ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (11,442)
  • Springer Nature  (7,989)
  • National Academy of Sciences  (2,727)
  • Annual Reviews  (726)
  • 2000-2004  (11,442)
  • 2000  (11,442)
  • Biology  (11,399)
  • Energy, Environment Protection, Nuclear Power Engineering  (43)
Collection
  • Articles  (11,442)
Years
  • 2000-2004  (11,442)
Year
Journal
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 27-47 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Owing to the rapid development of in vivo applications for non-viral gene delivery vectors, it is necessary to have a better understanding of how the structure-activity relationships of these lipid-DNA complexes are affected by their environment. Indeed, research in gene therapy first focused on in vitro cell culture studies to determine the mechanisms involved in the delivery of DNA into the cell. New biophysical techniques such as electron microscopy and X-ray diffraction have been developed to discern the structure of the lipid-DNA complex. However, further studies have revealed discrepancies between optimal lipid-DNA formulations for in vitro transfection and for in vivo administration of these vectors. Furthermore, some immune stimulatory effects have been associated with in vivo lipid-DNA administration. This review summarizes the current state of knowledge on in vitro and in vivo lipid-DNA complex transfections. New prospects of vectors for in vivo gene transfer are also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 81-103 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Hundreds of acetyltransferases exist. All use a common acetyl donor-acetyl coenzyme A-and each exhibits remarkable specificity for acetyl acceptors, which include small molecules and proteins. Analysis of the primary sequences of these enzymes indicates that they can be sorted into several superfamilies. This review covers the three-dimensional structures of members of one of these superfamilies, now referred to in the literature as the GCN5-related N-acetyltransferases (GNAT), reflecting the importance of one functional category, the histone acetyltransferases. Despite the diversity of substrate specificities, members of the GNAT superfamily demonstrate remarkable similarity in protein topology and mode of acetyl coenzyme A binding, likely reflecting a conserved catalytic mechanism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 49-79 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Protein kinase C homology-1 and -2, FYVE, and pleckstrin homology domains are ubiquitous in eukaryotic signal transduction and membrane-trafficking proteins. These domains regulate subcellular localization and protein function by binding to lipid ligands embedded in cell membranes. Structural and biochemical analysis of these domains has shown that their molecular mechanisms of membrane binding depend on a combination of specific and nonspecific interactions with membrane lipids. In vivo studies of green fluorescent protein fusions have highlighted the key roles of these domains in regulating protein localization to plasma and internal membranes in cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 1-26 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Although the force fields and interaction energies that control protein behavior can be inferred indirectly from equilibrium and kinetic measurements, recent developments have made it possible to quantify directly (a) the ranges, magnitudes, and time dependence of the interaction energies and forces between biological materials; (b) the mechanical properties of isolated proteins; and (c) the strength of single receptor-ligand bonds. This review describes recent results obtained by using the atomic force microscope, optical tweezers, the surface force apparatus, and micropipette aspiration to quantify short-range protein-ligand interactions and the long-range, nonspecific forces that together control protein behavior. The examples presented illustrate the power of force measurements to quantify directly the force fields and energies that control protein behavior.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 183-212 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Cys2His2 zinc fingers are one of the most common DNA-binding motifs found in eukaryotic transcription factors. These proteins typically contain several fingers that make tandem contacts along the DNA. Each finger has a conserved betabetaalpha structure, and amino acids on the surface of the alpha-helix contact bases in the major groove. This simple, modular structure of zinc finger proteins, and the wide variety of DNA sequences they can recognize, make them an attractive framework for attempts to design novel DNA-binding proteins. Several studies have selected fingers with new specificities, and there clearly are recurring patterns in the observed side chain-base interactions. However, the structural details of recognition are intricate enough that there are no general rules (a "recognition code") that would allow the design of an optimal protein for any desired target site. Construction of multifinger proteins is also complicated by interactions between neighboring fingers and the effect of the intervening linker. This review analyzes DNA recognition by Cys2His2 zinc fingers and summarizes progress in generating proteins with novel specificities from fingers selected by phage display.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 327-359 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract This review describes how kinetic experiments using techniques with dramatically improved time resolution have contributed to understanding mechanisms in protein folding. Optical triggering with nanosecond laser pulses has made it possible to study the fastest-folding proteins as well as fundamental processes in folding for the first time. These include formation of alpha-helices, beta-sheets, and contacts between residues distant in sequence, as well as overall collapse of the polypeptide chain. Improvements in the time resolution of mixing experiments and the use of dynamic nuclear magnetic resonance methods have also allowed kinetic studies of proteins that fold too fast (〉 103 s-1) to be observed by conventional methods. Simple statistical mechanical models have been extremely useful in interpreting the experimental results. One of the surprises is that models originally developed for explaining the fast kinetics of secondary structure formation in isolated peptides are also successful in calculating folding rates of single domain proteins from their native three-dimensional structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 411-438 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract ClC-type chloride channels are ubiquitous throughout the biological world. Expressed in nearly every cell type, these proteins have a host of biological functions. With nine distinct homologues known in eukaryotes, the ClCs represent the only molecularly defined family of chloride channels. ClC channels exhibit features of molecular architecture and gating mechanisms unprecedented in other types of ion channels. They form two-pore homodimers, and their voltage-dependence arises not from charged residues in the protein, but rather via coupling of gating to the movement of chloride ions within the pore. Because the functional characteristics of only a few ClC channels have been studied in detail, we are still learning which properties are general to the whole family. New approaches, including structural analyses, will be crucial to an understanding of ClC architecture and function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 439-461 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract In the past decade, a general design for sequence-specific minor groove ligands has evolved, based on the natural products distamycin and netropsin. By utilizing a basic set of design rules for connecting pyrrole, imidazole, and hydroxypyrrole modules, new ligands can be prepared to target almost any sequence of interest with both high affinity and specificity. In this review we present the design rules with a brief history of how they evolved. The structural basis for sequence-specific recognition is explained, together with developments that allow linking of recognition modules that enable targeting of long DNA sequences. Examples of the affinity and specificity that can be achieved with a number of variations on the basic design are given. Recently these molecules have been used to compete with proteins both in vitro and in vivo, and a brief description of the experimental results are given.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 21-59 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Plasmid-encoded partition genes determine the dynamic localization of plasmid molecules from the mid-cell position to the 1/4 and 3/4 positions. Similarly, bacterial homologs of the plasmid genes participate in controlling the bidirectional migration of the replication origin (oriC) regions during sporulation and vegetative growth in Bacillus subtilis, but not in Escherichia coli. In E. coli, but not B. subtilis, the chromosomal DNA is fully methylated by DNA adenine methyltransferase. The E. coli SeqA protein, which binds preferentially to hemimethylated nascent DNA strands, exists as discrete foci in vivo. A single SeqA focus, which is a SeqA-hemimethylated DNA cluster, splits into two foci that then abruptly migrate bidirectionally to the 1/4 and 3/4 positions during replication. Replicated oriC copies are linked to each other for a substantial period of generation time, before separating from each other and migrating in opposite directions. The MukFEB complex of E. coli and Smc of B. subtilis appear to participate in the reorganization of bacterial sister chromosomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 563-591 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract In an age when the majority of monogenic human disease genes have been identified, a particular challenge for the coming generation of human geneticists will be resolving complex polygenic and multifactorial diseases. The tools of molecular and population genetic association have much potential as well as peril in uncovering small cryptic genetic effects in disease. We have used a candidate gene approach to identify eight distinct human loci with alleles that in different ways influence the outcome of exposure to HIV-1, the AIDS virus. The successes in these gene hunts have validated the approach and illustrate the strengths and limitations of association analysis in an actual case history. The integration of genetic associations, well-described clinical cohorts, extensive basic research on AIDS pathogenesis, and functional interpretation of gene connections to disease offers a formula for detecting such genes in complex human genetic phenotypes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 653-686 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract In 1990, David Baltimore predicted that the 1990s would be the decade of the mouse (1). This certainly proved to be true: The mouse has contributed immensely to biological research through transgenic, embryonic stem cell (ES) knockout, and classical genetic technologies. But its usefulness as a model organism is by no means over; indeed it is still rising to its peak: The mouse as a model mammalian organism still has much to offer. This article reviews use of the mouse to dissect complex genetic traits using quantitative trait analysis, with a particular emphasis on medically important diseases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 479-497 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Be they prokaryotic or eukaryotic, organisms are exposed to a multitude of deoxyribonucleic acid (DNA) damaging agents ranging from ultraviolet (UV) light to fungal metabolites, like Aflatoxin B1. Furthermore, DNA damaging agents, such as reactive oxygen species, can be produced by cells themselves as metabolic byproducts and intermediates. Together, these agents pose a constant threat to an organism's genome. As a result, organisms have evolved a number of vitally important mechanisms to repair DNA damage in a high fidelity manner. They have also evolved systems (cell cycle checkpoints) that delay the resumption of the cell cycle after DNA damage to allow more time for these accurate processes to occur. If a cell cannot repair DNA damage accurately, a mutagenic event may occur. Most bacteria, including Escherichia coli, have evolved a coordinated response to these challenges to the integrity of their genomes. In E. coli, this inducible system is termed the SOS response, and it controls both accurate and potentially mutagenic DNA repair functions [reviewed comprehensively in (25) and also in (78, 94)]. Recent advances have focused attention on the umuD+C+-dependent, translesion DNA synthesis (TLS) process that is responsible for SOS mutagenesis (70, 86). Here we discuss the SOS response of E. coli and concentrate in particular on the roles of the umuD+C+ gene products in promoting cell survival after DNA damage via TLS and a primitive DNA damage checkpoint.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 457-477 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract At a small number of mammalian loci, only one of the two copies of a gene is expressed. Just which copy is expressed depends on the sex of the parent from which that copy was inherited. Such genes are said to be imprinted. The functional haploidy implied by imprinting has a number of population genetic consequences. Moreover, since diploidy is widely believed to be advantageous, the evolution of this non-Mendelian form of expression requires an explanation. Here I examine some of the theoretical and mathematical models investigating these two aspects of imprinting. For instance, the dynamics and equilibrium properties of many models of natural selection at imprinted loci are formally equivalent to models without imprinting. And different approaches to modeling the problem of the evolution of imprinting reveal the weakness of several of the apparent predictions of various verbal hypotheses about why imprinting has evolved.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 687-745 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Obesity is a health problem of epidemic proportions in the industrialized world. The cloning and characterization of the genes for the five naturally occurring monogenic obesity syndromes in the mouse have led to major breakthroughs in understanding the physiology of energy balance and the contribution of genetics to obesity in the human population. However, the regulation of energy balance is an extremely complex process, and it is quickly becoming clear that hundreds of genes are involved. In this article, we review the naturally occurring monogenic and polygenic obese mouse strains, as well as the large number of transgenic and knockout mouse models currently available for the study of obesity and energy balance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 499-531 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract RNA editing can be broadly defined as any site-specific alteration in an RNA sequence that could have been copied from the template, excluding changes due to processes such as RNA splicing and polyadenylation. Changes in gene expression attributed to editing have been described in organisms from unicellular protozoa to man, and can affect the mRNAs, tRNAs, and rRNAs present in all cellular compartments. These sequence revisions, which include both the insertion and deletion of nucleotides, and the conversion of one base to another, involve a wide range of largely unrelated mechanisms. Recent advances in the development of in vitro editing and transgenic systems for these varied modifications have provided a better understanding of similarities and differences between the biochemical strategies, regulatory sequences, and cellular factors responsible for such RNA processing events.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 155-181 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Electrokinetic forces are emerging as a powerful means to drive microfluidic systems with flow channel cross-sectional dimensions in the tens of micrometers and flow rates in the nanoliter per second range. These systems provide many advantages such as improved analysis speed, improved reproducibility, greatly reduced reagent consumption, and the ability to perform multiple operations in an integrated fashion. Planar microfabrication methods are used to make these analysis chips in materials such as glass or polymers. Many applications of this technology have been demonstrated, such as DNA separations, enzyme assays, immunoassays, and PCR amplification integrated with microfluidic assays. Further development of this technology is expected to yield higher levels of functionality of sample throughput on a single microfluidic analysis chip.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 105-153 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of any symmetry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 239-263 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract A fundamental perspective can be achieved by targeting single cells for analysis with the goal of deconvoluting complex biological functions. However, single-cell studies have their own difficulties, such as minute volumes and sample amounts. Quantitative chemical analysis of single cells has emerged as a powerful new area in recent years due to several technological advancements. The development of microelectrodes has allowed the measurement of redox-active species as a function of cellular dynamics. This miniaturization trend is also evident in the separation sciences with the application of small column separations to single cells. Desorption ionization methods with mass spectrometric detection have shown single-cell capability owing to numerous technological developments. Finally, fluorescence imaging has also progressed to the point where single-cell dynamics can be probed by native fluorescence utilizing either single or multiple photon excitation. The results of these studies are reviewed with an emphasis on the quantitation of single-cell dynamics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 265-289 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Vancomycin is the archetype among naturally occurring compounds known as glycopeptide antibiotics. Because it is a vital therapeutic agent used worldwide for the treatment of infections with gram-positive bacteria, emerging bacterial resistance to vancomycin is a major public health threat. Recent investigations into the mechanisms of action of glycopeptide antibiotics are driven by a need to understand their detailed mechanism of action so that new agents can be developed to overcome resistance. These investigations have revealed that glycopeptide antibiotics exhibit a rich array of complex cooperative phenomena when they bind target ligands, making them valuable model systems for the study of molecular recognition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 291-325 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Comparative modeling predicts the three-dimensional structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. The number of protein sequences that can be modeled and the accuracy of the predictions are increasing steadily because of the growth in the number of known protein structures and because of the improvements in the modeling software. Further advances are necessary in recognizing weak sequence-structure similarities, aligning sequences with structures, modeling of rigid body shifts, distortions, loops and side chains, as well as detecting errors in a model. Despite these problems, it is currently possible to model with useful accuracy significant parts of approximately one third of all known protein sequences. The use of individual comparative models in biology is already rewarding and increasingly widespread. A major new challenge for comparative modeling is the integration of it with the torrents of data from genome sequencing projects as well as from functional and structural genomics. In particular, there is a need to develop an automated, rapid, robust, sensitive, and accurate comparative modeling pipeline applicable to whole genomes. Such large-scale modeling is likely to encourage new kinds of applications for the many resulting models, based on their large number and completeness at the level of the family, organism, or functional network.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 213-238 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract In order to solve the immensely difficult protein-folding problem, it will be necessary to characterize the barriers that slow folding and the intermediate structures that promote it. Although protein-folding intermediates are not accessible to the usual structural studies, hydrogen exchange (HX) methods have been able to detect and characterize intermediates in both kinetic and equilibrium modes-as transient kinetic folding intermediates on a subsecond time scale, as labile equilibrium molten globule intermediates under destabilizing conditions, and as infinitesimally populated intermediates in the high free-energy folding landscape under native conditions. Available results consistently indicate that protein-folding landscapes are dominated by a small number of discrete, metastable, native-like partially unfolded forms (PUFs). The PUFs appear to be produced, one from another, by the unfolding and refolding of the protein's intrinsically cooperative secondary structural elements, which can spontaneously create stepwise unfolding and refolding pathways. Kinetic experiments identify three kinds of barrier processes: (a) an initial intrinsic search-nucleation-collapse process that prepares the chain for intermediate formation by pinning it into a condensed coarsely native-like topology; (b) smaller search-dependent barriers that put the secondary structural units into place; and (c) optional error-dependent misfold-reorganization barriers that can cause slow folding, intermediate accumulation, and folding heterogeneity. These conclusions provide a coherent explanation for the grossly disparate folding behavior of different globular proteins in terms of distinct folding pathways.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 463-495 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Photosystem II uses visible light to drive the oxidation of water, resulting in bioactivated electrons and protons, with the production of molecular oxygen as a byproduct. This water-splitting reaction is carried out by a manganese cluster/tyrosine radical ensemble, the oxygen-evolving complex. Although conventional continuous-wave, perpendicular-polarization electron paramagnetic resonance (EPR) spectroscopy has significantly advanced our knowledge of the structure and function of the oxygen-evolving complex, significant additional information can be obtained with the application of additional EPR methodologies. Specifically, parallel-polarization EPR spectroscopy can be used to obtain highly resolved EPR spectra of integer spin Mn species, and pulsed EPR spectroscopy with electron spin echo-based sequences, such as electron spin echo envelope modulation and electron spin echo-electron nuclear double resonance, can be used to measure weak interactions obscured in continuous-wave spectroscopy by inhomogeneous broadening.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 523-543 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The ability to manipulate, stretch and twist biomolecules opens the way to an understanding of their structural transitions. We review some of the recently discovered stress-induced structural transitions in DNA as well as the application of single molecule manipulation techniques to DNA unzipping and to the study of protein folding/unfolding transitions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 497-521 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The genomes of higher cells consist of double-helical DNA, a densely charged polyelectrolyte of immense length. The intrinsic physical properties of DNA, as well as the properties of its complexes with proteins and ions, are therefore of fundamental interest in understanding the functions of DNA as an informational macromolecule. Because individual DNA molecules often exceed 1 cm in length, it is clear that DNA bending, folding, and interaction with nuclear proteins are necessary for packaging genomes in small volumes and for integrating the nucleotide sequence information that guides genetic readout. This review first focuses on recent experiments exploring how the shape of the densely charged DNA polymer and asymmetries in its surrounding counterion distribution mutually influence one another. Attention is then turned to experiments seeking to discover the degree to which asymmetric phosphate neutralization can lead to DNA bending in protein-DNA complexes. It is argued that electrostatic effects play crucial roles in the intrinsic, sequence-dependent shape of DNA and in DNA shapes induced by protein binding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 361-410 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Atomic force microscopy (AFM) has been used to study protein, nucleic acid, and virus crystals in situ, in their mother liquors, as they grow. From sequential AFM images taken at brief intervals over many hours, or even days, the mechanisms and kinetics of the growth process can be defined. The appearance of both two- and three-dimensional nuclei on crystal surfaces have been visualized, defect structures of crystals were clearly evident, and defect densities of crystals were also determined. The incorporation of a wide range of impurities, ranging in size from molecules to microns or larger microcrystals, and even foreign particles were visually recorded. From these observations and measurements, a more complex understanding of the detailed character of macromolecular crystals is emerging, one that reveals levels of complexity previously unsuspected. The unique features of these crystals, apparently in AFM images, undoubtedly influence the diffraction properties of the crystals and the quality of the molecular images obtained by X-ray crystallography.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 545-576 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract We review how motile cells regulate actin filament assembly at their leading edge. Activation of cell surface receptors generates signals (including activated Rho family GTPases) that converge on integrating proteins of the WASp family (WASp, N-WASP, and Scar/WAVE). WASP family proteins stimulate Arp2/3 complex to nucleate actin filaments, which grow at a fixed 70o angle from the side of pre-existing actin filaments. These filaments push the membrane forward as they grow at their barbed ends. Arp2/3 complex is incorporated into the network, and new filaments are capped rapidly, so that activated Arp2/3 complex must be supplied continuously to keep the network growing. Hydrolysis of ATP bound to polymerized actin followed by phosphate dissociation marks older filaments for depolymerization by ADF/cofilins. Profilin catalyzes exchange of ADP for ATP, recycling actin back to a pool of unpolymerized monomers bound to profilin and thymosin-beta4 that is poised for rapid elongation of new barbed ends.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Small molecules that modulate the activity of biological signaling molecules can be powerful probes of signal transduction pathways. Highly specific molecules with high affinity are difficult to identify because of the conserved nature of many protein active sites. A newly developed approach to discovery of such small molecules that relies on protein engineering and chemical synthesis has yielded powerful tools for the study of a wide variety of proteins involved in signal transduction (G-proteins, protein kinases, 7-transmembrane receptors, nuclear hormone receptors, and others). Such chemical genetic tools combine the advantages of traditional genetics and the unparalleled temporal control over protein function afforded by small molecule inhibitors/activators that act at diffusion controlled rates with targets.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 1-18 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Ethylene regulates a multitude of plant processes, ranging from seed germination to organ senescence. Of particular economic importance is the role of ethylene as an inducer of fruit ripening. Ethylene is synthesized from S-adenosyl-L-methionine via 1-aminocyclopropane-1-carboxylic acid (ACC). The enzymes catalyzing the two reactions in this pathway are ACC synthase and ACC oxidase. Environmental and endogenous signals regulate ethylene biosynthesis primarily through differential expression of ACC synthase genes. Components of the ethylene signal transduction pathway have been identified by characterization of ethylene-response mutants in Arabidopsis thaliana. One class of mutations, exemplified by etr1, led to the identification of the ethylene receptors, which turned out to be related to bacterial two-component signaling systems. Mutations that eliminate ethylene binding to the receptor yield a dominant, ethylene-insensitive phenotype. CTR1 encodes a Raf-like Ser/Thr protein kinase that acts downstream from the ethylene receptor and may be part of a MAP kinase cascade. Mutants in CTR1 exhibit a constitutive ethylene-response phenotype. Both the ethylene receptors and CTR1 are negative regulators of ethylene responses. EIN2 and EIN3 are epistatic to CTR1, and mutations in either gene lead to ethylene insensitivity. Whereas the function of EIN2 in ethylene transduction is not known, EIN3 is a putative transcription factor involved in regulating expression of ethylene-responsive genes. Biotechnological modifications of ethylene synthesis and of sensitivity to ethylene are promising methods to prevent spoilage of agricultural products such as fruits, whose ripening is induced by ethylene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 19-49 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Chemical synaptic transmission serves as the main form of cell to cell communication in the nervous system. Neurotransmitter release occurs through the process of regulated exocytosis, in which a synaptic vesicle releases its contents in response to an increase in calcium. The use of genetic, biochemical, structural, and functional studies has led to the identification of factors important in the synaptic vesicle life cycle. Here we focus on the prominent role of SNARE (soluble NSF attachment protein receptor) proteins during membrane fusion and the regulation of SNARE function by Rab3a, nSec1, and NSF. Many of the proteins important for transmitter release have homologs involved in intracellular vesicle transport, and all forms of vesicle trafficking share common basic principles. Finally, modifications to the synaptic exocytosis pathway are very likely to underlie certain forms of synaptic plasticity and therefore contribute to learning and memory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 113-143 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The ezrin-radixin-moesin (ERM) family of proteins have emerged as key regulatory molecules in linking F-actin to specific membrane proteins, especially in cell surface structures. Merlin, the product of the NF2 tumor suppressor gene, has sequence similarity to ERM proteins and binds to some of the same membrane proteins, but lacks a C-terminal F-actin binding site. In this review we discuss how ERM proteins and merlin are negatively regulated by an intramolecular association between their N- and C-terminal domains. Activation of at least ERM proteins can be accomplished by C-terminal phosphorylation in the presence of PIP2. We also discuss membrane proteins to which ERM and merlin bind, including those making an indirect linkage through the PDZ-containing adaptor molecules EBP50 and E3KARP. Finally, the function of these proteins in cortical structure, endocytic traffic, signal transduction, and growth control is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 145-171 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Adipogenesis, or the development of fat cells from preadipocytes, has been one of the most intensely studied models of cellular differentiation. In part this has been because of the availability of in vitro models that faithfully recapitulate most of the critical aspects of fat cell formation in vivo. More recently, studies of adipogenesis have proceeded with the hope that manipulation of this process in humans might one day lead to a reduction in the burden of obesity and diabetes. This review explores some of the highlights of a large and burgeoning literature devoted to understanding adipogenesis at the molecular level. The hormonal and transcriptional control of adipogenesis is reviewed, as well as studies on a less well known type of fat cell, the brown adipocyte. Emphasis is placed, where possible, on in vivo studies with the hope that the results discussed may one day shed light on basic questions of cellular growth and differentiation in addition to possible benefits in human health.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 173-189 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Enteropathogenic Escherichia coli (EPEC) is a gram-negative bacterial pathogen that adheres to human intestinal epithelial cells, resulting in watery, persistent diarrhea. It subverts the host cell cytoskeleton, causing a rearrangement of cytoskeletal components into a characteristic pedestal structure underneath adherent bacteria. In contrast to other intracellular pathogens that affect the actin cytoskeleton from inside the host cytoplasm, EPEC remains extracellular and transmits signals through the host cell plasma membrane via direct injection of virulence factors by a "molecular syringe," the bacterial type III secretion system. One injected factor is Tir, which functions as the plasma membrane receptor for EPEC adherence. Tir directly links extracellular EPEC through the epithelial membrane and firmly anchors it to the host cell actin cytoskeleton, thereby initiating pedestal formation. In addition to stimulating actin nucleation and polymerization in the host cell, EPEC activates several other signaling pathways that lead to tight junction disruption, inhibition of phagocytosis, altered ion secretion, and immune responses. This review summarizes recent developments in our understanding of EPEC pathogenesis and discusses similarities and differences between EPEC pedestals, focal contacts, and Listeria monocytogenes actin tails.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 191-220 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Early development of the vertebrate skeleton depends on genes that pattern the distribution and proliferation of cells from cranial neural crest, sclerotomes, and lateral plate mesoderm into mesenchymal condensations at sites of future skeletal elements. Within these condensations, cells differentiate to chondrocytes or osteoblasts and form cartilages and bones under the control of various transcription factors. In most of the skeleton, organogenesis results in cartilage models of future bones; in these models cartilage is replaced by bone by the process of endochondral ossification. Lastly, through a controlled process of bone growth and remodeling the final skeleton is shaped and molded. Significant and exciting insights into all aspects of vertebrate skeletal development have been obtained through molecular and genetic studies of animal models and humans with inherited disorders of skeletal morphogenesis, organogenesis, and growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 221-241 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Stomatal guard cells are unique as a plant cell model and, because of the depth of present knowledge on ion transport and its regulation, offer a first look at signal integration in higher plants. A large body of data indicates that Ca2+ and H+ act independently, integrating with protein kinases and phosphatases, to control the gating of the K+ and Cl- channels that mediate solute flux for stomatal movements. Oscillations in the cytosolic-free concentration of Ca2+ contribute to a signaling cassette, integrated within these events through an unusual coupling with membrane voltage for solute homeostasis. Similar cassettes are anticipated to include control pathways linked to cytosolic pH. Additional developments during the last two years point to events in membrane traffic that play equally important roles in stomatal control. Research in these areas is now adding entirely new dimensions to our understanding of guard cell signaling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 243-271 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract During the past decade, much progress has been made in understanding how the adult fly is built. Some old concepts such as those of compartments and selector genes have been revitalized. In addition, recent work suggests the existence of genes involved in the regionalization of the adult that do not have all the features of selector genes. Nevertheless, they generate morphological distinctions within the body plan. Here we re-examine some of the defining criteria of selector genes and suggest that these newly characterized genes fulfill many, but not all, of these criteria. Further, we propose that these genes can be classified according to the domains in which they function. Finally, we discuss experiments that address the molecular mechanisms by which selector and selector-like gene products function in the fly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 273-300 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Cajal bodies are small nuclear organelles first described nearly 100 years ago by Ramon y Cajal in vertebrate neural tissues. They have since been found in a variety of animal and plant nuclei, suggesting that they are involved in basic cellular processes. Cajal bodies contain a marker protein of unknown function, p80-coilin, and many components involved in transcription and processing of nuclear RNAs. Among these are the three eukaryotic RNA polymerases and factors required for transcribing and processing their respective nuclear transcripts: mRNA, rRNA, and pol III transcripts. A model is discussed in which Cajal bodies are the sites for preassembly of transcriptosomes, unitary particles involved in transcription and processing of RNA. A parallel is drawn to the nucleolus and the preassembly of ribosomes, which are unitary particles involved in translation of proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 301-332 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract M cells are distinctive epithelial cells that occur only in the follicle-associated epithelia that overlie organized mucosa-associated lymphoid tissues. They are structurally and functionally specialized for transepithelial transport, delivering foreign antigens and microorganisms to organized lymphoid tissues within the mucosae of the small and large intestines, tonsils and adenoids, and airways. M cell transport is a double-edged sword: Certain pathogens exploit the features of M cells that are intended to promote uptake for the purpose of immunological sampling. Eludication of the molecular architecture of M cell apical surfaces is important for understanding the strategies that pathogens use to exploit this pathway and for utilizing M cell transport for delivery of vaccines to the mucosal immune system. This article reviews the functional and biochemical features that distinguish M cells from other intestinal cell types. In addition it synthesizes the available information on development and differentiation of organized lymphoid tissues and the specialized epithelium associated with these immune inductive sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 483-519 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Dynamin, a 100-kDa GTPase, is an essential component of vesicle formation in receptor-mediated endocytosis, synaptic vesicle recycling, caveolae internalization, and possibly vesicle trafficking in and out of the Golgi. In addition to the GTPase domain, dynamin also contains a pleckstrin homology domain (PH) implicated in membrane binding, a GTPase effector domain (GED) shown to be essential for self-assembly and stimulated GTPase activity, and a C-terminal proline-rich domain (PRD), which contains several SH3-binding sites. Dynamin partners bind to the PRD and may either stimulate dynamin's GTPase activity or target dynamin to the plasma membrane. Purified dynamin readily self-assembles into rings or spirals. This striking structural property supports the hypothesis that dynamin wraps around the necks of budding vesicles where it plays a key role in membrane fission. The focus of this review is on the relationship between the GTPase and self-assembly properties of dynamin and its cellular function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 459-481 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Cholesterol balance is maintained by a series of regulatory pathways that control the acquisition of cholesterol from endogenous and exogenous sources and the elimination of cholesterol, facilitated by its conversion to bile acids. Over the past decade, investigators have discovered that a family of membrane-bound transcription factors, sterol regulatory element-binding proteins (SREBPs), mediate the end-product repression of key enzymes of cholesterol biosynthesis. Recently orphan members of another family of transcription factors, the nuclear hormone receptors, have been found to regulate key pathways in bile acid metabolism, thereby controlling cholesterol elimination. The study of these orphan nuclear receptors suggests their potential as targets for new drug therapies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 521-555 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Voltage-gated Ca2+ channels mediate Ca2+ entry into cells in response to membrane depolarization. Electrophysiological studies reveal different Ca2+ currents designated L-, N-, P-, Q-, R-, and T-type. The high-voltage-activated Ca2+ channels that have been characterized biochemically are complexes of a pore-forming alpha1 subunit of ~190-250 kDa; a transmembrane, disulfide-linked complex of alpha2 and delta subunits; an intracellular beta subunit; and in some cases a transmembrane gamma subunit. Ten alpha1 subunits, four alpha2delta complexes, four beta subunits, and two gamma subunits are known. The Cav1 family of alpha1 subunits conduct L-type Ca2+ currents, which initiate muscle contraction, endocrine secretion, and gene transcription, and are regulated primarily by second messenger-activated protein phosphorylation pathways. The Cav2 family of alpha1 subunits conduct N-type, P/Q-type, and R-type Ca2+ currents, which initiate rapid synaptic transmission and are regulated primarily by direct interaction with G proteins and SNARE proteins and secondarily by protein phosphorylation. The Cav3 family of alpha1 subunits conduct T-type Ca2+ currents, which are activated and inactivated more rapidly and at more negative membrane potentials than other Ca2+ current types. The distinct structures and patterns of regulation of these three families of Ca2+ channels provide a flexible array of Ca2+ entry pathways in response to changes in membrane potential and a range of possibilities for regulation of Ca2+ entry by second messenger pathways and interacting proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 557-589 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Green fluorescent protein chimerae acting as reporters for protein localization and trafficking within the secretory membrane system of living cells have been used in a wide variety of applications, including time-lapse imaging, double-labeling, energy transfer, quantitation, and photobleaching experiments. Results from this work are clarifying the steps involved in the formation, translocation, and fusion of transport intermediates; the organization and biogenesis of organelles; and the mechanisms of protein retention, sorting, and recycling in the secretory pathway. In so doing, they are broadening our thinking about the temporal and spatial relationships among secretory organelles and the membrane trafficking pathways that operate between them.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 591-626 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract SUMO (small ubiquitin-related modifier) is the best-characterized member of a growing family of ubiquitin-related proteins. It resembles ubiquitin in its structure, its ability to be ligated to other proteins, as well as in the mechanism of ligation. However, in contrast to ubiquitination-often the first step on a one-way road to protein degradation-SUMOlation does not seem to mark proteins for degradation. In fact, SUMO may even function as an antagonist of ubiquitin in the degradation of selected proteins. While most SUMO targets are still at large, available data provide compelling evidence for a role of SUMO in the regulation of protein-protein interactions and/or subcellular localization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 627-651 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Because many viruses replicate in the nucleus of their host cells, they must have ways of transporting their genome and other components into and out of this compartment. For the incoming virus particle, nuclear entry is often one of the final steps in a complex transport and uncoating program. Typically, it involves recognition by importins (karyopherins), transport to the nucleus, and binding to nuclear pore complexes. Although all viruses take advantage of cellular signals and factors, viruses and viral capsids vary considerably in size, structure, and in how they interact with the nuclear import machinery. Influenza and adenoviruses undergo extensive disassembly prior to genome import; herpesviruses release their genome into the nucleus without immediate capsid disassembly. Polyoma viruses, parvoviruses, and lentivirus preintegration complexes are thought to enter in intact form, whereas the corresponding complexes of onco-retroviruses have to wait for mitosis because they cannot infect interphase nuclei.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 653-699 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The Myc/Max/Mad network comprises a group of transcription factors whose distinct interactions result in gene-specific transcriptional activation or repression. A great deal of research indicates that the functions of the network play roles in cell proliferation, differentiation, and death. In this review we focus on the Myc and Mad protein families and attempt to relate their biological functions to their transcriptional activities and gene targets. Both Myc and Mad, as well as the more recently described Mnt and Mga proteins, form heterodimers with Max, permitting binding to specific DNA sequences. These DNA-bound heterodimers recruit coactivator or corepressor complexes that generate alterations in chromatin structure, which in turn modulate transcription. Initial identification of target genes suggests that the network regulates genes involved in the cell cycle, growth, life span, and morphology. Because Myc and Mad proteins are expressed in response to diverse signaling pathways, the network can be viewed as a functional module which acts to convert environmental signals into specific gene-regulatory programs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 165-186 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Filamentous fungi grow as a multicellular, multinuclear network of filament-shaped cells called hyphae. A fungal individual can be viewed as a fluid, dynamic system that is characterized by hyphal tip growth, branching, and hyphal fusion (anastomosis). Hyphal anastomosis is especially important in such nonlinear systems for the purposes of communication and homeostasis. Filamentous fungi can also undergo hyphal fusion with different individuals to form heterokaryons. However, the viability of such heterokaryons is dependent upon genetic constitution at heterokaryon incompatibility (het) loci. If hyphal fusion occurs between strains that differ in allelic specificity at het loci, vegetative incompatibility, which is characterized by hyphal compartmentation and cell lysis, is induced. This review covers microscopic and genetic analysis of hyphal fusion and the molecular and genetic analysis of the consequence of hyphal fusion between individuals that differ in specificity at het loci in filamentous ascomycetes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 187-204 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Mechanisms for repetition of DNA pose both opportunities and challenges to a functional genome: opportunities for increasing gene expression by amplification of useful sequences, and challenges of controlling amplification by unwanted sequences such as transposons and viruses. Experiments in numerous organisms have suggested the likely existence of a general mechanism for recognition of repeated character in DNA. This review focuses (a) on the nature of these recognition mechanisms, and (b) on types of chromatin modification and gene silencing that are used to control repeated DNA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 205-232 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Courtship is a complex behavior in Drosophila that recruits a wide range of genes for its realization, including those concerning sex determination, ion channels, and circadian rhythms. Results from different experimental approaches-behavioral and genetic comparisons between species, analysis of mutants and mosaics, and identification of specific sensory stimuli-sketch the outlines of a set of pleiotropic genes acting on a distributed system in the brain to produce the species-specific sequence of responses and actions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 297-329 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Cytogenetic imbalance in the newborn is a frequent cause of mental retardation and birth defects. Although aneuploidy accounts for the majority of imbalance, structural aberrations contribute to a significant fraction of recognized chromosomal anomalies. This review describes the major classes of constitutional, structural cytogenetic abnormalities and recent studies that explore the molecular mechanisms that bring about their de novo occurrence. Genomic features flanking the sites of recombination may result in susceptibility to chromosomal rearrangement. One such substrate for recombination is low-copy region-specific repeats. The identification of genome architectural features conferring susceptibility to rearrangements has been accomplished using methods that enable investigation of regions of the genome that are too small to be visualized by traditional cytogenetics and too large to be resolved by conventional gel electrophoresis. These investigations resulted in the identification of previously unrecognized structural cytogenetic anomalies, which are associated with genetic syndromes and allowed for the molecular basis of some chromosomal rearrangements to be delineated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 331-358 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Telomeres are DNA and protein structures that form complexes protecting the ends of chromosomes. Understanding of the mechanisms maintaining telomeres and insights into their function have advanced considerably in recent years. This review summarizes the currently known components of the telomere/telomerase functional complex, and focuses on how they act in the control of processes occurring at telomeres. These include processes acting on the telomeric DNA and on telomeric proteins. Key among them are DNA replication and elongation of one telomeric DNA strand by telomerase. In some situations, homologous recombination of telomeric and subtelomeric DNA is induced. All these processes act to replenish or restore telomeres. Conversely, degradative processes that shorten telomeric DNA, and nonhomologous end-joining of telomeric DNA, can lead to loss of telomere function and genomic instability. Hence they too must normally be tightly controlled.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 439-456 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Early genetic studies identified the Escherichia coli groES and groEL genes because mutations in them blocked the growth of bacteriophages lamba and T4. Subsequent genetic and biochemical analyses have shown that GroES and GroEL constitute a chaperonin machine, absolutely essential for E. coli growth, because it is needed for the correct folding of many of its proteins. In spite of very little sequence identity to GroES, the bacteriophage T4-encoded Gp31 protein and the bacteriophage RB49-encoded CocO protein are bona fide GroEL cochaperonins, even capable of substituting for GroES in E. coli growth. A major functional distinction is that only Gp31 and CocO can assist GroEL in the correct folding of Gp23, the major bacteriophage capsid protein. Conserved structural features between CocO and Gp31, which are absent from GroES, highlight their potential importance in specific cochaperonin function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 593-622 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Knowledge of both prokaryotic and eukaryotic organisms is essential to the study of molecular evolution. Their common ancestry mandates that their molecular functions share many aspects of adaptation and constraint, yet their differences in size, ploidy, and structural complexity also give rise to divergent evolutionary options. We explore the interplay of adaptation, constraint, and neutrality in their evolution by the use of genetic variants to probe molecular function in context of molecular structure, metabolic organization, and phenotype-environment interactions. Case studies ranging from bacteria to butterflies, flies, and vertebrates emphasize, among other points: a. the importance of moving from initial recording of evolutionary pattern variation to studying the processes underlying the patterns, by experiment, reconstructive inference, or both; b. the complementarity, not conflict, of finding different performance and fitness impacts of natural variants in prokaryotes or eukaryotes, depending on the nature and magnitude of the variants, their locations and roles in pathways, the nature of molecular function affected, and the resulting organismal phenotype-environment interactions leading to selection or its absence; c. the importance of adaptive functional interaction of different kinds of variants, as in gene expression variants versus variants altering polypeptide properties, or interaction of changes in enzymes' active sites with complementary changes elsewhere that adjust catalytic function in different ways, or coadaptation of different steps' properties in pathways; d. the power afforded by combining structural and functional analyses of variants with study of the variants' phenotype-environment interactions to understand how molecular changes affect (or fail to affect) adaptive mechanisms "in the wild." Comparative study of prokaryotes and eukaryotes in this multifaceted way promises to deliver both new insights into evolution and a host of new and productive questions about it.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 61-76 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Intein is the protein equivalent of intron and has been discovered in increasing numbers of organisms and host proteins. A self-splicing intein catalyzes its own removal from the host protein through a posttranslational process of protein splicing. A mobile intein displays a site-specific endonuclease activity that confers genetic mobility to the intein through intein homing. Recent findings of intein structure and the mechanism of protein splicing illuminated how inteins work and yielded clues regarding intein's origin, spread, and evolution. Inteins can evolve into new structures and new functions, such as split inteins that do trans-splicing. The structural basis of intein function needs to be identified for a full understanding of the origin and evolution of this marvelous genetic element.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 77-137 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract The past decade has seen an explosive increase in information about regulation of eukaryotic gene transcription, especially for protein-coding genes. The most striking advances in our knowledge of transcriptional regulation involve the chromatin template, the large complexes recruited by transcriptional activators that regulate chromatin structure and the transcription apparatus, the holoenzyme forms of RNA polymerase II involved in initiation and elongation, and the mechanisms that link mRNA processing with its synthesis. We describe here the major advances in these areas, with particular emphasis on the modular complexes associated with RNA polymerase II that are targeted by activators and other regulators of mRNA biosynthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 139-164 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract A number of techniques have been developed to assess the expression of microbial virulence genes within the host (in vivo). These studies have shown that bacteria employ a wide variety of mechanisms to coordinately regulate the expression of these genes during infection. Two tenets have emerged from these studies: bacterial adaptation responses are critical to growth within the host, and interactions between microorganisms and the microenvironments of their hosts cannot be revealed from in vitro studies alone. Results that support these tenets include (i) the prevalent class of in vivo expressed genes are involved in adaptation to environmental stresses, (ii) pathogens recovered from host tissues (versus laboratory growth) are often more resistant to host killing mechanisms, and (iii) virulence gene expression can differ in the animal compared to laboratory media. Thus, pathogenicity comprises the unique ability to adapt to the varied host milieus encountered as the infection proceeds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 51-87 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The inner membranes of eubacteria and mitochondria, as well as the chloroplast thylakoid membrane, contain essential proteins that function in oxidative phosphorylation and electron transport processes or in photosynthesis. Because most of the organellar proteins are nuclear encoded, they are synthesized in the cytoplasm and subsequently imported into the organelle before they are inserted into the membrane. This review focuses on the pathways of protein insertion into the inner membrane of eubacteria and mitochondria and into the chloroplast thylakoid membrane. In many respects, insertion of proteins into the inner membrane of bacteria is a process similar to that used by proteins of the thylakoid membrane. In both of these systems a signal recognition particle (SRP) and a SecYE-translocase are involved, as in translocation into the endoplasmic reticulum. The pathway of proteins into the mitochondrial membranes appears to be different in that it involves no SecYE-like components. A conservative pathway, recently identified in mitochondria, involves the Oxa1 protein for the insertion of proteins from the matrix. The presence of Oxa1 homologues in eubacteria and chloroplasts suggests that this pathway is evolutionarily conserved.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 89-111 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The microtubule cytoskeleton is a highly regulated system. At different times in the cell cycle and positions within the organism, microtubules can be very stable or highly dynamic. Stability and dynamics are regulated by interaction with a large number of proteins that themselves may change at specific points in the cell cycle. Exogenous ligands can disrupt the normal processes by either increasing or decreasing microtubule stability and inhibiting their dynamic behavior. The recent determination of the structure of tubulin, the main component of microtubules, makes it possible now to begin to understand the details of these interactions. We review here the structure of the tubulin dimer, with particular regard to how proteins and drugs may bind and modulate microtubule dynamics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 333-364 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Many bisexual flowering plants possess a reproductive strategy called self-incompatibility (SI) that enables the female tissue (the pistil) to reject self but accept non-self pollen for fertilization. Three different SI mechanisms are discussed, each controlled by two separate, highly polymorphic genes at the S-locus. For the Solanaceae and Papaveraceae types, the genes controlling female function in SI, the S-RNase gene and the S-gene, respectively, have been identified. For the Brassicaceae type, the gene controlling male function, SCR/SP11, and the gene controlling female function, SRK, have been identified. The S-RNase based mechanism involves degradation of RNA of self-pollen tubes; the S-protein based mechanism involves a signal transduction cascade in pollen, including a transient rise in [Ca2+]i and subsequent protein phosphorylation/dephosphorylation; and the SRK (a receptor kinase) based mechanism involves interaction of a pollen ligand, SCR/SP11, with SRK, followed by a signal transduction cascade in the stigmatic surface cell.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 365-392 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Retinylidene proteins, containing seven membrane-embedded alpha-helices that form an internal pocket in which the chromophore retinal is bound, are ubiquitous in photoreceptor cells in eyes throughout the animal kingdom. They are also present in a diverse range of other organisms and locations, such as archaeal prokaryotes, unicellular eukaryotic microbes, the dermal tissue of frogs, the pineal glands of lizards and birds, the hypothalamus of toads, and the human brain. Their functions include light-driven ion transport and phototaxis signaling in microorganisms, and retinal isomerization and various types of photosignal transduction in higher animals. The aims of this review are to examine this group of photoactive proteins as a whole, to summarize our current understanding of structure/function relationships in the best-studied examples, and to report recent new developments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 393-421 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Cell walls separate individual plant cells. To enable essential intercellular communication, plants have evolved membrane-lined channels, termed plasmodesmata, that interconnect the cytoplasm between neighboring cells. Historically, plasmodesmata were viewed as facilitating traffic of low-molecular weight growth regulators and nutrients critical to growth. Evidence for macromolecular transport via plasmodesmata was solely based on the exploitation of plasmodesmata by plant viruses during infectious spread. Now plasmodesmata are revealed to transport endogenous proteins, including transcription factors important for development. Two general types of proteins, non-targeted and plasmodesmata-targeted, traffic plasmodesmata channels. Size and subcellular location influence non-targeted protein transportability. Superimposed on cargo-specific parameters, plasmodesmata themselves fluctuate in aperture between closed, open, and dilated. Furthermore, plasmodesmata alter their transport capacity temporally during development and spatially in different regions of the plant. Plasmodesmata are exposed as major gatekeepers of signaling molecules that facilitate or regulate developmental programs, maintain physiological status, and respond to pathogens.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 423-457 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The closely related bacterial pathogens Neisseria gonorrhoeae (gonococci, GC) and N. meningitidis (meningococci, MC) initiate infection at human mucosal epithelia. Colonization begins at apical epithelial surfaces with a multistep adhesion cascade, followed by invasion of the host cell, intracellular persistence, transcytosis, and exit. These activities are modulated by the interaction of a panoply of virulence factors with their cognate host cell receptors, and signals are sent from pathogen to host and host to pathogen at multiple stages of the adhesion cascade. Recent advances place us on the verge of understanding the colonization process at a molecular level of detail. In this review we describe the Neisseria virulence factors in the context of epithelial cell biology, placing special emphasis on the signaling functions of type IV pili, pilus-based twitching motility, and the Opa and Opc outermembrane adhesin/invasin proteins. We also summarize what is known about bacterial intracellular trafficking and growth. With the accelerated integration of tools from cell biology, biochemistry, biophysics, and genomics, experimentation in the next few years should bring unprecedented insights into the interactions of Neisseriae with their host.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 1-19 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Boveri's idea that somatic mutations are at the root of cancer found its first specific support with the investigation of leukemia and Burkitt's lymphoma, and the discovery of the mechanism of oncogene activation by balanced translocation. The study of retinoblastoma later led to the cloning of the first antioncogene, or tumor suppressor gene, and to understanding the mechanisms by which the wild-type genes lose activity. Only a small subset of cancer involves simple mechanisms. A category of hereditary disorders called the phakomatoses provide a perspective on the chain of oncogenic events in such cancers because of two-hit precursor lesions that have a low probability of malignant transformation. The common carcinomas are much more complex and are typically genetically unstable, owing either to mutational instability or chromosomal instability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 255-295 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Genetic and biochemical studies in yeast and animal cells have led to the identification of many components required for endocytosis. In this review, we summarize our understanding of the endocytic machinery with an emphasis on the proteins regulating the internalization step of endocytosis and endosome fusion. Even though the overall endocytic machinery appears to be conserved between yeast and animals, clear differences exist. We also discuss the roles of phosphoinositides, sterols, and sphingolipid precursors in endocytosis, because in addition to proteins, these lipids have emerged as important determinants in the spatial and most likely temporal specificity of endocytic membrane trafficking events.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 359-399 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Mismatch repair (MMR) systems play a central role in promoting genetic stability by repairing DNA replication errors, inhibiting recombination between non-identical DNA sequences and participating in responses to DNA damage. The discovery of a link between human cancer and MMR defects has led to an explosion of research on eukaryotic MMR. The key proteins in MMR are highly conserved from bacteria to mammals, and this conservation has been critical for defining the components of eukaryotic MMR systems. In eukaryotes, there are multiple homologs of the key bacterial MutS and MutL MMR proteins, and these homologs form heterodimers that have discrete roles in MMR-related processes. This review describes the genetic and biochemical approaches used to study MMR, and summarizes the diverse roles that MMR proteins play in maintaining genetic stability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 401-437 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Changes in ploidy occurred early in the diversification of some animal and plant lineages and represent an ongoing phenomenon in others. While the prevalence of polyploid lineages indicates that this phenomenon is a common and successful evolutionary transition, whether polyploidization itself has a significant effect on patterns and rates of diversification remains an open question. Here we review evidence for the creative role of polyploidy in evolution. We present new estimates for the incidence of polyploidy in ferns and flowering plants based on a simple model describing transitions between odd and even base chromosome numbers. These new estimates indicate that ploidy changes may represent from 2 to 4% of speciation events in flowering plants and 7% in ferns. Speciation via polyploidy is likely to be one of the more predominant modes of sympatric speciation in plants, owing to its potentially broad-scale effects on gene regulation and developmental processes, effects that can produce immediate shifts in morphology, breeding system, and ecological tolerances. Theoretical models support the potential for increased adaptability in polyploid lineages. The evidence suggests that polyploidization can produce shifts in genetic systems and phenotypes that have the potential to result in increased evolutionary diversification, yet conclusive evidence that polyploidy has changed rates and patterns of diversification remains elusive.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 233-254 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Coronary heart disease is a complex genetic disease with many genes involved, environmental influences, and important gene-environment interactions. This review discusses the genetic basis of the principal lipoprotein abnormalities associated with coronary heart disease susceptibility in the general population. Individual sections discuss genes regulating LDL cholesterol, HDL cholesterol, and triglyceride levels. A section is included on the effects of the common apo E genetic variation on lipoprotein levels, as well as sections on the genetic regulation of lipoprotein(a) levels, genes regulating the inverse relationship between triglyceride-rich lipoproteins and HDL cholesterol levels, and our current understanding of the genetic basis of familial combined hyperlipidemia. It is clear that the field has progressed, with early studies focused mainly on the association of candidate gene RFLPs with phenotypes, later studies of candidate genes in both parametric and nonparametric linkage studies, and now more and more studies combining linkage analysis with genome scans to identify new loci that influence lipoprotein phenotypes. The future should provide us with the capability to perform reasonable genetic profiling for lipoprotein abnormalities associated with coronary heart disease susceptibility.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 533-562 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract During the past four years, significant progress has been made in identifying the molecular components of the mammalian circadian clock system. An autoregulatory transcriptional feedback loop similar to that described in Drosophila appears to form the core circadian rhythm generating mechanism in mammals. Two basic helix-loop-helix (bHLH) PAS (PER-ARNT-SIM) transcription factors, CLOCK and BMAL1, form the positive elements of the system and drive transcription of three Period and two Cryptochrome genes. The protein products of these genes are components of a negative feedback complex that inhibits CLOCK and BMAL1 to close the circadian loop. In this review, we focus on three aspects of the circadian story in mammals: the genetics of the photic entrainment pathway; the molecular components of the circadian pacemaker in the hypothalamic suprachiasmatic nucleus; and the role of posttranslational regulation of circadian elements. A molecular description of the mammalian circadian system has revealed that circadian oscillations may be a fundamental property of many cells in the body and that a circadian hierarchy underlies the temporal organization of animals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 623-652 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract The segregation of metabolic functions within discrete organelles is a hallmark of eukaryotic cells. These compartments allow for the concentration of related metabolic functions, the separation of competing metabolic functions, and the formation of unique chemical microenvironments. However, such organization is not spontaneous and requires an array of genes that are dedicated to the assembly and maintenance of these structures. In this review we focus on the genetics of peroxisome biogenesis and on how defects in this process cause human disease.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Immunology 18 (2000), S. 1-17 
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The discovery that genes in the major histocompatibility complex (MHC) play an important role in the immune response depended on the chance interaction of several unrelated events. The first, and most important, was the decision by Michael Sela to synthesize a series of branched, multichain, synthetic polypeptides based on a backbone of poly-l-lysine. The prototype compound, (T,G)-A-L, was tipped with short random sequences of tyrosine and glutamic acid. This resulted in a restricted range of antigenic determinants composed of only two or three amino acids with a variable length-ideal for binding to the peptide binding groove of MHC class II molecules. The second was the decision by John Humphrey to immunize various strains of rabbits with this synthetic polypeptide. Two of these rabbit strains showed very large quantitative differences in antibody response to (T,G)-A-L. In transferring this system to inbred mouse strains, the third bit of good fortune was the availability at the National Institute of Medical Research, in Mill Hill (London), of the CBA (H2k) and C57 (H2b) strains. The H2b haplotype is the only one mediating a uniform high antibody response to (T,G)-A-L. The fourth critical ingredient was the availability of numerous congenic and H2 recombinant inbred strains of mice produced earlier by Snell, Stimpfling, Shreffler, and Klein. A search for congenic pairs of mice expressing the responder and nonresponder H2 haplotypes on the same background revealed that these strains responded as a function of their H2 haplotype, not of their inbred background. Extensive studies in a variety of inbred strains carrying recombinant H2 haplotypes, as well as a four-point linkage cross, mapped immune response to (T,G)A-L within the murine MHC, between the K and Ss loci. The demonstration that stimulation in the mixed lymphocyte reaction (MLR) mapped to the same region quickly led to attempts to produce antisera in congenic H2 recombinant strain combinations. These antisera identified I-region associated (Ia) antigens. Immunoprecipitation and blocking studies showed that the gene products controlling specific immune responses, the mixed lymphocyte reaction, and the structure of Ia antigens were one and the same-now designated as the I-A MHC class II molecules. These antisera and inbred strains enabled Unanue to demonstrate the peptide binding function of class II MHC molecules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Immunology 18 (2000), S. 165-184 
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Ligation of the T cell antigen receptor (TCR) stimulates protein tyrosine kinases (PTKs), which regulate intracellular calcium and control the activity of protein kinase C (PKC) isozymes. PTKs activated by antigen receptors and costimulatory molecules also couple to phosphatidylinositol-3 kinase (PI3K) and control the activity of Ras- and Rho-family GTPases. T cell signal transduction is triggered physiologically by antigen in the context of antigen presenting cells (APC). The formation of stable and prolonged contacts between T cells and APCs is not neccessary to initiate T cell signaling but is required for effective T cell proliferation and differentiation. The stabilization of the T cell/ APC conjugate is regulated by intracellular signals induced by antigen receptors and costimulators. These coordinate the regulation of the actin and microtubule cytoskeleton and organize a specialized signaling zone that allows sustained TCR signaling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Immunology 18 (2000), S. 245-273 
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The potential to harness the potency and specificity of the immune system underlies the growing interest in cancer immunotherapy. One such approach uses bone marrow-derived dendritic cells, phenotypically distinct and extremely potent antigen-presenting cells, to present tumor-associated antigens and thereby generate tumor-specific immunity. Support for this strategy comes from animal studies that have demonstrated that dendritic cells, when loaded ex vivo with tumor antigens and administered to tumor-bearing hosts, can elicit T cell-mediated tumor destruction. These observations have led to clinical trials designed to investigate the immunologic and clinical effects of antigen-loaded dendritic cells administered as a therapeutic vaccine to patients with cancer. In the design and conduct of such trials, important considerations include antigen selection, methods for introducing the antigen into MHC class I and II processing pathways, methods for isolating and activating dendritic cells, and route of administration. Although current dendritic cell-based vaccination methods are cumbersome, promising results from clinical trials in patients with malignant lymphoma, melanoma, and prostate cancer suggest that immunotherapeutic strategies that take advantage of the antigen presenting properties of dendritic cells may ultimately prove both efficacious and widely applicable to human tumors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Immunology 18 (2000), S. 347-366 
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Allergic diseases affect approximately one third of the general population. This class of disease, characterized by elevated serum IgE levels and hypersensitivity to normally innocuous antigen, can manifest in practically any mucosal tissue or as a systemic response. A few examples of serious allergic diseases include asthma, dermatitis, bee sting allergy, food allergy, conjunctivitis, and severe systemic anaphylaxis. Taken together, allergic diseases constitute one of the major problems of modern day medicine. A considerable portion of the healthcare budget is expended in the treatment of allergic disease, and morbidity rates of inner city asthmatics are rising steadily. Due to the enormity of the problem, there has been a worldwide effort to identify factors that contribute to the etiology of allergic diseases. Epidemiologic studies of multigeneration families and large numbers of twins clearly indicate a strong genetic component to atopic diseases. At least two independently segregating diseasesusceptibility genes are thought to come together with environmental factors to result in allergic inflammation in a particular tissue. On the basis of the strong genetic studies, multiple groups have attempted to identify disease-susceptibility genes via either a candidate gene approach or by genome-wide scans. Both of these approaches have implicated multiple regions in the human and mouse genomes, which are currently being evaluated as harboring putative atopy genes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The human thymus is a complex chimeric organ comprised of central (thymic epithelial space) and peripheral (perivascular space) components that functions well into adult life to produce naive T lymphocytes. Recent advances in identifying thymic emigrants and development of safe methods to study thymic function in vivo in adults have provided new opportunities to understand the role that the human thymus plays in immune reconstitution in aging, in bone marrow transplantation, and in HIV-1 infection. The emerging concept is that there are age-dependent contributions of thymic emigrants and proliferation of postthymic T cells to maintain the peripheral T cell pool and to contribute to T cell regeneration, with the thymus contributing more at younger ages and peripheral T cell expansion contributing more in older subjects. New studies have revealed a dynamic interplay between postnatal thymus output and peripheral T cell pool proliferation, which play important roles in determining the nature of immune reconstitution in congenital immunodeficiency diseases, in bone marrow transplantation, and in HIV-1 infection. In this paper, we review recent data on human postnatal thymus function that, taken together, support the notion that the human thymus is functional well into the sixth decade and plays a role throughout life to optimize human immune system function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Immunology 18 (2000), S. 709-737 
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Antibodies can completely suppress or enhance the antibody response to their specific antigen by several hundredfold. Immunoglobulin M (IgM) enhances antibody responses via the complement system, and complement activation by IgM probably starts the chain of events leading to antibody responses to suboptimal antigen doses. IgG can enhance primary antibody responses in the absence of the complement system and seems to be dependent on Fc receptors for IgG (FcgammaRs). IgE enhances antibody responses via the low-affinity receptor for IgE (FcepsilonRII/CD23). The precise effector mechanisms that cause enhancement are not known, but direct B-cell signaling, antigen presentation, and increased follicular localization are all possibilities. IgG, IgE, and IgM may also suppress antibody responses when used in certain immunization regimes, and it seems reasonable that an important mechanism behind suppression is the masking of antigenic epitopes by antibodies. In addition, FcgammaRIIB, which contains a cytoplasmic inhibitory motif, acts as a negative regulator of antibody responses. This receptor, however, may prevent the antibody responses from exceeding a certain level rather than causing complete suppression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Immunology 18 (2000), S. 767-811 
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Dendritic cells (DCs) are antigen-presenting cells with a unique ability to induce primary immune responses. DCs capture and transfer information from the outside world to the cells of the adaptive immune system. DCs are not only critical for the induction of primary immune responses, but may also be important for the induction of immunological tolerance, as well as for the regulation of the type of T cell-mediated immune response. Although our understanding of DC biology is still in its infancy, we are now beginning to use DC-based immunotherapy protocols to elicit immunity against cancer and infectious diseases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Immunology 18 (2000), S. 927-974 
    ISSN: 0732-0582
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The development and widespread use of vaccines against infectious agents have been a great triumph of medical science. One reason for the success of currently available vaccines is that they are capable of inducing long-lived antibody responses, which are the principal agents of immune protection against most viruses and bacteria. Despite these successes, vaccination against intracellular organisms that require cell-mediated immunity, such as the agents of tuberculosis, malaria, leishmaniasis, and human immunodeficiency virus infection, are either not available or not uniformly effective. Owing to the substantial morbidity and mortality associated with these diseases worldwide, an understanding of the mechanisms involved in generating long-lived cellular immune responses has tremendous practical importance. For these reasons, a new form of vaccination, using DNA that contains the gene for the antigen of interest, is under intensive investigation, because it can engender both humoral and cellular immune responses. This review focuses on the mechanisms by which DNA vaccines elicit immune responses. In addition, a list of potential applications in a variety of preclinical models is provided.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 111-133 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Plasma membrane Na+-Ca2+ exchange is an essential component of Ca2+ signaling pathways in several tissues. Activity is especially high in the heart where the exchanger is an important regulator of contractility. An expanding exchanger superfamily includes three mammalian Na+-Ca2+ exchanger genes and a number of alternative splicing products. New information indicates that the exchanger protein has nine transmembrane segments. The exchanger, which transports Na+ and Ca2+, is also regulated by these substrates. Some molecular information is available on regulation by Na+ and Ca2+ and by PIP2 and phosphorylation. Altered expression of the exchanger in pathophysiological states may contribute to various cardiac phenotypes. Use of transgenic approaches is beginning to improve our knowledge of exchanger function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 79-109 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Ischemic preconditioning is a phenomenon whereby exposure of the myocardium to a brief episode of ischemia and reperfusion markedly reduces tissue necrosis induced by a subsequent prolonged ischemia. It is hoped that elucidation of the mechanism for preconditioning will yield therapeutic strategies capable of reducing myocardial infarction. In the rabbit, the brief period of preconditioning ischemia and reperfusion releases adenosine, bradykinin, opioids, and oxygen radicals. The combined effect of the release of these substances on G proteins and the cell's phospholipases induces the translocation and activation of the epsilon isozyme of protein kinase C. Protein kinase C appears to be the first element of a complex kinase cascade that is activated during the prolonged ischemia in preconditioned hearts. Current evidence indicates that this cascade contains at least one tyrosine kinase and ultimately leads to the activation of p38 mitogen-activated protein kinase. p38 Mitogen-activated protein kinase phosphorylates mitogen-activated protein kinase-activated protein kinase 2. Mitogen-activated protein kinase-activated protein kinase 2 phosphorylates HSP27, a 27-kDa heat shock protein that controls actin filament polymerization, and, therefore, affects the integrity of the cytoskeleton. Finally, mitochondrial adenosine 5'-triphosphate-sensitive K+ channels open, and the latter may be the final mediator of protection for ischemic preconditioning. The protective pathway has many builtin redundancies, perhaps creating a safety factor. These redundancies may also explain some of the species-related differences seen in ischemic preconditioning in which one redundant pathway may predominate over another.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 157-178 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract In order to fly, insects require flight muscles that constitute at least 12 to 16% of their total mass, and flight performance increases as this percentage increases. However, flight muscles are energetically and materially expensive to build and maintain, and investment in flight muscles constrains other aspects of function, particularly female fecundity. This review examines ways in which insects vary the size of their flight muscles, and how variation in the relative size and composition of flight muscles affects flight performance. Sources of variability in flight muscle size and composition include genetic differences within and between species, individual phenotypic responses to environmental stimuli, and maturational changes that occur before and during the adult stage. Insects have evolved a wide variety of ways to adjust flight muscle size and contractile performance in order to meet demands imposed by variation in life history and ecology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 207-235 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract The cost of living can be measured as an animal's metabolic rate. Basal metabolic rate (BMR) is factorially related to other metabolic rates. Analysis of BMR variation suggests that metabolism is a series of linked processes varying in unison. Membrane processes, such as maintenance of ion gradients, are important costs and components of BMR. Membrane bilayers in metabolically active systems are more polyunsaturated and less monounsaturated than metabolically less-active systems. Such polyunsaturated membranes have been proposed to result in an increased molecular activity of membrane proteins, and in this manner the amount of membrane and its composition can act as a pacemaker for metabolism. The potential importance of membrane acyl composition in metabolic depression, hormonal control of metabolism, the evolution of endothermy, as well as its implications for lifespan and human health, are briefly discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 135-155 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Recent geophysical analyses suggest the presence of a late Paleozoic oxygen pulse beginning in the late Devonian and continuing through to the late Carboniferous. During this period, plant terrestrialization and global carbon deposition resulted in a dramatic increase in atmospheric oxygen levels, ultimately yielding concentrations potentially as high as 35% relative to the contemporary value of 21%. Such hyperoxia of the late Paleozoic atmosphere may have physiologically facilitated the initial evolution of insect flight metabolism. Widespread gigantism in late Paleozoic insects and other arthropods is also consistent with enhanced oxygen flux within diffusion-limited tracheal systems. Because total atmospheric pressure increases with increased oxygen partial pressure, concurrently hyperdense conditions would have augmented aerodynamic force production in early forms of flying insects. By the late Permian, evolution of decompositional microbial and fungal communities, together with disequilibrium in rates of carbon deposition, gradually reduced oxygen concentrations to values possibly as low as 15%. The disappearance of giant insects by the end of the Permian is consistent with extinction of these taxa for reasons of asphyxiation on a geological time scale. As with winged insects, the multiple historical origins of vertebrate flight in the late Jurassic and Cretaceous correlate temporally with periods of elevated atmospheric oxygen. Much discussion of flight performance in Archaeopteryx assumes a contemporary atmospheric composition. Elevated oxygen levels in the mid- to late Mesozoic would, however, have facilitated aerodynamic force production and enhanced muscle power output for ancestral birds, as well as for precursors to bats and pterosaurs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 179-205 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract We use a comparative approach to examine some of the physiological traits that make flight possible. Comparisons of related fliers and runners suggest that fliers generally have higher aerobic metabolic capacities than runners but that the difference is highly dependent on the taxa studied. The high metabolic rates of fliers relative to runners, especially in insects, are correlated with high locomotory muscle cycle frequencies and low efficiences of conversion of metabolic power to mechanical power. We examine some factors that produce variation in flight respiration and energetics. Air temperature strongly affects the flight metabolic rate of some insects and birds. Flight speed interacts with flier mass, so that small fliers tend to exhibit a Jshaped power curve and larger fliers a U-shaped power curve. As body size increases, mass-specific aerobic flight metabolism decreases in most studies, but mass-specific power output is constant or increases, leading to an increase in efficiency with size. Intraspecific studies have revealed specific genetically based effects on flight metabolism and power output and multiple ecological correlates of flight capabilities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 237-260 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract From the ability to successfully manipulate the mouse genome has come important transgenic and gene-targeted knockout models that impact many areas of biomedical research. Genetically engineered mouse models geared toward the study of cardiovascular regulation have recently been described and provide powerful tools to study normal and compromised cardiac physiology. The genetic manipulation of the adrenergic receptor (AR) signaling system in the heart, including its regulation by desensitizing kinases, has shed light on the role of this signaling pathway in the regulation of cardiac contractility. One major finding, supported by several mouse models, is that in vivo contractility can be enhanced via alteration of myocardial AR signaling. Thus genetic manipulation of this critical receptor system in the heart represents a novel therapeutic approach for improving function of the failing heart.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 289-320 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Cardiac muscle cells exhibit two related but distinct modes of growth that are highly regulated during development and disease. Cardiac myocytes rapidly proliferate during fetal life but exit the cell cycle irreversibly soon after birth, following which the predominant form of growth shifts from hyperplastic to hypertrophic. Much research has focused on identifying the candidate mitogens, hypertrophic agonists, and signaling pathways that mediate these processes in isolated cells. What drives the proliferative growth of embryonic myocardium in vivo and the mechanisms by which adult cardiac myocytes hypertrophy in vivo are less clear. Efforts to answer these questions have benefited from rapid progress made in techniques to manipulate the murine genome. Complementary technologies for gain- and loss-of-function now permit a mutational analysis of these growth control pathways in vivo in the intact heart. These studies have confirmed the importance of suspected pathways, have implicated unexpected pathways as well, and have led to new paradigms for the control of cardiac growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 261-287 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract An underpinning of basic physiology and clinical medicine is that specific protein complements underlie cell and organ function. In the heart, contractile protein changes correlating with functional alterations occur during both normal development and the development of numerous pathologies. What has been lacking for the majority of these observations is an extension of correlation to causative proof. More specifically, different congenital heart diseases are characterized by shifts in the motor proteins, and the genetic etiologies of a number of different dilated and hypertrophic cardiomyopathies have been established as residing at loci encoding the contractile proteins. To establish cause, or to understand development of the pathophysiology over an animal's life span, it is necessary to direct the heart to synthesize, in the absence of other pleiotropic changes, the candidate protein. Subsequently one can determine whether or how the protein's presence causes the effects either directly or indirectly. By affecting the heart's protein complement in a defined manner, the potential to establish the function of different proteins and protein isoforms exists. Transgenesis provides a means of stably modifying the mammalian genome. By directing expression of engineered proteins to the heart, cardiac contractile protein profiles can be effectively remodeled and the resultant animal used to study the consequences of a single, genetic manipulation at the molecular, biochemical, cytological, and physiological levels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 321-351 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Regulation of intracellular Ca2+ provides a means by which the strength and duration of cardiac muscle contraction is altered on a beat-to-beat basis. Ca2+ homeostasis is maintained by proteins of the outer cell membrane or sarcolemma and the sarcoplasmic reticulum, which is the major intracellular Ca2+ storage organelle. Recently, genetic engineering techniques designed to induce specific mutations, manipulate expression levels, or change a particular isoform of various membrane Ca2+-handling proteins have provided novel approaches in elucidating the physiological role of these gene products in the mammalian heart. This review summarizes findings in murine genetic models with alterations in the expression levels of the sarcolemmal Ca2+-ATPase and Na+/Ca2+ exchanger, which move Ca2+ across the cell membrane, and the sarcoplasmic reticulum proteins, which are involved in Ca2+ sequestration (Ca2+-ATPase and its regulator, phospholamban), Ca2+ storage (calsequestrin), and Ca2+ release (ryanodine receptor, FK506-binding protein and junctin) during excitation-contraction coupling. Advances in genetic technology, coupled with the development of miniaturized technology to assess cardiac function at multiple levels in the mouse, have added a wealth of new information to our understanding of the functional role of each of these membrane Ca2+-handling proteins in cardiac physiology and pathophysiology. Furthermore, these genetic models have provided valuable insights into the compensatory cross-talk mechanisms between the major membrane Ca2+-handling proteins in the mammalian heart.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 353-375 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Embryonic diapause, or delayed implantation as it is sometimes known, is said to occur when the conceptus enters a state of suspended animation at the blastocyst stage of development. Blastocysts may either cease cell division so that their size and cell numbers remain constant, or undergo a period of very slow growth with minimal cell division and expansion. Diapause has independently evolved on many occasions. There are almost 100 mammals in seven different mammalian orders that undergo diapause. In some groups, such as rodents, kangaroos, and mustelids, it is widespread, whereas others such as the Artiodactyla have only a single representative (the roe deer). In each family the characteristics of diapause differ, and the specific controls vary widely from lactational to seasonal, from estrogen to progesterone, or from photoperiod to nutritional. Prolactin is a key hormone controlling the endocrine milieu of diapause in many species, but paradoxically it may act either to stimulate or inhibit growth and activity of the corpus luteum. Whatever the speciesspecific mechanisms, the ecological result of diapause is one of synchronization: It effectively lengthens the active gestation period, which allows mating to occur and young to be born at times of the year optimal for that species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 377-411 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract The multiple endocrine neoplasia syndromes form a distinct group of genetic tumor syndromes. They include multiple endocrine neoplasia types 1 and 2, von Hippel Lindau syndrome, neurofibromatosis, and Carney complex. Research over the past decade has identified a molecular basis for each of these syndromes. This knowledge has revolutionized not only the clinical management but also has illuminated the field of human cancer research by the identification of new and important genes critical for regulation of cell growth, differentiation, and death. This review focuses on the structure, physiologic function, and molecular abnormalities of the genes involved in these syndromes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 413-437 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract The discovery of the adipose-derived hormone leptin has generated enormous interest in the interaction between peripheral signals and brain targets involved in the regulation of feeding and energy balance. Plasma leptin levels correlate with fat stores and respond to changes in energy balance. It was initially proposed that leptin serves a primary role as an anti-obesity hormone, but this role is commonly thwarted by leptin resistance. Leptin also serves as a mediator of the adaptation to fasting, and this role may be the primary function for which the molecule evolved. There is increasing evidence that leptin has systemic effects apart from those related to energy homeostasis, including regulation of neuroendocrine and immune function and a role in development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 515-534 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract The Na-K-Cl cotransporters are a class of ion transport proteins that transport Na, K, and Cl ions into and out of cells in an electrically neutral manner, in most cases with a stoichiometry of 1Na:1K:2Cl. To date, two Na-K-Cl cotransporter isoforms have been identified: NKCC1, which is present in a wide variety of secretory epithelia and non-epithelial cells; and NKCC2, which is present exclusively in the kidney, in the epithelial cells of the thick ascending limb of Henle's loop and of the macula densa. Both NKCC isoforms represent part of a diverse family of cationchloride cotransport proteins that share a common predicted membrane topology; this family also includes Na-Cl cotransporters and multiple K-Cl cotransporter isoforms. In secretory epithelia, the regulation of NKCC1, which is typically present on the basolateral membrane, is tightly coordinated with that of other transporters, including apical Cl channels, to maintain cell volume and integrity during active salt and fluid secretion. Changes in intracellular [Cl] ([Cl]i) appear to be involved in this regulation of NKCC1, which is directly phosphorylated by an unknown protein kinase in response to various secretagogues as well as reductions in [Cl]i and cell volume. This review focuses on structure-function relationships within NKCC1 and on recent developments pertaining to NKCC1 regulation at cellular and molecular levels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 467-491 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract In contrast to the airways, the defects in colonic function in cystic fibrosis (CF) patients are closely related to the defect in CFTR. The gastrointestinal phenotype of CF transgenic mice closely resembles the phenotype in CF patients, which clearly indicates the crucial role of CFTR in colonic Cl- secretion and the absence of an effective compensation. In the colon, stimulation of CFTR Cl- channels involves cAMP- or cGMPdependent phosphorylation. Exocytosis is not involved. Activation of CFTR leads to coactivation of basolateral KVLQT1-type K+ channels and inhibition of luminal Na+ channels (ENaC). In contrast to cultured cells, Ca2+ does not activate luminal Cl- channels in intact enterocytes. It activates basolateral SK4-type K+ channels and luminal K+ channels, which provide additional driving force for Cl- exit. The magnitude of Cl- secretion, however, completely depends on the presence of at least a residual CFTR function in the luminal membrane. These findings have been clearly demonstrated by Ussing chamber experiments in colon epithelium biopsies of CF and normal individuals: Colonic Cl- secretion in CF patients is variable and reflects the genotype; a complete defect of CFTR is paralleled by the absence of Cl- secretion and unmasks Ca2+-regulated K+ channels in the luminal membrane; overabsorption of Na+ in CF reflects the absence of ENaC inhibition by CFTR; and the functional status of CF colon can be mimicked by the complete suppression of cAMP stimulation in enterocytes of healthy individuals.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 493-513 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Molecular and functional evidence indicates that a variety of Ca2+dependent chloride (Cl(Ca)) channels are involved in fluid secretion from secretory epithelial cells in different tissues and species. Most Cl(Ca) channels so far characterized have an I- permeability greater than Cl-, and most are sensitive to 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). Whole-cell Cl(Ca) currents show outward rectification. Single-channel current voltage relationships are linear with conductances ranging from 2 to 30 pS. Some Cl(Ca) channels are blocked by Ca2+-calmodulin-dependent protein kinase (CAMKII) inhibitors. Others, such as the Cl(Ca) channels of parotid and submandibular acinar cells, appear to be directly regulated by Ca2+. In native cells, the Cl(Ca) channels are located on the apical plasma membrane and activated by localized mechanisms of Ca2+ release. This positioning allows the Cl(Ca) channel to respond specifically to localized Ca2+ signals that do not invade other regions of the cell. The Cl(Ca) follows the rising phase of the Ca2+ signal, but in the falling phase hysteresis occurs where the Cl(Ca) current decays more rapidly than the underlying Ca2+. The future elucidation of the identity and mechanisms of regulation of Cl(Ca) channels will be critical to our understanding of stimulus-secretion coupling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 439-466 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Thyroid hormone is essential for normal development, differentiation, and metabolic balance. Thyroid hormone action is mediated by multiple thyroid hormone receptor isoforms derived from two distinct genes. The thyroid hormone receptors belong to a nuclear receptor superfamily that also includes receptors for other small lipophilic hormones. Thyroid hormone receptors function by binding to specific thyroid hormone-responsive sequences in promoters of target genes and by regulating transcription. Thyroid hormone receptors often form heterodimers with retinoid X receptors. Heterodimerization is regulated through distinct mechanisms that together determine the specificity and flexibility of the sequence recognition. Amino-terminal regions appear to modulate thyroid hormone receptor function in an isoform-dependent manner. Unliganded thyroid hormone receptor represses transcription through recruitment of a corepressor complex, which also includes Sin3A and histone deacetylase. Ligand binding alters the conformation of the thyroid hormone receptor in such a way as to release the corepressor complex and recruit a coactivator complex that includes multiple histone acetyltransferases, including a steroid receptor family coactivator, p300/CREB-binding protein-associated factor (PCAF), and CREB binding protein (CBP). The existence of histone-modifying activities in the transcriptional regulatory complexes indicates an important role of chromatin structure. Stoichiometric, structural, and sequence-specific rules for coregulator interaction are beginning to be understood, as are aspects of the tissue specificity of hormone action. Moreover, knockout studies suggest that the products of two thyroid hormone receptor genes mediate distinct functions in vivo. The increased understanding of the structure and function of thyroid hormone receptors and their interacting proteins has markedly clarified the molecular mechanisms of thyroid hormone action.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 573-594 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Amiloride-sensitive Na+ channels constitute a new class of proteins known as the ENaC-Deg family of ion channels. All members in this family share a common protein structure but differ in their ion selectivity, their affinity for the blocker amiloride, and in their gating mechanisms. These channels are expressed in many tissues of invertebrate and vertebrate organisms where they serve diverse functions varying from Na+ absorption across epithelia to being the receptors for neurotransmitters in the nervous system. Here, we review progress made during the last years in the characterization, regulation, and cloning of new amiloride-sensitive Na+ channels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 535-572 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Chloride secretion is the major determinant of mucosal hydration thoughout the gastrointestinal tract, and chloride transport is also pivotal in the regulation of fluid secretion by organs that drain into the intestine. Moreover, there are pathological consequences if chloride secretion is either reduced or increased such as in cystic fibrosis and secretory diarrhea, respectively. With the molecular cloning of many of the proteins and regulatory factors that make up the chloride secretory mechanism, there have been significant advances in our understanding of this process at the cellular level. Similarly, emerging data have clarified the intercellular relationships that govern the extent of chloride secretion. The goal of our article is to review this area of investigation, with an emphasis on recent developments and their implications for the physiology and pathophysiology of chloride transport.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 595-620 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Epithelial tissues such as kidney, lung, and breast arise through branching morphogenesis of a pre-existing epithelial structure. They share common morphological stages and a need for regulation of a similar set of developmental decisions-where to start; when, where, and in which direction to branch; and how many times to branch-decisions requiring regulation of cell proliferation, apoptosis, invasiveness, and cell motility. It is likely that similar molecular mechanisms exist for the epithelial branching program. Here we focus on the development of the collecting system of the kidney, where, from recent data using embryonic organ culture, cell culture models of branching morphogenesis, and targeted gene deletion experiments, the outlines of a working model for branching morphogenesis begin to emerge. Key branching morphogenetic molecules in this model include growth factors, transcription factors, distal effector molecules (such as extracellular matrix proteins, integrins, proteinases and their inhibitors), and genes regulating apoptosis and cell proliferation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 673-695 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Guanylin, uroguanylin, and lymphoguanylin are small peptides that activate cell-surface guanylate cyclase receptors and influence cellular function via intracellular cGMP. Guanylins activate two receptors, GC-C and OK-GC, which are expressed in intestine and/or kidney. Elevation of cGMP in the intestine elicits an increase in electrolyte and water secretion. Activation of renal receptors by uroguanylin stimulates urine flow and excretion of sodium, chloride, and potassium. Intracellular cGMP pathways for guanylins include activation of PKG-II and/or indirect stimulation of PKA-II. The result is activation of CFTR and/or ClC-2 channel proteins to enhance the electrogenic secretion of chloride and bicarbonate. Similar cellular mechanisms may be involved in the renal responses to guanylin peptides. Uroguanylin serves as an intestinal natriuretic hormone in postprandial states, thus linking the digestive and renal organ systems in a novel endocrine axis. Therefore, uroguanylin participates in the complex physiological processes underlying the saliuresis that is elicited by a salty meal.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 649-671 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Regulated assembly of a highly specialized interconnecting network of vascular endothelial and supportive cells is fundamental to embryonic development and organogenesis, as well as to postnatal tissue repair in metazoans. This review advances an "endotheliocentric" model that defines tasks required of endothelial cells and describes molecular controls that regulate steps in activation, assembly, and maturation of new vessels. In addition to the classical assembly mechanisms-angiogenesis and vasculogenesis-endothelial cells are also recruited into vascular structures from the circulatory system in adult animals and from resident mesenchymally derived progenitors during organogenesis of kidney and other organs. Paracrine signaling cascades regulated by hypoxia initiate a sequentially coordinated series of endothelial responses, including matrix degradation, migration, proliferation, and morphogenetic remodeling. Surface receptors on committed endothelial lineage progenitors transduce cues from extracellular-matrix-associated proteins and cell-cell contact to direct migration, matrix attachment, proliferation, targeting and cell-cell assembly, and vessel maturation. Through their capacity to spatially segregate and temporally integrate a diverse range of extracellular signals, endothelial cells determine their migratory paths, cellular partners, and life-or-death responses to local cues.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 697-722 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Developments in the study of language and cognition give increasing credibility to the view that human knowledge of natural language results from-and is made possible by-a biologically determined capacity specific both to this domain and to our species. The functional properties of this capacity develop along a regular maturational path, such that it seems more appropriate to speak of knowledge of our own language as growing rather than as being learned. That our learning of language results from a specific innate capacity rather than by general mechanisms of induction is supported by the extent to which we can be shown to know things that we could not have learned from observation of any plausible available teaching. The domainspecificity of the language faculty is supported by the many dissociations that can be observed between control of language structure and other cognitive functions. Finally, the species-specificity of the human language faculty is supported by the observation that (absent severe pathology) every human child exposed in even limited ways to the triggering experience of linguistic data develops a full, rich capacity that is essentially homogeneous with that of the surrounding community. Efforts to teach human language to other species, however, have uniformly failed. These considerations make it plausible that human language arises in biologically based ways that are quite comparable to those directing other aspects of the structure of the organism. The language organ, in this sense, can be interpreted in a functional sense, and not as implying an anatomical location comparable to that of, say, the kidney.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 723-753 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract Motor systems can adapt rapidly to changes in external conditions and to switching of internal goals. They can also adapt slowly in response to training, alterations in the mechanics of the system, and any changes in the system resulting from injury. This article reviews the mechanisms underlying short- and long-term adaptation in rhythmic motor systems. The neuronal networks underlying the generation of rhythmic motor patterns (central pattern generators; CPGs) are extremely flexible. Neuromodulators, central commands, and afferent signals all influence the pattern produced by a CPG by altering the cellular and synaptic properties of individual neurons and the coupling between different populations of neurons. This flexibility allows the generation of a variety of motor patterns appropriate for the mechanical requirements of different forms of a behavior. The matching of motor output to mechanical requirements depends on the capacity of pattern-generating networks to adapt to slow changes in body mechanics and persistent errors in performance. Afferent feedback from body and limb proprioceptors likely plays an important role in driving these long-term adaptive processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Physiology 62 (2000), S. 755-778 
    ISSN: 0066-4278
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Medicine , Biology
    Notes: Abstract In recent years, it has become apparent that ligand-gated ion channels (ionotropic receptors) in the neuronal plasma membrane interact via their cytoplasmic domains with a multitude of intracellular proteins. Different classes of ligand-gated channels associate with distinct sets of intracellular proteins, often through specialized scaffold proteins containing PDZ domains. These specific interactions link the receptor channel to the cortical cytoskeleton and to appropriate signal transduction pathways in the cell. Thus ionotropic receptors are components of extensive protein complexes that are likely involved in the subcellular targeting, cytoskeletal anchoring, and localized clustering of the receptors at specific sites on the neuronal surface. In addition to structural functions, receptor-associated proteins can play important roles as activity modulators or downstream effectors of ligand-gated channels.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...