organisms. Early analysis of these genes revealed involvement in a diverse array of developmental and defense functions that included gametophyte development, pollen-pistil interactions, shoot apical meristem equilibrium, hormone perception, and cell morphogenesis. Amino acid sequence motifs and binding studies indicate that the ectodomains are capable of binding, either directly or indirectly, various classes of molecules including proteins, carbohydrates, and steroids. Genetic and biochemical approaches have begun to identify other components of several signal transduction pathways. Some receptor-like kinases (RLKs) appear to function with coreceptors lacking kinase domains, and genome analysis suggests this might be true for many RLKs. The KAPP protein phosphatase functions as a negative regulator of at least two RLK systems, and in vitro studies suggest it could be a common component of more. Whether plant signaling systems display a modularity similar to animal systems remains to be determined. Future efforts will reveal unknown functions of other RLKs and elucidate the relationships among their signaling networks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 247-288 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Eukaryotic cells use actin polymerization to change shape, move, and internalize extracellular materials by phagocytosis and endocytosis, and to form contractile structures. In addition, several pathogens have evolved to use host cell actin assembly for attachment, internalization, and cell-to-cell spread. Although cells possess multiple mechanisms for initiating actin polymerization, attention in the past five years has focused on the regulation of actin nucleation-the formation of new actin filaments from actin monomers. The Arp2/3 complex and the multiple nucleation-promoting factors (NPFs) that regulate its activity comprise the only known cellular actin-nucleating factors and may represent a universal machine, conserved across eukaryotic phyla, that nucleates new actin filaments for various cellular structures with numerous functions. This review focuses on our current understanding of the mechanism of actin nucleation by the Arp2/3 complex and NPFs and how these factors work with other cytoskeletal proteins to generate structurally and functionally diverse actin arrays in cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 289-314 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Membrane fusion is a fundamental biochemical reaction and the final step in all vesicular trafficking events. It is crucial for the transfer of proteins and lipids between different compartments and for exo- and endocytic traffic of signaling molecules and receptors. It leads to the reconstruction of organelles such as the Golgi or the nuclear envelope, which decay into fragments during mitosis. Hence, controlled membrane fusion reactions are indispensible for the compartmental organization of eukaryotic cells; for their communication with the environment via hormones, neurotransmitters, growth factors, and receptors; and for the integration of cells into multicellular organisms. Intracellular pathogenic bacteria, such as Mycobacteria or Salmonellae, have developed means to control fusion reactions in their host cells. They persist in phagosomes whose fusion with lysosomes they actively suppress-a means to ensure survival inside host cells. The past decade has witnessed rapid progress in the elucidation of parts of the molecular machinery involved in these membrane fusion reactions. Whereas some elements of the fusion apparatus are remarkably similar in several compartments, there is an equally striking divergence of others. The purpose of this review is to highlight common features of different fusion reactions and the concepts that emerged from them but also to stress the differences and challenge parts of the current hypotheses. This review covers only the endoplasmic fusion reactions mentioned above, i.e., reactions initiated by contacts of membranes with their cytoplasmic faces. Ectoplasmic fusion events, which depend on an initial contact of the fusion partners via the membrane surfaces exposed to the surrounding medium are not discussed, nor are topics such as the entry of enveloped viruses, formation of syncytia, gamete fusion, or vesicle scission (a fusion reaction that leads to the fission of, e.g., transport vesicles).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 315-344 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Bacterial pathogens utilize several strategies to modulate the organization of the actin cytoskeleton. Some bacterial toxins catalyze the covalent modification of actin or the Rho GTPases, which are involved in the control of the actin cytoskeleton. Other bacteria produce toxins that act as guanine nucleotide exchange factors or GTPase-activating proteins to modulate the nucleotide state of the Rho GTPases. This latter group of toxins provides a temporal modulation of the actin cytoskeleton. A third group of bacterial toxins act as adenylate cyclases, which directly elevate intracellular cAMP to supra-physiological levels. Each class of toxins gives the bacterial pathogen a selective advantage in modulating host cell resistance to infection.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 18 (2002), S. 345-378 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The mammalian cell continuously adjusts its sterol content by regulating levels of key sterol synthetic enzymes and levels of LDL receptors that mediate uptake of cholesterol-laden particles. Control is brought about by sterol-regulated transcription of relevant genes and by regulated degradation of the committed step enzyme HMG-CoA reductase (HMGR). Current work has revealed that proteolysis is at the heart of each of these mechanistically distinct axes. Transcriptional control is effected by regulated cleavage of the membrane-bound transcription factor sterol regulatory element binding protein (SREBP), and HMGR degradation is brought about by ubiquitin-mediated degradation. In each case, ongoing cell biological processes are being harnessed to bring about regulation. The secretory pathway plays a central role in allowing sterol-mediated control of transcription. The constitutively active endoplasmic reticulum (ER) quality control apparatus is employed to bring about regulated destruction of HMGR. This review describes the methods and results of various studies to understand the mechanisms and molecules involved in these distinct but interrelated aspects of sterol regulation and the intriguing similarities that appear to exist at the levels of protein sequence and cell biology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 32 (2002), S. 1-37 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Multiferroic magnetoelectrics are materials that are both ferromagnetic and ferroelectric in the same phase. As a result, they have a spontaneous magnetization that can be switched by an applied magnetic field and a spontaneous polarization that can be switched by an applied electric field. In this paper we show that density functional theory has been invaluable both in explaining the properties of known magnetically ordered ferroelectric materials, and in predicting the occurrence of new ones. Density functional calculations have shown that, in general, the transition metal d electrons essential for magnetism reduce the tendency for off-center ferroelectric distortion. Consequently, an additional electronic or structural driving force must be present for ferromagnetism and ferroelectricity to occur simultaneously.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 32 (2002), S. 271-295 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Vacancies and self-interstitial defects in silicon are here investigated by means of semi-empirical quantum molecular dynamics simulations performed within the tight-binding model. We extensively discuss the process of formation and migration of native point defects and investigate their interaction and clustering phenomena. The formation of larger stable structures is further studied by combining tight-binding and Monte Carlo simulations. Tight-binding simulation results provide a global picture for defect-induced microstructure evolution in bulk silicon. These results are consistent with state-of-the-art experimental data and elucidate many relevant atomic-scale mechanisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 263-288 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The use of low-energy electron microscopy (LEEM) to study reversible surface phase transitions is reviewed. Representative experiments are described that highlight the key advantages of LEEM: the ability to image surfaces in situ, at elevated temperature, with good spatial and temporal resolution. With these capabilities, the evolution of individual surface features-domains, facets, islands, steps, etc.-can be measured. Real-time and real-space imaging make LEEM a powerful tool for characterizing the thermodynamics and kinetics that govern surface phase transformations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 233-261 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Anhydrous proton-conducting polymers usually consist of a more or less inert polymer matrix that is swollen with an appropriate proton solvent (in most cases, phosphoric acid). An outline of the different materials is provided, with a focus on PBI/H3PO4 blends that are currently most suitable for fuel cell applications. Also discussed are alternative concepts for fully polymeric materials, which establish proton conductivity as an intrinsic property using amphoteric heterocycles such as imidazole as a proton solvent. The development of some of the first polymers is described, and the fundamental relations between their material properties and conductivity are discussed. Closely related to this relatively new concept are mechanistic investigations focusing on intermolecular proton transfer and diffusion of (protonated) solvent molecules, the contributions of both transport processes to conductivity, and the dependence of these ratios on composition, charge carrier density, etc. Although the development of fully polymeric proton conductors is inseparably related to mechanistic considerations, relatively little attention has been paid to these concepts in the field of conventional membranes (hydrated ionomers, H3PO4-based materials). Consequently, their general relevance is emphasized, and according investigations are summarized to provide a more comprehensive picture of proton transport processes within proton exchange membranes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 289-319 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The need to operate polymer electrolyte membrane (PEM) fuel cells at temperatures above 100oC, where the amount of water in the membrane is restricted, has provided much of the motivation for understanding the mechanisms of proton conduction at low degrees of hydration. Although experiments have not provided any direct information, numerous theoretical investigations have begun to provide the basis for understanding the mechanisms of proton conduction in these nano-phase-separated materials. Both the hydrated morphology and the nature of the confined water in the hydrophilic domains influence proton dissociation from the acidic sites (i.e., -SO3H), transfer to the water environment, and transport through the membrane. The following molecular processes are discussed in connection to their role in the conduction of protons in sulfonic acid-based polymer electrolyte membranes (PEMs): (a) local chemistry of the hydrophilic side chains; its effect on the dissociation of the proton and eventual stabilization (separation) of the proton in the water; (b) the presence of neighboring sulfonic acid groups on proton transfer; and (c) the effect of the distribution of the sulfonate groups on the transport of protons in the channels/pores of the membrane.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 333-359 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The structural and chemical parameters determining the formation and mobility of protonic defects in oxides are discussed, and the paramount role of high-molar volume, coordination numbers, and symmetry are emphasized. Symmetry also relates to the structural and chemical matching of the acceptor dopant. Y-doped BaZrO3-based oxides are demonstrated to combine high stability with high proton conductivity that exceeds the conductivity of the best oxide ion conductors at temperatures below about 700oC. The unfavorably high grain boundary impedances and brittleness of ceramics have been reduced by forming solid solutions with small amounts of BaCeO3, and an initial fuel cell test has demonstrated that proton-conducting electrolytes based on Y-doped BaZrO3 provide alternatives for separator materials in solid oxide fuel cells (SOFCs). These materials have the potential to operate at lower temperatures compared with those of conventional SOFCs, and the appearance of chemical water diffusion across the electrolyte at typical operation temperatures (T = 500-800oC) allows the use of dry methane as a fuel.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 321-331 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Recently, a number of papers about direct oxidation of methane and hydrocarbon in solid oxide fuel cells (SOFC) at relatively low temperatures (about 700oC) have been published. Even though the conversion of almost dry CH4 at 1000oC on ceramic anodes was demonstrated more than 10 years ago, the reports about high-current densities for methane oxidation at such low temperatures are indeed surprising. Several papers indicate that a catalytic effect (due to the mixed ionic and electronic conductivity) of CeO2-x is partially responsible for this effect. However, this seems to contradict previous reports, and thus this issue deserves further analysis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 383-417 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The emphasis in this short review is to describe the materials issues involved in the development of present thermal barrier coatings and the advances necessary for the next generation, higher temperature capability coatings.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 361-382 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Several recent experimental and numerical investigations have contributed to the improved understanding of the electrochemical mechanisms taking place at solid oxide fuel cell (SOFC) cathodes and yielded valuable information on the relationships between alterable parameters (geometry/material) and the cathodic polarization resistance. Efforts to reduce the polarization resistance in SOFCs can benefit from these results, and some important aspects of the corresponding studies are reviewed. Experimental results, particularly measurements using geometrically well-defined Sr-doped LaMnO3 (LSM) cathodes, are discussed. In regard to simulations, the different levels of sophistication used in SOFC electrode modeling studies are summarized and compared. Exemplary simulations of mixed conducting cathodes that show the capabilities and limits of different modeling levels are described.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 419-501 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract This account reviews the discovery, synthesis, properties, and the latest research advances of carbon nanotubes developed over the past 12 years. Because of their remarkable electronic and mechanical properties, carbon nanotubes are unique and exciting. The field has been developed rapidly, and the number of publications per year is increasing almost exponentially. Various technological applications are likely to arise using nanotubes for fabrication of flat panel displays, gas storage devices, toxic gas sensors, Li+ batteries, robust and lightweight composites, conducting paints, electronic nanodevices, etc. Further experimental and theoretical research is still necessary so that novel technologies will become a reality in the early twenty-first century.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 33 (2003), S. 215-231 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract This paper presents a review of atomic-scale defects (planar defects and dislocations) analysis using atom probe (AP) and field ion microscopy (FIM). A large part of the discussion is dedicated to the first atomic-scale observation of a Cottrell atmosphere by a three-dimensional atom probe method (3DAP). The nanoscale boron segregation to line dislocations and planar defects in a B2-ordered FeAl (40 at.%Al) is imaged in three dimensions of the real space. The boron-enriched Cottrell atmosphere is imaged in the close vicinity of an edge 001〉 dislocation as a rod 3 nm in diameter, around to the dislocation line.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 41 (2003), S. 15-56 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: The galaxies of the Local Group serve as important laboratories for understanding the physics of massive stars. Here I discuss what is involved in identifying various kinds of massive stars in nearby galaxies: the hydrogen-burning O-type stars and their evolved He-burning evolutionary descendants, the luminous blue variables, red supergiants, and Wolf-Rayet stars. Primarily I review what our knowledge of the massive star population in nearby galaxies has taught us about stellar evolution and star formation. I show that the current generation of stellar evolutionary models do well at matching some of the observed features and provide a look at the sort of new observational data that will provide a benchmark against which new models can be evaluated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 40 (2002), S. 1-25 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Abstract I fled with my parents from Hitler's Austria to Australia and studied physics at Sydney University. I obtained my Ph.D. in quantum electrodynamics with Rudolf Peierls at Birmingham University and came to Cornell to work with Hans Bethe. I have stayed at Cornell ever since, and I have essentially had only a single job in my whole life, but have switched fields quite often. I worked in nuclear astrophysics and in late-stellar evolution, estimated the Initial Mass Function for star formation and the metal enrichment of the interstellar medium. I suggested black hole accretion as the energy source for quasars, worked on molecule formation on dust grain surfaces, and was involved in 21-cm studies of gas clouds and disk galaxies. I collaborated with my wife on the neurobiology of the neuromuscular junction and with one of my daughters on the epidemiology of tuberculosis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 40 (2002), S. 349-385 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Abstract Although we have a general understanding of the manner in which individual stars form, our understanding of how binary stars form is far from complete. This is in large part due to the fact that the star formation process happens very quickly and in regions of the Galaxy that are difficult to study observationally. We review the theoretical models that have been developed in an effort to explain how binaries form. Several proposed mechanisms appear to be quite promising, but none is completely satisfactory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 40 (2002), S. 217-261 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Abstract Radio astronomy has provided evidence for the presence of ionized atmospheres around almost all classes of nondegenerate stars. Magnetically confined coronae dominate in the cool half of the Hertzsprung-Russell diagram. Their radio emission is predominantly of nonthermal origin and has been identified as gyrosynchrotron radiation from mildly relativistic electrons, apart from some coherent emission mechanisms. Ionized winds are found in hot stars and in red giants. They are detected through their thermal, optically thick radiation, but synchrotron emission has been found in many systems as well. The latter is emitted presumably by shock-accelerated electrons in weak magnetic fields in the outer wind regions. Radio emission is also frequently detected in pre-main sequence stars and protostars and has recently been discovered in brown dwarfs. This review summarizes the radio view of the atmospheres of nondegenerate stars, focusing on energy release physics in cool coronal stars, wind phenomenology in hot stars and cool giants, and emission observed from young and forming stars. Eines habe ich in einem langen Leben gelernt, namlich, dass unsere ganze Wissenschaft, an den Dingen gemessen, von kindlicher Primitivitat ist-und doch ist es das Kostlichste, was wir haben. One thing I have learned in a long life: that all our science, measured against reality, is primitive and childlike-and yet it is the most precious thing we have. A. Einstein 1951, in a letter to H. Muhsam, Einstein Archive 36-610
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 40 (2002), S. 387-438 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Abstract Study of radio supernovae over the past 20 years includes two dozen detected objects and more than 100 upper limits. From this work it is possible to identify classes of radio properties, demonstrate conformance to and deviations from existing models, estimate the density and structure of the circumstellar material and, by inference, the evolution of the presupernova stellar wind, and reveal the last stages of stellar evolution before explosion. It is also possible to detect ionized hydrogen along the line of sight, to demonstrate binary properties of the stellar system, and to show clumpiness of the circumstellar material. More speculatively, it may be possible to provide distance estimates to radio supernovae. Over the past four years the afterglow of gamma-ray bursters has occasionally been detected in the radio, as well in other wavelengths bands. In particular, the interesting and unusual gamma-ray burst GRB980425, thought to be related to SN1998bw, is a possible link between supernovae and gamma-ray bursters. Analyzing the extensive radio emission data avaliable for SN1998bw, one can describe its time evolution within the well-established framework available for the analysis of radio emission from supernovae. This allows relatively detailed description of a number of physical properties of the object. The radio emission can best be explained as the interaction of a mildly relativistic (Gamma~ 1.6) shock with a dense preexplosion stellar wind-established circumstellar medium that is highly structured both azimuthally, in clumps or filaments, and radially, with observed density enhancements. Because of its unusual characteristics for a Type Ib/c supernova, the relation of SN1998bw to GRB980425 is strengthened and suggests that at least some classes of GRBs originate in massive star explosions. Thus, employing the formalism for describing the radio emission from supernovae and following the link through SN1998bw/GRB980425, it is possible to model the gross properties of the radio and optical/infrared emission from the half-dozen GRBs with extensive radio observations. From this we conclude that at least some members of the "slow-soft" class of GRBs can be attributed to the explosion of a massive star in a dense, highly structured circumstellar medium that was presumably established by the preexplosion stellar system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 40 (2002), S. 643-680 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Abstract The Sunyaev-Zel'dovich effect (SZE) provides a unique way to map the large-scale structure of the universe as traced by massive clusters of galaxies. As a spectral distortion of the cosmic microwave background, the SZE is insensitive to the redshift of the galaxy cluster, making it well-suited for studies of clusters at all redshifts, and especially at reasonably high redshifts (z〉 1) where the abundance of clusters is critically dependent on the underlying cosmology. Recent high signal-to-noise detections of the SZE have enabled interesting constraints on the Hubble constant and on the matter density of the universe using small samples of galaxy clusters. Upcoming SZE surveys are expected to find hundreds to thousands of new galaxy clusters, with a mass selection function that is remarkably uniform with redshift. In this review we provide an overview of the SZE and its use for cosmological studies, with emphasis on the cosmology that can, in principle, be extracted from SZE survey yields. We discuss the observational and theoretical challenges that must be met before precise cosmological constraints can be extracted from the survey yields.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 41 (2003), S. 169-189 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: The first law of theoretical physics, the Newtonian law of gravitation, relies on the concept of action at a distance. The success of this law led to the concept being applied to electricity and magnetism, which were next to be explored in depth. Here the action at a distance had a limited success and ultimately had to be abandoned in favor of the increasingly more popular field theory. Nevertheless, in the 1940s, an attempt was made to revive the concept of action at a distance in a relativistically invariant way by Wheeler & Feynman (1945, 1949). It inspired a series of investigations in both electrodynamics and gravity in which the field concept was not used but the interaction was described as taking place directly between particles. As it impinged very intimately on cosmology, Hoyle was keenly interested in it. This review discusses the work by Hoyle, the author, and others on the development of electrodynamics and gravitation as direct particle theories. In this review, the author discusses how the work was started and went through stages of increasing sophistication, e.g., extending the Wheeler-Feynman electrodynamics to curved spacetime, its consequences in different cosmologies, and the issues arising from its quantization. The resolution of ultraviolet divergences in quantum electrodynamics is also briefly discussed. The parallel development of a Machian theory of gravitation followed the lead from electrodynamics. In both theories one sees a strong link between the large-scale structure of the universe and local physics, as might be expected from an action-at-a-distance framework.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 41 (2003), S. 343-390 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Targeted laboratory astrophysics measurements are being conducted to address the needs of X-ray astronomy. The measurements are producing large sets of reliable atomic data, which include ionization and recombination cross sections for charge balance calculations, as well as line lists, excitation cross sections, and dielectronic recombination rates for interpreting X-ray line formation. Additional experiments focus on resolving specific puzzles posed by astrophysical observations, as well as on calibrating existing and developing new X-ray line diagnostics. We discuss the types of data produced and illustrate how the laboratory measurements support such missions as ASCA, EUVE, Chandra, XMM, and ASTRO-E2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 41 (2003), S. 517-554 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Photoionized clouds are ubiquitous. They define the endpoints of stellar evolution (H II regions and planetary nebulae), constitute the interstellar and intergalactic media, and are found in high redshift quasars and star-forming galaxies. The spectra of these objects are dominated by emission lines that are sensitive to details of the emitting gas. These details include the microscopic atomic processes that cause the gas to glow; the density, composition, and temperature of the gas; and the radiation field of the central continuum source. Large-scale numerical codes that incorporate all the needed physics and predict the observed spectrum have become essential tools in understanding these objects. This article reviews the current status of the numerical simulations of emitting gas, with particular emphasis on photoionized clouds and the underlying simplicity that governs these nebulae; the types of questions that can be addressed by today's codes; and the big questions that remain unanswered.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 19-35 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract This essay is based on the G.K. Batchelor Memorial Lecture that I delivered in May 2000 at the Institute for Theoretical Physics (ITP), Santa Barbara, where two parallel programs on Turbulence and Astrophysical Turbulence were in progress. It focuses on George Batchelor's major contributions to the theory of turbulence, particularly during the postwar years when the emphasis was on the statistical theory of homogeneous turbulence. In all, his contributions span the period 1946-1992 and are for the most part concerned with the Kolmogorov theory of the small scales of motion, the decay of homogeneous turbulence, turbulent diffusion of a passive scalar field, magnetohydrodynamic turbulence, rapid distortion theory, two-dimensional turbulence, and buoyancy-driven turbulence.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 321-347 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Turbulent flows driven by thermal buoyancy are featured by phenomena that pose a special challenge to conventional one-point closure models. Inherent unsteadiness, energy nonequilibrium, counter-gradient diffusion, strong pressure fluctuations, and lack of universal scaling, all believed to be associated with distinct large-scale coherent eddy structures, are hardly tractable by Reynolds-type averaging. Second-moment closures, though inadequate for providing information on eddy structure, offer better prospects than eddy-viscosity models for capturing at least some of the phenomena. For some configurations (e.g., with heating from below), unsteady computational solutions of ensemble-averaged equations, using a one-point closure as the subscale model, may be unavoidable for accurate prediction of flow details and wall heat transfer. This article reviews the rationale and some specific modeling issues related to buoyant flows within the realm of one-point closures. The inadequacy of isotropic eddy-diffusivity models is discussed first, followed by the rationale of the second-moment modeling and its term-by-term scrutiny based on direct numerical simulations (DNS). Algebraic models based on a rational truncation of the differential second-moment closure are proposed as the minimum closure level for complex flows. These closures are also recommended as subscale models for transient statistical modeling (T-RANS) and very large eddy simulations (VLES). Examples of applications illustrate some recent achievements.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 469-502 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Remote observations of a surface ship wake using synthetic aperture radar (SAR) show distinct features such as a dark trailing centerline region, bright V-images aligned at some angle to the ship's path, and, sometimes, either the transverse or the diverging waves of the Kelvin-wave pattern. The dark region of relatively low radar backscatter is usually associated with a region that is relatively lacking in short wave components, whereas the bright line feature suggests a region of enhanced radar return within the apparent angular confines of the ship's usual Kelvin-wave pattern. This review provides a survey of remotely sensed wake images, the systems that have collected these images, and an overview of the theory of Kelvin wakes-a primary source of the phenomena that cause the dark centerline and bright V-images-with example predictions. The review concludes with a survey of the phenomena that cause the dark centerline returns and some example predictions of the radar reflectivity across these dark centerline returns.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 34 (2002), S. 559-593 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract We review the mechanisms of steepening and breaking for internal gravity waves in a continuous density stratification. After discussing the instability of a plane wave of arbitrary amplitude in an infinite medium at rest, we consider the steepening effects of wave reflection on a sloping boundary and propagation in a shear flow. The final process of breaking into small-scale turbulence is then presented. The influence of those processes upon the fluid medium by mean flow changes is discussed. The specific properties of wave turbulence, induced by wave-wave interactions and breaking, are illustrated by comparative studies of oceanic and atmospheric observations, as well as laboratory and numerical experiments. We then review the different attempts at a statistical description of internal gravity wave fields, whether weakly or strongly interacting.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 169-182 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The modern study of a crowd as a flowing continuum is a recent development. Distinct from a classical fluid because of the property that a crowd has the capacity to think, interesting new physical ideas are involved in its study. An appealing property of a crowd in motion is that the nonlinear, time-dependent, simultaneous equations representing a crowd are conformably mappable. This property makes many interesting applications analytically tractable. In this review examples are given in which the theory has been used to provide possible assistance in the annual Muslim Hajj, to understand the Battle of Agincourt, and, surprisingly, to locate barriers that actually increase the flow of pedestrians above that when there are no barriers present. Modern developments may help prevent some of the approximately two thousand deaths that annually occur in accidents owing to crowding.The field of crowd motion, that is, the field of "thinking fluids," is an intriguing area of research with great promise.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 267-293 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The recent avalanche of research activity in the field of granular matter has yielded much progress. The use of state-of-the-art (and other) computational and experimental methods has led to the discovery of new states and patterns and enabled detailed tests of theories and models. The application of statistical mechanical methods and phenomenology has contributed to the understanding of the microscopic a nd macroscopic properties of granular systems. Some previously open problems seem to be solved. Fluidized granular systems (rapid granular flows), recently referred to as granular gases, are often modeled by hydrodynamic equations of motion, some of which are based on systematic expansions applied to the pertinent Boltzmann equation. The undeniable success of granular hydrodynamics is somewhat surprising in view of the lack of scale separation in these systems and the neglect of certain correlations in most derivations of the hydrodynamic equations. Microstructures have been recognized as key features of granular gases; explanations for their existence have been proposed, and many of their properties elucidated. Granular-gas multistability can often be traced back to microstructure dynamics. In spite of these and other impressive advances, this field still poses serious challenges.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 35 (2003), S. 317-340 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Recent advances in achieving textbook multigrid efficiency for fluid simulations are presented. Textbook multigrid efficiency is defined as attaining the solution to the governing system of equations in a computational work that is a small multiple of the operation counts associated with discretizing the system. Strategies are reviewed to attain this efficiency by exploiting the factorizability properties inherent to a range of fluid simulations, including the compressible Navier-Stokes equations. Factorizability is used to separate the elliptic and hyperbolic factors contributing to the target system; each of the factors can then be treated individually and optimally. Boundary regions and discontinuities are addressed with separate (local) treatments. New formulations and recent calculations demonstrating the attainment of textbook efficiency for aerodynamic simulations are shown.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 1-18 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: In order to understand both the past and future directions of research in evolutionary biology we need to begin by understanding in what way these programs of research differ from the model of most scientific work. The study of evolutionary processes and, in particular, the genetics of the evolutionary process must confront special difficulties in both the conceptual and the methodological aspects of research. On the conceptual side, unlike for molecular, cellular, and developmental biology, there is no basic mechanism that evolutionists are attempting to elucidate. There is no single cause of the evolutionary change in the properties of members of a species. Natural selection may be involved but so are random events, patterns of migration and interbreeding, mutational events, and horizontal transfer of genes across species boundaries. The change in each character of each species is a consequence of a particular mixture of these causal pathways.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 19-45 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Fish species have diverse breeding behaviors that make them valuable for testing theories on genetic mating systems and reproductive tactics. Here we review genetic appraisals of paternity and maternity in wild fish populations. Behavioral phenomena quantified by genetic markers in various species include patterns of multiple mating by both sexes; frequent cuckoldry by males and rare cuckoldry by females in nest-tending species; additional routes to surrogate parentage via nest piracy and egg-thievery; egg mimicry by nest-tending males; brood parasitism by helper males in cooperative breeders; clutch mixing in oral brooders; kinship in schooling fry of broadcast spawners; sperm storage by dams in female-pregnant species; and sex-role reversal, polyandry, and strong sexual selection on females in some male-pregnant species. Additional phenomena addressed by genetic parentage analyses in fishes include clustered mutations, filial cannibalism, and local population size. All results are discussed in the context of relevant behavioral and evolutionary theory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 75-97 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Recombination can be a dominant force in shaping genomes and associated phenotypes. To better understand the impact of recombination on genomic evolution, we need to be able to identify recombination in aligned sequences. We review bioinformatic approaches for detecting recombination and measuring recombination rates. We also examine the impact of recombination on the reconstruction of evolutionary histories and the estimation of population genetic parameters. Finally, we review the role of recombination in the evolutionary history of bacteria, viruses, and human mitochondria. We conclude by highlighting a number of areas for future development of tools to help quantify the role of recombination in genomic evolution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 47-73 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Spirochetes are a medically important and ecologically significant group of motile bacteria with a distinct morphology. Outermost is a membrane sheath, and within this sheath is the protoplasmic cell cylinder and subterminally attached periplasmic flagella. Here we address specific and unique aspects of their motility and chemotaxis. For spirochetes, translational motility requires asymmetrical rotation of the two internally located flagellar bundles. Consequently, they have swimming modalities that are more complex than the well-studied paradigms. In addition, coordinated flagellar rotation likely involves an efficient and novel signaling mechanism. This signal would be transmitted over the length of the cell, which in some cases is over 100-fold greater than the cell diameter. Finally, many spirochetes, including Treponema, Borrelia, and Leptospira, are highly invasive pathogens. Motility is likely to play a major role in the disease process. This review summarizes the progress in the genetics of motility and chemotaxis of spirochetes, and points to new directions for future experimentation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 99-124 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract The plant life cycle alternates between a diploid sporophyte generation and a haploid gametophyte generation. The angiosperm female gametophyte is critical to the reproductive process. It is the structure within which egg cell production and fertilization take place. In addition, the female gametophyte plays a role in pollen tube guidance, the induction of seed development, and the maternal control of seed development. Genetic analysis in Arabidopsis has uncovered mutations that affect female gametophyte development and function. Mutants defective in almost all stages of development have been identified, and analysis of these mutants is beginning to reveal features of the female gametophyte developmental program. Other mutations that affect female gametophyte function have uncovered regulatory genes required for the induction of endosperm development. From these studies, we are beginning to understand the regulatory networks involved in female gametophyte development and function. Further investigation of the female gametophyte will require complementary approaches including expression-based approaches to obtain a complete profile of the genes functioning within this critical structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 125-151 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract The idea that the ancestors of modern cells were RNA cells (ribocytes) can be investigated by asking whether all essential cellular functions might be performed by RNAs. This requires isolating suitable molecules by selection-amplification when the predicted molecules are presently extinct. In fact, RNAs with many properties required during a period in which RNA was the major macromolecular agent in cells (an RNA world) have been selected in modern experiments. There is, accordingly, reason to inquire how such a ribocyte might appear, based on the properties of the RNAs that composed it. Combining the intrinsic qualities of RNA with the fundamental characteristics of selection from randomized sequence pools, one predicts ribocytes with a cell cycle measured (roughly) in weeks. Such cells likely had a rapidly varying genome, composed of many small genetic and catalytic elements made of tens of ribonucleotides. There are substantial arguments that, at the mid-RNA era, a subset of these nucleotides are reproducibly available and resemble the modern four. Such cells are predicted to evolve rapidly. Instead of modifying preexisting genes, ribocytes frequently draw new functions from an internal pool containing zeptomoles (〈1 attomole) of predominantly inactive random sequences.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 153-173 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract The prospect of specifically controlling gene activities in vivo has become a defining hallmark of many model organisms of biological research. Where once the aim was to gain control over gene activities using endogenous control elements, new technologies have emerged that owe their remarkable specificity to heterologous components derived from evolutionarily distant species. This review highlights inducible transcriptional systems and site-specific recombination. Their quantitative and qualitative characteristics are discussed, with examples of how recent developments have expanded the spectrum of cells and organisms that are now accessible to genetic dissection of unprecedented precision. Transgenesis has already converted the mouse into a prime model for mammalian genetics. Combined with the new approaches of conditional activation or inactivation of genes, this model has opened up new horizons for the analysis of gene function in mammals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 36 (2002), S. 175-203 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Because the level of DNA superhelicity varies with the cellular energy charge, it can change rapidly in response to a wide variety of altered nutritional and environmental conditions. This is a global alteration, affecting the entire chromosome and the expression levels of all operons whose promoters are sensitive to superhelicity. In this way, the global pattern of gene expression may be dynamically tuned to changing needs of the cell under a wide variety of circumstances. In this article, we propose a model in which chromosomal superhelicity serves as a global regulator of gene expression in Escherichia coli, tuning expression patterns across multiple operons, regulons, and stimulons to suit the growth state of the cell. This model is illustrated by the DNA supercoiling-dependent mechanisms that coordinate basal expression levels of operons of the ilv regulon both with one another and with cellular growth conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...