ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • EARTH RESOURCES AND REMOTE SENSING
  • Man/System Technology and Life Support
  • Organic Chemistry
  • Surface physics, nanoscale physics, low-dimensional systems
  • 2010-2014
  • 2000-2004  (97)
  • 1980-1984
  • 1925-1929
  • 2000  (97)
Collection
Keywords
Years
  • 2010-2014
  • 2000-2004  (97)
  • 1980-1984
  • 1925-1929
Year
  • 1
    Publication Date: 2011-08-24
    Description: BACKGROUND: Nonuniform heating and cooling of the body, a possibility during extended duration extravehicular activities (EVA), was studied by means of a specially designed water circulating garment that independently heated or cooled the right and left sides of the body. The purpose was to assess whether there was a generalized reaction on the finger in extreme contradictory temperatures on the body surface, as a potential heat status controller. METHOD: Eight subjects, six men and two women, were studied while wearing a sagittally divided experimental garment with hands exposed in the following conditions: Stage 1 baseline--total body garment inlet water temperature at 33 degrees C; Stage 2--left side inlet water temperature heated to 45 degrees C; right side cooled to 8 degrees C; Stage 3--left side inlet water temperature cooled to 8 degrees C, right side heated to 45 degrees C. RESULTS: Temperatures on each side of the body surface as well as ear canal temperature (Tec) showed statistically significant Stage x Side interactions, demonstrating responsiveness to the thermal manipulations. Right and left finger temperatures (Tfing) were not significantly different across stages; their dynamic across time was similar. Rectal temperature (Tre) was not reactive to prevailing cold on the body surface, and therefore not informative. Subjective perception of heat and cold on the left and right sides of the body was consistent with actual temperature manipulations. CONCLUSIONS: Tec and Tre estimates of internal temperature do not provide accurate data for evaluating overall thermal status in nonuniform thermal conditions on the body surface. The use of Tfing has significant potential in providing more accurate information on thermal status and as a feedback method for more precise thermal regulation of the astronaut within the EVA space suit.
    Keywords: Man/System Technology and Life Support
    Type: Aviation, space, and environmental medicine (ISSN 0095-6562); Volume 71; 6; 579-85
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The prospect of noninvasive brain-actuated control of computerized screen displays or locomotive devices is of interest to many and of crucial importance to a few 'locked-in' subjects who experience near total motor paralysis while retaining sensory and mental faculties. Currently several groups are attempting to achieve brain-actuated control of screen displays using operant conditioning of particular features of the spontaneous scalp electroencephalogram (EEG) including central mu-rhythms (9-12 Hz). A new EEG decomposition technique, independent component analysis (ICA), appears to be a foundation for new research in the design of systems for detection and operant control of endogenous EEG rhythms to achieve flexible EEG-based communication. ICA separates multichannel EEG data into spatially static and temporally independent components including separate components accounting for posterior alpha rhythms and central mu activities. We demonstrate using data from a visual selective attention task that ICA-derived mu-components can show much stronger spectral reactivity to motor events than activity measures for single scalp channels. ICA decompositions of spontaneous EEG would thus appear to form a natural basis for operant conditioning to achieve efficient and multidimensional brain-actuated control in motor-limited and locked-in subjects.
    Keywords: Man/System Technology and Life Support
    Type: IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society (ISSN 1063-6528); Volume 8; 2; 208-11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Presented are results of testing the method of adaptive biocontrol during preflight training of cosmonauts. Within the MIR-25 crew, a high level of controllability of the autonomous reactions was characteristic of Flight Commanders MIR-23 and MIR-25 and flight Engineer MIR-23, while Flight Engineer MIR-25 displayed a weak intricate dependence of these reactions on the depth of relaxation or strain.
    Keywords: Man/System Technology and Life Support
    Type: Aviakosmicheskaia i ekologicheskaia meditsina = Aerospace and environmental medicine (ISSN 0233-528X); Volume 34; 3; 66-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: In high-performance aircraft, the need for total environmental awareness coupled with high-g loading (often with abrupt onset) creates a predilection for cervical spine injury while the pilot is performing routine movements within the cockpit. In this study, the prevalence and severity of cervical spine injury are assessed via a modified cross-sectional survey of pilots of multiple aircraft types (T-38 and F-14, F-16, and F/A-18 fighters). Ninety-five surveys were administered, with 58 full responses. Fifty percent of all pilots reported in-flight or immediate post-flight spine-based pain, and 90% of fighter pilots reported at least one event, most commonly (〉 90%) occurring during high-g (〉 5 g) turns of the aircraft with the head deviated from the anatomical neutral position. Pre-flight stretching was not associated with a statistically significant reduction in neck pain episodes in this evaluation, whereas a regular weight training program in the F/A-18 group approached a significant reduction (mean = 2.492; p 〈 0.064). Different cockpit ergonomics may vary the predisposition to cervical injury from airframe to airframe. Several strategies for prevention are possible from both an aircraft design and a preventive medicine standpoint. Countermeasure strategies against spine injury in pilots of high-performance aircraft require additional research, so that future aircraft will not be limited by the human in control.
    Keywords: Man/System Technology and Life Support
    Type: Military medicine (ISSN 0026-4075); Volume 165; 1; 6-12
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: Advances in space research : the official journal of the Committee on Space Research (COSPAR); Volume 26; 2; 243-377
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: Due to the discrepancy in metabolic sodium (Na) requirements between plants and animals, cycling of Na between humans and plants is limited and critical to the proper functioning of bio-regenerative life support systems, being considered for long-term human habitats in space (e.g., Martian bases). This study was conducted to determine the effects of limited potassium (K) on growth, Na uptake, photosynthesis, ionic partitioning, and water relations of red-beet (Beta vulgaris L. ssp. vulgaris) under moderate Na-saline conditions. Two cultivars, Klein Bol, and Ruby Queen were grown for 42 days in a growth chamber using a re-circulating nutrient film technique where the supplied K levels were 5.0, 1.25, 0.25, and 0.10 mM in a modified half-strength Hoagland solution salinized with 50 mM NaCl. Reducing K levels from 5.0 to 0.10 mM quadrupled the Na uptake, and lamina Na levels reached -20 g kg-1 dwt. Lamina K levels decreased from -60 g kg-1 dwt at 5.0 mM K to -4.0 g kg-1 dwt at 0.10 mM K. Ruby Queen and Klein Bol responded differently to these changes in Na and K status. Klein Bol showed a linear decline in dry matter production with a decrease in available K, whereas for cv. Ruby Queen, growth was stimulated at 1.25 mM K and relatively insensitive to a further decreases of K down to 0.10 mM. Leaf glycinebetaine levels showed no significant response to the changing K treatments. Leaf relative water content and osmotic potential were significantly higher for both cultivars at low-K treatments. Leaf chlorophyll levels were significantly decreased at low-K treatments, but leaf photosynthetic rates showed no significant difference. No substantial changes were observed in the total cation concentration of plant tissues despite major shifts in the relative Na and K uptake at various K levels. Sodium accounted for 90% of the total cation uptake at the low K levels, and thus Na was likely replacing K in osmotic functions without negatively affecting the plant water status, or growth. Our results also suggest that cv. Ruby Queen can tolerate a much higher Na tissue concentration than cv. Klein Bol before there is any growth reduction. Grant numbers: 12180.
    Keywords: Man/System Technology and Life Support
    Type: Journal of plant nutrition (ISSN 0190-4167); Volume 23; 10; 1449-70
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Man/System Technology and Life Support
    Type: Studies in health technology and informatics (ISSN 0926-9630); Volume 70; 286-91
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: This review of astronaut extravehicular activity (EVA) and the details of American and Soviet/Russian spacesuit design focuses on design recommendations to enhance astronaut safety and effectiveness. Innovative spacesuit design is essential, given the challenges of future exploration-class missions in which astronauts will be called upon to perform increasingly complex and physically demanding tasks in the extreme environments of microgravity and partial gravity.
    Keywords: Man/System Technology and Life Support
    Type: Gravitational and space biology bulletin : publication of the American Society for Gravitational and Space Biology (ISSN 1089-988X); Volume 13; 2; 35-47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: Hydroponic culture has traditionally been used for controlled environment life support systems (CELSS) because the optimal environment for roots supports high growth rates. Recent developments in zeoponic substrate and microporous tube irrigation (ZPT) also offer high control of the root environment. This study compared the effect of differences in water and nutrient status of ZPT or hydroponic culture on growth and yield of wheat (Triticum aestivum L. cv. USU-Apogee). In a side-by-side test in a controlled environment, wheat was grown in ZPT and recirculating hydroponics to maturity. Water use by plants grown in both culture systems peaked at 15 to 20 L m-2 d-1 up to Day 40, after which it declined more rapidly for plants grown in ZPT culture due to earlier senescence of leaves. No consistent differences in water status were noted between plants grown in the two culture systems. Although yield was similar, harvest index was 28% lower for plants grown in ZPT than in hydroponic culture. Sterile green tillers made up 12 and 0% of the biomass of plants grown in ZPT and hydroponic culture, respectively. Differences in biomass partitioning were attributed primarily to NH4-N nutrition of plants grown in ZPT compared with NO3-N in hydroponic nutrient solution. It is probable that NH4-N-induced Ca deficiency produced excess tillering and lower harvest index for plants grown in ZPT culture. These results suggest that further refinements in zeoponic substrate would make ZPT culture a viable alternative for achieving high productivity in a CELSS.
    Keywords: Man/System Technology and Life Support
    Type: Agronomy journal (ISSN 0002-1962); Volume 92; 2; 353-60
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: Invasion of plant-based life support systems by plant pathogens could cause plant disease and disruption of life support capability. Root rot caused by the fungus, Pythium, was observed during tests of prototype plant growth systems containing wheat at the Kennedy Space Center (KSC). We conducted experiments to determine if the presence of complex microbial communities in the plant root zone (rhizosphere) resisted invasion by the Pythium species isolated from the wheat root. Rhizosphere inocula of different complexity (as assayed by community-level physiological profile: CLPP) were developed using a dilution/extinction approach, followed by growth in hydroponic rhizosphere. Pythium growth on wheat roots and concomitant decreases in plant growth were inversely related to the complexity of the inocula during 20-day experiments in static hydroponic systems. Pythium was found on the seeds of several different wheat cultivars used in controlled environmental studies, but it is unclear if the seed-borne fungal strain(s) were identical to the pathogenic strain recovered from the KSC studies. Attempts to control pathogens and their effects in hydroponic life support systems should include early inoculation with complex microbial communities, which is consistent with ecological theory.
    Keywords: Man/System Technology and Life Support
    Type: Life support & biosphere science : international journal of earth space (ISSN 1069-9422); Volume 7; 2; 209-18
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-23
    Description: Adequate nutritional status is critical for maintenance of crew health during extended- duration space flight and postflight rehabilitation. Nutrition issues relate to intake of required nutrients, physiological adaptation to weightlessness, psychological adaptation to extreme environments, and countermeasures to ameliorate the negative effects of space flight. Thus, defining the nutrient requirements for space flight and ensuring provision and intake of those nutrients are critical issues for crew health and mission success. Specialized nutritional requirements have only been considered for what are referred to here as extended- duration flights, i.e., those greater than 30 days in length. While adequate nutrition is important on the 1- to 3-week Shuttle flights, intakes of specific nutrients above or below space specific requirements for this period will not produce cause for concern. Thus, Shuttle flights have always used the recognized nutritional requirements for adult men and women. In this chapter, long-duration flights will be further differentiated into orbital missions (e.g., International Space Station) and interplanetary exploration missions.
    Keywords: Man/System Technology and Life Support
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-24
    Description: Edible oil is a critical component of the proposed plant-based Advanced Life Support (ALS) diet. Soybean, peanut, and single-cell oil are the oil source options to date. In terrestrial manufacture, oil is ordinarily extracted with hexane, an organic solvent. However, exposed solvents are not permitted in the spacecraft environment or in enclosed human tests by National Aeronautics and Space Administration due to their potential danger and handling difficulty. As a result, alternative oil-processing methods will need to be utilized. Preparation and recovery options include traditional dehulling, crushing, conditioning, and flaking, extrusion, pressing, water extraction, and supercritical extraction. These processing options were evaluated on criteria appropriate to the Advanced Life Support System and BIO-Plex application including: product quality, product stability, waste production, risk, energy needs, labor requirements, utilization of nonrenewable resources, usefulness of by-products, and versatility and mass of equipment to determine the most appropriate ALS edible oil-processing operation.
    Keywords: Man/System Technology and Life Support
    Type: Life support & biosphere science : international journal of earth space (ISSN 1069-9422); Volume 7; 3; 233-42
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-24
    Description: Crop residues in an Advanced Life Support System (ALS) contain many valuable components that could be recovered and used. Wheat is 60% inedible, with approximately 90% of the total sugars in the residue cellulose and hemicellulose. To release these sugars requires pretreatment followed by enzymatic hydrolysis. Cryptococcus curvatus, an oleaginous yeast, uses the sugars in cellulose and hemicellulose for growth and production of storage triglycerides. In this investigation, alkaline-peroxide and ozonation pretreatment methods were compared for their efficiency to release glucose and xylose to be used in the cultivation of C. curvatus. Leaching the biomass with water at 65 degrees C for 4 h prior to pretreatment facilitated saccharification. Alkaline-peroxide and ozone pretreatment were almost 100% and 80% saccharification efficient, respectively. The sugars derived from the hydrolysis of alkaline-peroxide-treated wheat straw supported the growth of C. curvatus and the production of edible single-cell oil.
    Keywords: Man/System Technology and Life Support
    Type: Life support & biosphere science : international journal of earth space (ISSN 1069-9422); Volume 7; 3; 243-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-24
    Description: The control of water content and water movement in granular substrate-based plant root systems in microgravity is a complex problem. Improper water and oxygen delivery to plant roots has delayed studies of the effects of microgravity on plant development and the use of plants in physical and mental life support systems. Our international effort (USA, Russia and Bulgaria) has upgraded the plant growth facilities on the Mir Orbital Station (OS) and used them to study the full life cycle of plants. The Bulgarian-Russian-developed Svet Space Greenhouse (SG) system was upgraded on the Mir OS in 1996. The US developed Gas Exchange Measurement System (GEMS) greatly extends the range of environmental parameters monitored. The Svet-GEMS complex was used to grow a fully developed wheat crop during 1996. The growth rate and development of these plants compared well with earth grown plants indicating that the root zone water and oxygen stresses that have limited plant development in previous long-duration experiments have been overcome. However, management of the root environment during this experiment involved several significant changes in control settings as the relationship between the water delivery system, water status sensors, and the substrate changed during the growth cycles. c 2001 Published by Elsevier Science Ltd. All rights reserved.
    Keywords: Man/System Technology and Life Support
    Type: Acta astronautica (ISSN 0094-5765); Volume 47; 11; 839-48
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-08-31
    Description: The Volatile Removal Assembly (VRA) is a high temperature catalytic oxidation process that will be used as the final treatment for recycled water aboard the International Space Station (ISS). The multiphase nature of the process had raised concerns as to the performance of the VRA in a microgravity environment. To address these concerns, two experiments were designed. The VRA Flight Experiment (VRAFE) was designed to test a full size VRA under controlled conditions in microgravity aboard the SPACEHAB module and in a 1 -g environment and compare the performance results. The second experiment relied on visualization of two-phase flow through small column packed beds and was designed to fly aboard NASA's microgravity test bed plane (KC-135). The objective of the KC-135 experiment was to understand the two-phase fluid flow distribution in a packed bed in microgravity. On Space Transportation System (STS) flight 96 (May 1999), the VRA FE was successfully operated and in June 1999 the KC-135 packed bed testing was completed. This paper provides an overview of the experiments and a summary of the results and findings.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Aerospace Design & Development, Inc.'s (ADD's) SCAMP was developed under an SBIR contract through Kennedy Space Center. SCAMP stands for Supercritical Air Mobility Pack. The technology came from the life support fuel cell support systems used for the Apollo and Space Shuttle programs. It uses supercritical cryogenic air and is able to function in microgravity environments. SCAMP's self-contained breathing apparatus(SCBA) systems are also ground-based and can provide twice as much air than traditional SCBA's due to its high-density capacity. The SCAMP system was designed for use in launch pad emergency rescues. ADD also developed a protective suit for use with SCAMP that is smaller and lighter system than the old ones. ADD's SCAMP allows for body cooling and breathing from the supercritical cryogenic air, requiring no extra systems. The improvement over the traditional SCBA allows for a reduction of injuries, such as heat stress, and makes it easier for rescuers to save lives.
    Keywords: Man/System Technology and Life Support
    Type: Spinoff 2000; 44; NASA/NP-2000-08-257-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: The eZ-uP device was designed by NASA engineer, Paul Neal, who worked with Kennedy Space Center. He took his idea to RJDesigns & Associates. With refinements, they developed a lightweight aluminium structure to assist the elderly in lifting themselves from seated positions. It can support people in excess of 500 pounds and is quickly assembled without tools. It is completely adjustable to fit under most sofas, chairs, and beds and will not slip on wood or tile floors. Also, it is relatively inexpensive compared to other products on the market. The apparatus is placed under the seat and adjusted so that the hand supports are in front of the person just under shoulder level. The seated person then takes hold and easily lifts himself from the seat. Product still commercially available as of March 2002.
    Keywords: Man/System Technology and Life Support
    Type: Spinoff 2000; 46-47; NASA/NP-2000-08-257-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-02
    Description: Human exploration of Mars is a key goal in NASA's exploration planning in the next 20 years. Maintaining crew health and good vision is certainly an important aspect of achieving a successful mission. Continuous radiation exposure is a risk factor for radiation-induced cataracts in astronauts because radiation exposure in space travel has the potential of accelerating the aging process (ref. 1). A patented compact device (ref. 2) based on the technique of dynamic light scattering (DLS) was designed for monitoring an astronaut's ocular health during long-duration space travel. This capability of early diagnosis, unmatched by any other clinical technique in use today, may enable prompt initiation of preventive/curative therapy. An Internet web-based system integrating photon correlation data and controlling the hardware to monitor cataract development in vivo at a remote site in real time (teleophthalmology) is currently being developed. The new technology detects cataracts very early (at the molecular level). Cataract studies onboard the International Space Station will be helpful in quantifying any adverse effect of radiation to ocular health. The normal lens in a human eye, situated behind the cornea, is a transparent tissue. It contains 35 wt % protein and 65 wt % water. Aging, disease (e.g., diabetes), smoking, dehydration, malnutrition, and exposure to ultraviolet light and ionizing radiation can cause agglomeration of the lens proteins. Protein aggregation can take place anywhere in the lens, causing lens opacity. The aggregation and opacification could produce nuclear (central portion of the lens) or cortical (peripheral) cataracts. Nuclear and posterior subcapsular (the membrane's capsule surrounds the whole lens) cataracts, being on the visual optical axis of the eye, cause visual impairment that can finally lead to blindness. The lens proteins, in their native state, are small in size. As a cataract develops, this size grows from a few nanometers (transparent) to several micrometers (cloudy). Ansari and Datiles have shown that DLS can detect cataracts at least two to three orders of magnitude earlier noninvasively and quantitatively than the best imaging (Scheimpflug) techniques in clinical use today (ref. 3).
    Keywords: Man/System Technology and Life Support
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-11
    Description: Reduced atmospheric pressures will likely be used to minimize mass and engineering requirements for plant growth habitats used in extraterrestrial applications. This report provides a brief survey of key literature related to responses of plants to atmospheric variables and a broad rationale for designing minimal atmospheres for future plant growth structures on the Martian surface. The literature and recent work suggest that atmospheric pressure limits for normal plant function are likely to be 10 kPa or perhaps slightly lower. At Kennedy Space Center, a chamber with high vacuum capability was used to design and begin construction of a system for testing plant responses to reduced pressure atmospheres. A test rack with lighting provided by 3, high-pressure sodium vapor lamps was built to conduct measurements of short-term plant responses. Initial experiments with lettuce showed that a pressure of 10 kPa resulted in a 6.1-fold increase in the rate of water loss compared to water loss at ambient pressure (101 kPa).
    Keywords: Man/System Technology and Life Support
    Type: Mars Greenhouses: Concepts and Challenges. Proceedings from a 1999 Workshop; 48-57; NASA/TM-2000-208577
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-17
    Description: According to the Advanced Life Support (ALS) Program Plan, the Systems Modeling and Analysis Project (SMAP) has two important tasks: 1) prioritizing investments in ALS Research and Technology Development (R&TD), and 2) guiding the evolution of ALS systems. Investments could be prioritized simply by independently ranking different technologies, but we should also consider a technology's impact on system design. Guiding future ALS systems will require SMAP to consider many aspects of systems engineering. R&TD investments can be prioritized using familiar methods for ranking technology. The first step is gathering data on technology performance, safety, readiness level, and cost. Then the technologies are ranked using metrics or by decision analysis using net present economic value. The R&TD portfolio can be optimized to provide the maximum expected payoff in the face of uncertain future events. But more is needed. The optimum ALS system can not be designed simply by selecting the best technology for each predefined subsystem. Incorporating a new technology, such as food plants, can change the specifications of other subsystems, such as air regeneration. Systems must be designed top-down starting from system objectives, not bottom-up from selected technologies. The familiar top-down systems engineering process includes defining mission objectives, mission design, system specification, technology analysis, preliminary design, and detail design. Technology selection is only one part of systems analysis and engineering, and it is strongly related to the subsystem definitions. ALS systems should be designed using top-down systems engineering. R&TD technology selection should consider how the technology affects ALS system design. Technology ranking is useful but it is only a small part of systems engineering.
    Keywords: Man/System Technology and Life Support
    Type: Life Support and Biosphere Science; Aug 06, 2000 - Aug 09, 2000; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-17
    Description: Exchanging heat between hot and cold streams within an advanced life support system can save energy. This savings will reduce the equivalent system mass (ESM) of the system. Different system configurations are examined under steady-state conditions for various percentages of food growth and waste treatment. The scenarios investigated represent possible design options for a Mars reference mission. Reference mission definitions are drawn from the ALSS Modeling and Analysis Reference Missions Document, which includes definitions for space station evolution, Mars landers, and a Mars base. For each scenario, streams requiring heating or cooling are identified and characterized by mass flow, supply and target temperatures and heat capacities. The Pinch Technique is applied to identify good matches for energy exchange between the hot and cold streams and to calculate the minimum external heating and cooling requirements for the system. For each pair of hot and cold streams that are matched, there will be a reduction in the amount of external heating and cooling required, and the original heating and cooling equipment will be replaced with a heat exchanger. The net cost savings can be either positive or negative for each stream pairing, and the priority for implementing each pairing can be ranked according to its potential cost savings. Using the Pinch technique, a complete system heat exchange network is developed and heat exchangers are sized to allow for calculation of ESM. The energy-integrated design typically has a lower total ESM than the original design with no energy integration. A comparison of ESM savings in each of the scenarios is made to direct future Pinch Analysis efforts.
    Keywords: Man/System Technology and Life Support
    Type: Life Support and Biosphere Science; Aug 06, 2000 - Aug 09, 2000; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-17
    Description: We modeled BIO-Plex designs with separate or combined atmospheres and then simulated controlling the atmosphere composition. The BIO-Plex is the Bioregenerative Planetary Life Support Systems Test Complex, a large regenerative life support test facility under development at NASA Johnson Space Center. Although plants grow better at above-normal carbon dioxide levels, humans can tolerate even higher carbon dioxide levels. Incinerator exhaust has very high levels of carbon dioxide. An elaborate BIO-Plex design would maintain different atmospheres in the crew and plant chambers and isolate the incinerator exhaust in the airlock. This design easily controls the crew and plant carbon dioxide levels but it uses many gas processors, buffers, and controllers. If all the crew's food is grown inside BIO-Plex, all the carbon dioxide required by the plants is supplied by crew respiration and the incineration of plant and food waste. Because the oxygen mass flow must balance in a closed loop, the plants supply all the oxygen required by the crew and the incinerator. Using plants for air revitalization allows using fewer gas processors, buffers, and controllers. In the simplest design, a single combined atmosphere was used for the crew, the plant chamber, and the incinerator. All gas processors, buffers, and controllers were eliminated. The carbon dioxide levels were necessarily similar for the crew and plants. If most of the food is grown, carbon dioxide can be controlled at the desired level by scheduling incineration. An intermediate design uses one atmosphere for the crew and incinerator chambers and a second for the plant chamber. This allows different carbon dioxide levels for the crew and plants. Better control of the atmosphere is obtained by varying the incineration rate. Less gas processing storage and control is needed if more food is grown.
    Keywords: Man/System Technology and Life Support
    Type: Life Support and Biosphere Science; Aug 06, 2000 - Aug 09, 2000; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-17
    Description: The objective of this study is to compare incineration and composting in a Mars-based advanced life support (ALS) system. The variables explored include waste pre-processing requirements, reactor sizing and buffer capacities. The study incorporates detailed mathematical models of biomass production and waste processing into an existing dynamic ALS system model. The ALS system and incineration models (written in MATLAB/SIMULINK(c)) were developed at the NASA Ames Research Center. The composting process is modeled using first order kinetics, with different degradation rates for individual waste components (carbohydrates, proteins, fats, cellulose and lignin). The biomass waste streams are generated using modified "Eneray Cascade" crop models, which use light- and dark-cycle temperatures, irradiance, photoperiod, [CO2], planting density, and relative humidity as model inputs. The study also includes an evaluation of equivalent system mass (ESM).
    Keywords: Man/System Technology and Life Support
    Type: Life Support and Biosphere Science; Aug 06, 2000 - Aug 09, 2000; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-17
    Description: The high power requirement associated with overall operation of regenerative life support systems is a critical Z:p technological challenge. Optimization of individual processors alone will not be sufficient to produce an optimized system. System studies must be used in order to improve the overall efficiency of life support systems. Current research efforts at NASA Ames Research Center are aimed at developing approaches for reducing system power and energy usage in advanced life support systems. System energy integration and energy reuse techniques are being applied to advanced life support, in addition to advanced control methods for efficient distribution of power and thermal resources. An overview of current results of this work will be presented. The development of integrated system designs that reuse waste heat from sources such as crop lighting and solid waste processing systems will reduce overall power and cooling requirements. Using an energy integration technique known as Pinch analysis, system heat exchange designs are being developed that match hot and cold streams according to specific design principles. For various designs, the potential savings for power, heating and cooling are being identified and quantified. The use of state-of-the-art control methods for distribution of resources, such as system cooling water or electrical power, will also reduce overall power and cooling requirements. Control algorithms are being developed which dynamically adjust the use of system resources by the various subsystems and components in order to achieve an overall goal, such as smoothing of power usage and/or heat rejection profiles, while maintaining adequate reserves of food, water, oxygen, and other consumables, and preventing excessive build-up of waste materials. Reductions in the peak loading of the power and thermal systems will lead to lower overall requirements. Computer simulation models are being used to test various control system designs.
    Keywords: Man/System Technology and Life Support
    Type: Life Support and Biosphere Science; Aug 06, 2000 - Aug 09, 2000; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-17
    Description: Integration of CO2 removal and reduction assemblies in a spacecraft air revitalization system requires an interface with the functionality of a vacuum pump/compressor and a buffer tank. The compressor must meet the vacuum needs of the CO2 removal unit and the pressure needs of the CO2 reduction device, and must also store sufficient CO2 to accommodate the differences in cycle times of the two processes. In this presentation, we describe the design and operation of an adsorption-based device sized for use on the International Space Station. The adsorption compressor functions at a power level approximately ten times lower than a comparable mechanical compression/buffer tank system. The unit is also smaller, lighter, and quieter than its mechanical counterpart.
    Keywords: Man/System Technology and Life Support
    Type: Environmental Systems; Jul 10, 2000 - Jul 13, 2000; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-17
    Description: Tests of a pre-prototype regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an adsorbent column have been performed at NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. During the normal operation mode, contaminants are removed from the air on the column. Regeneration of the column is performed on-line. During regeneration, contaminants are displaced and destroyed inside the closed oxidation loop. In this presentation we discuss initial experimental results for the performance of RAPS in the removal and treatment of several important spacecraft contaminant species from air.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 10, 2000 - Jul 13, 2000; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-17
    Description: To develop and test a 2-hour prebreathe protocol for performing extravehicular activities (EVAs) from the International Space Station (ISS). Combinations of adynamia (non-walking), prebreathe exercise, and space suit donning options (10.2 vs. 14.7 psi) were evaluated, against timeline and consumable contraints to develop an operational 2- hour prebreathe protocol. Prospective accept/reject criteria were defined for decompression sickness (DCS) and venous gas emboli (VGE) from analysis of historical DCS data, combined with risk management of DCS under ISS mission circumstances. Maximum operational DCS levels were defined based on protecting for EVA capability with two crew-members at 95% confidence, throughout ISS lifetime (within the constraints of NASA DCS disposition policy JPG 1800.3). The accept/reject limits were adjusted for greater safety based on analysis of related medical factors. Monte-Carlo simulation was performed to design a closed sequential, multi-center human trial. Protocols were tested with 4 different prebreathe exercises (Phases I-IV), prior to exposure to 4.3 psi for 4 hrs. Subject selection, Doppler monitoring for VGE, test termination criteria, and DCS definitions were standardized. Phase I: upper and lower body exercises using dual-cycle ergometry (75% VO2 max for 10 min). Phase II: ergometry plus 24 min of light exercise (simulating space-suit preparations). Phase III: same 24 min of light exercise but no ergometry, and Phase IV: 56 min of light exercise without ergometry. A prebreathe procedure was accepted if, at 95% confidence, the incidence of DCS was less than 15% (with no Type II DCS), and Grade IV VGE was less than 20%.
    Keywords: Man/System Technology and Life Support
    Type: Undersea and Hyperbaric Medical Society; Jun 18, 2000 - Jun 22, 2000; Stockholm; Sweden
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decisionmaker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its content include program managers and administrators who track the program and are involved in decisions regarding resource allocation and program evaluation.
    Keywords: Man/System Technology and Life Support
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: Food for manned space flight has been provided by NASA-Johnson Space Center since 1962. The various mission scenarios and space craft designs dictated the type of food preservation methodologies required to meet mission objectives. The preservation techniques used in space flight include freeze-dehydration, thermostabilization, irradiation, freezing and moisture adjustment. Innovative packaging material and techniques enhanced the shelf-stability of the food items. Future space voyages may include extended duration exploration missions requiring new packaging materials and advanced preservation techniques to meet mission goals of up to 5-year shelf-life foods.
    Keywords: Man/System Technology and Life Support
    Type: International Cingress on Engineering and Food; Apr 09, 2000 - Apr 12, 2000; Puebla; Mexico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-17
    Description: BIO-Plex is a ground-based test bed currently under development by NASA for testing technologies and practices that may be utilized in future long-term life support missions. All aspects of such an Advanced Life Support (ALS) System must be considered to confidently construct a reliable system, which will not only allow the crew to survive in harsh environments, but allow the crew time to perform meaningful research. Effective handling of solid wastes is a critical aspect of the system, especially when recovery of resources contained in the waste is required. This is particularly important for ALS Systems configurations that include a Biomass Production Chamber. In these cases, significant amounts of inedible biomass waste may be produced, which can ultimately serve as a repository of necessary resources for sustaining life, notably carbon, water, and plant nutrients. Numerous biological and physicochemical solid waste processing options have been considered. Biological options include composting, aerobic digestion, and anaerobic digestion. Physicochemical options include pyrolysis, SCWO (supercritical water oxidation), various incineration configurations, microwave incineration, magnetically assisted gasification, and low temperature plasma reaction. Modeling of these options is a necessary step to assist in the design process. A previously developed top-level model of BIO-Plex implemented in MATLAB Simulink (r) for the use of systems analysis and design has been adopted for this analysis. Presently, this model only considered incineration for solid waste processing. Present work, reported here, includes the expansion of this model to include a wider array of solid waste processing options selected from the above options, bearing in mind potential, near term solid waste treatment systems. Furthermore, a trade study has also been performed among these solid waste processing technologies in an effort to determine the ideal technology for long-term life support missions.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 09, 2001 - Jul 12, 2001; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-17
    Description: This paper evaluates several food system options for a near-term Mars mission, based on plans for the 120-day BIO-Plex test. Food systems considered in the study are based on the International Space Station (ISS) Assembly Phase and Assembly Complete food systems. The four systems considered are: 1) ISS assembly phase food system (US portion) with individual packaging without salad production; 2) ISS assembly phase food system (US portion) with individual packaging, with salad production; 3) ISS assembly phase food system (US portion) with bulk packaging, with salad production; 4) ISS assembly complete food system (US portion) with bulk packaging with salad and refrigeration/freezing. The food system options are assessed using equivalent system mass (ESM), which evaluates each option based upon the mass, volume, power, cooling and crewtime requirements that are associated with each food system option. However, since ESM is unable to elucidate the differences in psychological benefits between the food systems, a qualitative evaluation of each option is also presented.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 09, 2001 - Jul 12, 2001; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-17
    Description: Energy conservation is a key issue in design optimization of Advanced Life Support Systems (ALSS) for long-term space missions. By considering designs for conservation at the system level, energy saving opportunities arise that would otherwise go unnoticed. This paper builds on a steady-state investigation of system-level waste heat reuse in an ALSS with a low degree of crop growth for a Mars mission. In past studies, such a system has been defined in terms of technology types, hot and cold stream identification and stream energy content. The maximum steady-state potential for power and cooling savings within the system was computed via the Pinch Method. In this paper, several practical issues are considered for achieving a pragmatic estimate of total system savings in terms of equivalent system mass (ESM), rather than savings solely in terms of power and cooling. In this paper, more realistic ESM savings are computed by considering heat transfer inefficiencies during material transfer. An estimate of the steady-state mass, volume and crewtime requirements associated with heat exchange equipment is made by considering heat exchange equipment material type and configuration, stream flow characteristics and associated energy losses during the heat exchange process. Also, previously estimated power and cooling savings are adjusted to reflect the impact of such energy losses. This paper goes one step further than the traditional Pinch Method of considering waste heat reuse in heat exchangers to include ESM savings that occur with direct reuse of a stream. For example, rather than exchanging heat between crop growth lamp cooling air and air going to a clothes dryer, air used to cool crop lamps might be reused directly for clothes drying purposes. When thermodynamically feasible, such an approach may increase ESM savings by minimizing the mass, volume and crewtime requirements associated with stream routing equipment.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 09, 2001 - Jul 12, 2001; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-17
    Description: One of the major impediments to human Mars missions is the development of appropriate countermeasures for long term physiological response to the micro-gravity environment. A plethora of countermeasure approaches have been advanced from strictly pharmacological measures to large diameter rotating spacecraft that would simulate a 1-g environment (the latter being the most conservative from a human health perspective). The different approaches have significantly different implications not only on the overall system design of a Mars Mission Vehicle (MMV) but on the necessary earth-orbiting platform that would be required to qualify the particular countermeasure system. it is found that these different design options can be conveniently categorized in terms of the order of magnitude of the rotation diameter required (100's, 10's, 1's, 0 meters). From this, the different mass penalties associated with each category can be generally compared. The overall objective of the countermeasure system should be to maximize crew safety and comfort, minimize exercise protocol time (i.e., the time per day that each crew member would have to participate in the exercise/countermeasure), maximize countermeasure effectiveness, and minimize the associated system mass penalty of the Mars Mission Vehicle (in terms of fraction of IMLEO - Injected Mass in Low Earth Orbit).
    Keywords: Man/System Technology and Life Support
    Type: 30th ICES Conference; Jul 01, 2000; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-17
    Description: The BIO-Plex facility will need to support a variety of life support system designs and operation strategies. These systems will be tested and evaluated in the BIO-Plex facility. An important goal of the life support program is to identify designs that best meet all size and performance constraints for a variety of possible future missions. Integrated human testing is a necessary step in reaching this goal. System modeling and analysis will also play an important role in this endeavor. Currently, simulation studies are being used to estimate air revitalization buffer and storage requirements in order to develop the infrastructure requirements of the BIO-Plex facility. Simulation studies are also being used to verify that the envisioned operation strategy will be able to meet all performance criteria. In this paper, a simulation study is presented for a nominal BIO-Plex scenario with a high-level of crop growth. A general description of the dynamic mass flow model is provided, along with some simulation results. The paper also discusses sizing and operations issues and describes plans for future simulation studies.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 09, 2001 - Jul 12, 2001; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-17
    Description: System failures, off-nominal operation, or unexpected interruptions in processing capability can cause unanticipated instabilities in Advanced Life Support (ALS) systems, even long after they are repaired. Much current modeling assumes ALS systems are static and linear, but ALS systems are actually dynamic and nonlinear, especially when failures and off nominal operation are considered. Modeling and simulation provide a way to study the stability and time behavior of nonlinear dynamic ALS systems under changed system configurations or operational scenarios. The dynamic behavior of a nonlinear system can be fully explored only by computer simulation over the full range of inputs and initial conditions. Previous simulations of BIO-Plex in SIMULINK, a toolbox of Matlab, were extended to model the off-nominal operation and long-term dynamics of partially closed physical/chemical and bioregenerative life support systems. System nonlinearity has many interesting potential consequences. Different equilibrium points may be reached for different initial conditions. The system stability can depend on the exact system inputs and initial conditions. The system may oscillate or even in rare cases behave chaotically. Temporary internal hardware failures or external perturbations in ALS systems can lead to dynamic instability and total ALS system failure. Appropriate control techniques can restore reliable operation and minimize the effects of dynamic instabilities due to anomalies or perturbations in a life support system.
    Keywords: Man/System Technology and Life Support
    Type: International Conference on Environmental Systems; Jul 09, 2001 - Jul 12, 2001; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-17
    Description: This poster provides an assessment of the technical readiness of the Vapor Phase Catalytic Ammonia Removal Process (VPCAR). The VPCAR technology is a fully regenerative water recycling technology designed specifically for applications such as a near term Mars exploration mission. The VPCAR technology is a highly integrated distillation/catalytic oxidation based water processor. It is designed to accept a combined wastewater stream (urine, condensate, and hygiene) and produces potable water in a single process step which requires -no regularly scheduled re-supply or maintenance for a 3 year mission. The technology is designed to be modular and to fit into a volume comparable to a single International Space Station Rack (when sized for a crew of 6). This poster provides a description of the VPCAR technology and a summary of the current performance of the technology. Also provided are the results of two separate NASA sponsored system trade studies which investigated the potential payback of further development of the VPCAR technology.
    Keywords: Man/System Technology and Life Support
    Type: 4th International Conference on Life Support and Biosphere Science; Aug 06, 2000 - Aug 09, 2000; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-17
    Description: An architecture of interoperating agents has been developed to provide control and fault management for advanced life support systems in space. In this adjustable autonomy architecture, software agents coordinate with human agents and provide support in novel fault management situations. This architecture combines the Livingstone model-based mode identification and reconfiguration (MIR) system with the 3T architecture for autonomous flexible command and control. The MIR software agent performs model-based state identification and diagnosis. MIR identifies novel recovery configurations and the set of commands required for the recovery. The AZT procedural executive and the human operator use the diagnoses and recovery recommendations, and provide command sequencing. User interface extensions have been developed to support human monitoring of both AZT and MIR data and activities. This architecture has been demonstrated performing control and fault management for an oxygen production system for air revitalization in space. The software operates in a dynamic simulation testbed.
    Keywords: Man/System Technology and Life Support
    Type: Aerospace; Mar 18, 2000 - Mar 25, 2000; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: Autoflight systems in the current generation of aircraft have been implicated in several recent incidents and accidents. A contributory aspect to these incidents may be the manner in which aircraft transition between differing behaviours or 'modes.' The current state of aircraft automation was investigated and the incremental development of the autoflight system was tracked through a set of aircraft to gain insight into how these systems developed. This process appears to have resulted in a system without a consistent global representation. In order to evaluate and examine autoflight systems, a 'Hybrid Automation Representation' (HAR) was developed. This representation was used to examine several specific problems known to exist in aircraft systems. Cyclomatic complexity is an analysis tool from computer science which counts the number of linearly independent paths through a program graph. This approach was extended to examine autoflight mode transitions modelled with the HAR. A survey was conducted of pilots to identify those autoflight mode transitions which airline pilots find difficult. The transitions identified in this survey were analyzed using cyclomatic complexity to gain insight into the apparent complexity of the autoflight system from the perspective of the pilot. Mode transitions which had been identified as complex by pilots were found to have a high cyclomatic complexity. Further examination was made into a set of specific problems identified in aircraft: the lack of a consistent representation of automation, concern regarding appropriate feedback from the automation, and the implications of physical limitations on the autoflight systems. Mode transitions involved in changing to and leveling at a new altitude were identified across multiple aircraft by numerous pilots. Where possible, evaluation and verification of the behaviour of these autoflight mode transitions was investigated via aircraft-specific high fidelity simulators. Three solution approaches to concerns regarding autoflight systems, and mode transitions in particular, are presented in this thesis. The first is to use training to modify pilot behaviours, or procedures to work around known problems. The second approach is to mitigate problems by enhancing feedback. The third approach is to modify the process by which automation is designed. The Operator Directed Process forces the consideration and creation of an automation model early in the design process for use as the basis of the software specification and training.
    Keywords: Man/System Technology and Life Support
    Type: ICAT-2000-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-13
    Description: Space-faring crews must have safe breathing air throughout their missions to ensure adequate performance and good health. Toxicological assessment of air quality depends on the standards that define acceptable air quality, measurements of pollutant levels during the flight, and reports from the crew on their in-flight perceptions of air quality. Air samples from ISS flight 2A showed that contaminants in the Zarya module were at higher concentrations than the Unity module. At the crew's first entry, the amount of non-methane volatile organic compounds (NMVOCs) in Zarya was 23 Mg/cubic meter, whereas in the amount of NMVOCs in Unity was 5.3 mg/cubic meter. Approximately 26 hours later at egress from the modules, the NMVOCs were comparable indicating good mixing of the atmospheres. The 2A crew reported no adverse health effects related to air pollution during their flight. Ingress air samples from 2A.1, which was flown more than 5 months after 2A, again showed that the Zarya had accumulated more unscrubbed pollutants than Unity. The NMVOCs in Unity were 3.5 mg/cubic meter, whereas the were 20 mg/cubic meter in Zarya. After almost 80 hours of ISS operations, the NMVOCs were 7.5 and 12 mg/cubic meter in Unity and Zarya, respectively. This suggests that the atmospheres in the modules were not mixing very well. The 2A.1 crew felt that the air quality in Zarya deteriorated when they were working in a group at close quarters, when the panels had been removed, and after they had worked in an area for some time. The weight of evidence suggests that human metabolic products (carbon dioxide, water vapor, heat) were not being effectively removed from the crew's work area, and these caused their symptoms. Additional local measurements of pollutants are planned for the 2A.2 mission to the ISS.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-5921 , Environmental Systems; Jul 10, 2000 - Jul 13, 2000; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: As the International Space Station's (ISS) various habitable modules are placed in service on orbit, the need to provide for sustaining engineering becomes increasingly important to ensure the proper function of critical onboard systems. Chief among these are the Environmental Control and Life Support System (ECLSS) and the Internal Thermal Control System (ITCS). Without either, life onboard the ISS would prove difficult or nearly impossible. For this reason, a ground-based ECLSS/ITCS hardware performance simulation capability has been developed at NASA's Marshall Space Flight Center. The ECLSS/ITCS Sustaining Engineering Test Bed will be used to assist the ISS Program in resolving hardware anomalies and performing periodic performance assessments. The ISS flight configuration being simulated by the test bed is described as well as ongoing activities related to its preparation for supporting ISS Mission 5A. Growth options for the test facility are presented whereby the current facility may be upgraded to enhance its capability for supporting future station operation well beyond Mission 5A. Test bed capabilities for demonstrating technology improvements of ECLSS hardware are also described.
    Keywords: Man/System Technology and Life Support
    Type: Environmental Systems; Jul 10, 2000 - Jul 13, 2000; Toulouse; France|Space Environmental Control Systems; Jul 10, 2000 - Jul 13, 2000; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-13
    Description: The International Space Station (ISS) Program requires that there always be a 45 calendar day contingency supply of breathing oxygen. In the early assembly stages, there is only one flight system, the Russian Solid Fuel Oxygen Generator (SFOG), that can meet that requirement. To better ensure the contingency oxygen supply, the Crew and Thermal Systems Division was directed to develop a flight hardware system that can meet all contingency oxygen requirements for ISS. Such a system, called the Backup Oxygen Candle System (BOCS), has been built and tested. The BOCS consists of 33 chlorate candles, a thermal containment apparatus, support equipment and packaging. The thermal containment apparatus utilizes the O2 produced by the candle as the motive stream in an ejector to passively cool the candle during operation.
    Keywords: Man/System Technology and Life Support
    Type: ES28C-233 , JSC-CN-6395 , International Conference on Envrionmental Systems (ICES); Jul 10, 2000 - Jul 13, 2000; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: Sensors and feedback systems are critical to life support flight systems and life support systems research. New sensor capabilities can allow for new system architectures to be considered, and can facilitate dramatic improvements in system performance. This paper will describe three opportunities for biosensor researchers to develop sensors that will enable life support system improvements. The first opportunity relates to measuring physical, chemical, and biological parameters in the Space Station Water Processing System. Measuring pH, iodine, total organic carbon, microbiological activity, total dissolved solids, or conductivity with a safe, effective, stable, reliable microsensor could benefit the water processing system considerably. Of special interest is a sensor which can monitor biological contamination rapidly. The second opportunity relates to sensing microbiological contamination and water condensation on the surface of large inflatable structures. It is the goal of large inflatable structures used for habitation to take advantage of the large surface area of the structure and reject waste heat passively through the walls of the structure. Too much heat rejection leads to a cold spot with water condensation, and eventually microbiological contamination. A distributed sensor system that can measure temperature, humidity, and microbiological contamination across a large surface would benefit designers of large inflatable habitable structures. The third opportunity relates to sensing microbial bioreactors used for waste water processing and reuse. Microbiological bioreactors offer considerable advantages in weight and power compared to adsorption bed based systems when used for long periods of time. Managing and controlling bioreactors is greatly helped if distributed microsensors measured the biological populations continuously in many locations within the bioreactor. Nitrifying bacteria are of special interest to bioreactor designers, and any sensors that could measure the populations of these types of bacteria would help the control and operation of bioreactors. J
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-6023 , NanoSpace 2000; Jan 23, 2000 - Jan 28, 2000; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: Among the many challenges that the Mars environment poses for EVA (extravehicular activity) space suit designers, development of an appropriate thermal insulation is one of the most important. The latest in thermal insulation technologies that could be applied or modified for planetary exploration have been reviewed. These include porous and hollow structures, phase change materials, soluble gas elements, as well as vacuum enclosures and fibrous materials. Using current technology, none of these structures offers all of the features needed for Mars exploration, namely lightweight, low bulk, high flexibility, and low thermal insulation. Nonwoven fibrous materials are still the prime design candidates because they are more flexible than other structures while having good resiliency. They are usually safe to use. They are also available in many types of materials, fiber shapes, as well as fabric densities and constructions. However, a recent study conducted at the NASA Johnson Space Center shows clearly that these structures alone are not sufficient to provide effective thermal insulation in the harsh Mars environment. A more promising solution is being developed using aerogel fillers in the nonwoven structures.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-6306 , Industrial Fabrics Association International EXPO 2000; Oct 26, 2000 - Oct 28, 2000; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-17
    Description: As the underwater diving industry continues to use greater concentrations of oxygen in their scuba systems, ignition of contaminants in these systems becomes a greater concern. Breathing gas makeup and distribution systems typically combine pure oxygen with various diluents to supply high-pressure cylinders for scuba applications. The hazards associated with these applications of oxygen and NITROX (oxygen and nitrogen mixture) gases require an evaluation of inherent contaminant levels and their associated promoted-ignition thresholds in these environments. In this study, several scuba component assemblies were tested after one year of use at the NASA Johnson Space Center Neutral Buoyancy Lab. The components were rapidly impacted with 50% NITROX gas to demonstrate their ignition resistance, then disassembled to evaluate their cleanliness. A follow-up study was then performed on the ignition thresholds of hydrocarbon-bascd oil films in oxygen and NITROX environments in an attempt to define the cleaning requirements for these systems. Stainless steel tubes were contaminated and verified to known levels and placed in a pneumatic impact test system where they were rapidly pressurized with the test gas. Ignitions were determined using a photodiode connected to the end of the contaminated tube. The results of the scuba component tests, cleanliness evaluation, and contaminant ignition study are discussed and compared for 50% NITROX and 100% oxygen environments.
    Keywords: Man/System Technology and Life Support
    Type: Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres; Sep 28, 2000 - Sep 29, 2000; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-17
    Description: During a Shuttle flight in the early part of 1999, one of the crewmembers was unable to operate the backrest lever for the light-weight seat in microgravity. It is essential that the crewmembers are able to adjust this back-rest lever, which is titled forward 2 degrees from vertical during launch and then moved backwards to 10 degrees aft of vertical upon reaching orbit. This adjustment is needed to cushion the crewmembers during an inadvertent crash landing situation. The original Shuttle seats, which had seat controls located on the front left and right sides of the seat, were replaced recently with the new light-weight seats. The controls for these new, seats were moved to the night side with one control at the front and the other at the back. While it was uncertain whether the problem encountered was unique to that crewmember or not it was clear to the personnel responsible for maintaining the Shuttle seats that not knowing the cause of the problem posed a safety concern for NASA. Hence the Anthropometry and Biomechanics Facility (ABF) of the Johnson Space Center was requested to perform an evaluation of the seat controls and provide NASA with appropriate recommendations on whether the seat lever positions and operations should be modified. The ABF designed an experiment to investigate the amount of pull force exerted by subjects, wearing an unpressurized or pressurized crew launch escape suit, when controls were placed in the front and back (on the right side) of the light-weight seat. Single-axis load cells were attached to the seat levers, which measured the maximum static pull forces that were exerted by the subjects. Twelve subjects, six male and six female, participated in this study. Each subject was asked to perform the pull test at least three times for each combination of lever position and suit pressure conditions. The results from this study showed that as a whole (or in general), the subjects were able to pull on the lever at the back position with only about half the amount of force that they were able to exert on the lever at the front position. In addition, the results also showed that subjects wearing the pressurized suit were unable to reach the seat lever when it was located at the back. Furthermore, the pull forces on the front lever diminished about 50 % when subjects wore the pressurized suits. Based on these results from this study, it was recommended to NASA that the levers should not be located in the back position. In addition, further investigation is needed on whether the levers at the front of the seat could be modified or adjusted to increase the leverage for crew members wearing pressurized launch/escape suits.
    Keywords: Man/System Technology and Life Support
    Type: Jul 30, 2000 - Aug 04, 2000; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-17
    Description: Personal thermoregulatory systems which provide chest cooling are used in the industrial and aerospace environments to alleviate thermal stress. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objectives of this study were to document and compare the subjects' response to three cooling vests in their recommended configurations. The Life Enhancement Tech (LET) lightweight active cooling vest with cap, the MicroClimate Systems Change of Phase garment (MCS), and the Steele Vest were each used to cool the chest regions of 12 male and 8 female Healthy subjects (21 to 69 yr.) in this study. The subjects, seated in an upright position at normal room temperature (approx. 22 C), were tested for 60 min. with one of the cooling garments. The LET active garment had an initial coolant fluid inlet temperature of 60 F, and was ramped down to 50 F. Oral, right and left ear canal temperatures were logged manually every 5 min. Arm, leg, chest and rectal temperatures; heart rate; and respiration were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. For men, all three vests had similar, significant cooling effects. Decreases in the average rectal temperature, oral temperature, and ear canal temperatures were approximately 0.2 C, 0.2 C and 0.1 C, respectively. In contrast to the men, the female subjects wearing the MCS and Steel vests had similar cooling responses in which the core temperature remained elevated and oral and ear canal temperatures did not drop. The LET active garment cooled most of the female subjects in this study; rectal, oral and ear temperature decreased about 0.2 C, 0.3 C and 0.3 C, respectively. These results show that the garment configurations tested do not elicit a similar thermal response in all subjects. A gender difference is evident. The LET active garment configuration was most effective in decreasing temperatures of the female subjects; the MCS vest was least effective. For male subjects, the three vests appear to be more nearly equivalent. The active garment system under study included a cooling cap, which may account for some of the difference in response.
    Keywords: Man/System Technology and Life Support
    Type: AsMA Annual Scientific Meeting; May 06, 2001 - May 10, 2001; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: Approximately three years ago, the Agency's lead center for the human elements of spaceflight (the Johnson Space Center), along with the National Biomedical Research Institute (NSBRI) (which has the lead role in developing countermeasures) initiated an activity to identify the most critical risks confronting extended human spaceflight. Two salient factors influenced this activity: first, what information is needed to enable a "go/no go" decision to embark on extended human spaceflight missions; and second, what knowledge and capabilities are needed to address known and potential health, safety and performance risks associated with such missions. A unique approach was used to first define and assess those risks, and then to prioritize them. This activity was called the Critical Path Roadmap (CPR) and it represents an opportunity to develop and implement a focused and evolving program of research and technology designed from a "risk reduction" perspective to prevent or minimize the risks to humans exposed to the space environment. The Critical Path Roadmap provides the foundation needed to ensure that human spaceflight, now and in the future, is as safe, productive and healthy as possible (within the constraints imposed on any particular mission) regardless of mission duration or destination. As a tool, the Critical Path Roadmap enables the decision maker to select from among the demonstrated or potential risks those that are to be mitigated, and the completeness of that mitigation. The primary audience for the CPR Web Site is the members of the scientific community who are interested in the research and technology efforts required for ensuring safe and productive human spaceflight. They may already be informed about the various space life sciences research programs or they may be newcomers. Providing the CPR content to potential investigators increases the probability of their delivering effective risk mitigations. Others who will use the CPR Web Site and its content include program managers and administrators who track the program and are involved in decisions regarding resource allocation and program evaluation.
    Keywords: Man/System Technology and Life Support
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-17
    Description: The majority of extravehicular activities (EVAs) performed from the shuttle use a 10.2 psi staged decompression. The International Space Station (ISS) will operate at 14.7 psi, requiring crews to "campout" in the airlock at 10.2 psi. The constraints associated with campout (crew isolation, oxygen usage, and waste management), provided the rationale to develop a 2-hour prebreathe protocol from 14.7 psi. Previous studies on the affect of microgravity and exercise during prebreathe suggested the feasibility of this approach. Various combinations of adynamia (nonwalking subjects), prebreathe exercise doses, and space suit donning options (10.2 vs. 14.7 psi) were analyzed against timeline and consumable constraints. Prospective decompression sickness (DCS) and venous gas emboli (VGE) accept/reject criteria were defined from statistical analysis of historical DCS data, combined with risk management of DCS under ISS mission circumstances. Maximum operational DCS levels were defined based on protecting for EVA capability with two crew members at 95% confidence, throughout ISS lifetime (within the constraints of NASA DCS disposition policy JPG 1800.3). The accept / reject limits were adjusted for greater safety (including Grade IV VGE criteria) based on analysis of related medical factors. Monte-Carlo simulation was performed to design a closed sequential, multi-center laboratory trial, including the capability of rejecting the primary protocol and testing at least one alternate exercise dose, within the 2-hour prebreathe. The 2-hour protocol incorporates 0, breathing for 5 0 min at 14.7 psi, including 10 min dual cycle ergometry at 75%VO(2max). It requires an additional 30 minO2breathing during depress from 14.7 to 10.2 psi, followed by a 30-60 min suit donning break at 10.2 psi/26.5% O2. It concludes with a 40 min in-suit O2 prebreathe. The protocol would be accepted for operations, if the incidence of DCS was less than 15% and Grade IV VGE less than 20%, both at 95% confidence. The above protocol and accept/reject limits were implemented in a multi-center study.
    Keywords: Man/System Technology and Life Support
    Type: ASMA Annual Scientific Meeting; May 14, 2000 - May 18, 2000; Texas; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-24
    Description: Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Test and Measurement; Physical Sciences; Materials; Computer Programs; Computers and Peripherals;
    Keywords: Man/System Technology and Life Support
    Type: (ISSN 0145-319X194)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-08-17
    Description: The potential of air regeneration system based on the growth of microalgae on the surface of porous ceramic tubes is evaluated. The algae have been maintained in the system for extended periods, up to 360 days. Preliminary measurements of the photosynthetic capacity have been made for Chlorella vulgaris (UTEX 259), Neospongiococcum punctatum (UTEX 786), Stichococcus sp., and Gloeocapsa sp. Under standard test conditions (photosynthetic photon flux approximately 66 micromoles m-2 s-1, initial CO2 concentration approximately 450 micromoles mol-1), mature tubes remove up to 0.2 micromoles of CO2 per tube per minute. The rate of removal increases with photon flux up to at least 225 micromoles m-2 s-1 (PPF); peak rates of 0.35 micromoles of CO2 per tube per minute have been achieved with Chlorella vulgaris. These rates correspond to between 120 and 210 micromoles of CO2 removed per square meter of projected area per minute.
    Keywords: Man/System Technology and Life Support
    Type: Life support & biosphere science : international journal of earth space (ISSN 1069-9422); 7; 2; 203-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-08-17
    Description: This paper presents the details of the design and implementation of an electromechanical power-assisted spacesuit glove actuator. The project was a joint effort by the University of Maryland's Space Systems Laboratory and ILC Dover, Inc., and involved innovative approaches to power augmentation and compact actuator packaging. The first actuator built validated several basic design concepts, and the second demonstrated improved performance and met many of the goals for flight qualification of the technology.
    Keywords: Man/System Technology and Life Support
    Type: 34th Aerospace Mechanisms Symposium; 89-102; NASA/CP-2000-209895
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-27
    Description: Topics include: Data Acquisition; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Bio-Medical; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Information Sciences; Books and reports.
    Keywords: Man/System Technology and Life Support
    Type: (ISSN 0145-319X)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-10
    Description: Even under the assumption that all Orbiter and ISS elements would be operating as designed, condensation control and crewmember comfort were paramount issues preceding each of the ISS Missions 2A and 2A.1. However, crewmember discomfort during Mission 2A.1, in addition to evidence provided by flight data and observations, suggested that countermeasures would be necessary for future flights where the Orbiter provides primary control. A review of Space Shuttle Program (SSP) and International Space Station Program (ISSP) assumptions and analytical methods that describe ECLS transport phenomena was accomplished in order to ensure the veracity of future analyses. Subsequently, various analyses and interpretations of Mission 2A.1 flight data provided the necessary information to help understand the probable causes of the flight environment. With cooperation between the SSP and ISSP, countermeasures were devised for Mission 2A.2 that would likely improve the delivery of conditioned air by the Orbiter to the ISS as well as within the ISS elements.
    Keywords: Man/System Technology and Life Support
    Type: SAE Paper 2000-01-2250 , JSC-CN-6194
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-10
    Description: Work defining advanced life support (ALS) technologies and evaluating their applicability to various long-duration missions has continued. Time-dependent and time-invariant costs have been estimated for a variety of life support technology options, including International Space Station (ISS) environmental control and life support systems (ECLSS) technologies and improved options under development by the ALS Project. These advanced options include physicochemical (PC) and bioregenerative (BIO) technologies, and may in the future include in-situ resource utilization (ISRU) in an attempt to reduce both logistics costs and dependence on supply from Earth. PC and bioregenerative technologies both provide possibilities for reducing mission equivalent system mass (ESM). PC technologies are most advantageous for missions of up to several years in length, while bioregenerative options are most appropriate for longer missions. ISRU can be synergistic with both PC and bioregenerative options.
    Keywords: Man/System Technology and Life Support
    Type: SAE Paper 2000-01-2394 , JSC-CN-6239
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-10
    Description: Technology and applications for the rendering of virtual acoustic spaces are reviewed. Chapter 1 deals with acoustics and psychoacoustics. Chapters 2 and 3 cover cues to spatial hearing and review psychoacoustic literature. Chapter 4 covers signal processing and systems overviews of 3-D sound systems. Chapter 5 covers applications to computer workstations, communication systems, aeronautics and space, and sonic arts. Chapter 6 lists resources. This TM is a reprint of the 1994 book from Academic Press.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TM-2000-209606 , NAS 1.15:209606 , IH-010
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: Topics include: special coverage sections on Imaging/Video/Display Technology, and sections on electronic components and systems, test and measurement, software, information sciences, and special sections of Electronics Tech Briefs and Motion Control Tech Briefs.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: Topics include: Simulation/Virtual Reality; Test and Measurement; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Medical Design.
    Keywords: Man/System Technology and Life Support
    Type: (ISSN 0145-319X194)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: Topics covered include: Imaging/Video/Display Technology; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Bio-Medical; Test and Measurement; Mathematics and Information Sciences; Books and Reports.
    Keywords: Man/System Technology and Life Support
    Type: (ISSN 0145-319X)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: Topics include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.
    Keywords: Man/System Technology and Life Support
    Type: (ISSN 0145-319X)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: Topics include: special coverage sections on CAD, CAE, and PDM, and, Composites and Plastics, and sections on electronic components and systems, software, test and measurement, mechanics, manufacturing/fabrication, physical sciences, information sciences, book and reports, and special sections of Electronics Tech Briefs and Motion Control Tech Briefs
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: Topics covered include: Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Test and Measurement; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Data Acquisition.
    Keywords: Man/System Technology and Life Support
    Type: (ISSN 0145-319X)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: Topics covered include: Data Acquisition; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Test and Measurement; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports.
    Keywords: Man/System Technology and Life Support
    Type: (ISSN 0145-319X194)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: Topics covered include: Test and Measurement; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Bio-Medical; Mathematics and Information Sciences; Computers and Peripherals.
    Keywords: Man/System Technology and Life Support
    Type: (ISSN 0145-319X)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: Topics include: Sensors; Test and Measurement; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Bio-Medical; semiconductors/ICs; Books and Reports.
    Keywords: Man/System Technology and Life Support
    Type: (ISSN 0145-319X)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: Topics include: Sensors: Test and Measurement; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Composites and Plastics; Materials; Computer Programs; Mechanics;
    Keywords: Man/System Technology and Life Support
    Type: (ISSN 0145-319X194)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: Growth chamber experiments were conducted to study the physiological and growth response of peanut (Arachis hypogaea L.) to 50% and 85% relative humidity (RH). The objective was to determine the effects of RH on pod and seed yield, harvest index, and flowering of peanut grown by the nutrient film technique (NFT). 'Georgia Red' peanut plants (14 days old) were planted into growth channels (0.15 x 0.15 x 1.2 m). Plants were spaced 25 cm apart with 15 cm between channels. A modified half-Hoagland solution with an additional 2 mM Ca was used. Solution pH was maintained between 6.4 and 6.7, and electrical conductivity (EC) ranged between 1100 and 1200 microS cm-1. Temperature regimes of 28/22 degrees C were maintained during the light/dark periods (12 hours each) with photosynthetic photon flux (PPF) at canopy level of 500 micromoles-m-2s-1. Foliage and pod fresh and dry weights, total seed yield, harvest index (HI), and seed maturity were greater at high than at low RH. Plants grown at 85% RH had greater total and individual leaflet area and stomatal conductance, flowered 3 days earlier and had a greater number of flowers reaching anthesis. Gynophores grew more rapidly at 85% than at 50% RH.
    Keywords: Man/System Technology and Life Support
    Type: HortScience : a publication of the American Society for Horticultural Science (ISSN 0018-5345); 35; 1; 46-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: A flight test was conducted to assess any differences in pilot-vehicle performance and pilot opinion between the use of a current generation night vision goggle (the AVS-9) and one variant of the prototype panoramic night vision goggle (the PNVGII). The panoramic goggle has more than double the horizontal field-of-view of the AVS-9, but reduced image quality. Overall the panoramic goggles compared well to the AVS-9 goggles. However, pilot comment and data are consistent with the assertion that some of the benefits of additional field-of-view with the panoramic goggles were negated by the reduced image quality of the particular variant of the panoramic goggles tested.
    Keywords: Man/System Technology and Life Support
    Type: American Helicopter Society 57th Annual Forum; May 09, 2001 - May 11, 2001; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: This report has been prepared to closeout a NASA grant to Mississippi State University (MSU) for research into situation awareness (SA) and automation in the advanced commercial aircraft cockpit. The grant was divided into two obligations including $60,000 for the period from May 11, 2000 to December 25, 2000. The information presented in this report summarizes work completed through this obligation. It also details work to be completed with the balance of the current obligation and unobligated funds amounting to $50,043, which are to be granted to North Carolina State University for completion of the research project from July 31, 2000 to May 10, 2001. This research was to involve investigation of a broad spectrum of degrees of automation of complex systems on human-machine performance and SA. The work was to empirically assess the effect of theoretical levels of automation (LOAs) described in a taxonomy developed by Endsley & Kaber (1999) on naive and experienced subject performance and SA in simulated flight tasks. The study was to be conducted in the context of a realistic simulation of aircraft flight control. The objective of this work was to identify LOAs that effectively integrate humans and machines under normal operating conditions and failure modes. In general, the work was to provide insight into the design of automation in the commercial aircraft cockpit. Both laboratory and field investigations were to be conducted. At this point in time, a high-fidelity flight simulator of the McDonald Douglas (MD) 11 aircraft has been completed. The simulator integrates a reconfigurable flight simulator developed by the Georgia Institute of Technology and stand-alone simulations of MD-11 autoflight systems developed at MSU. Use of the simulator has been integrated into a study plan for the laboratory research and it is expected that the simulator will also be used in the field study with actual commercial pilots. In addition to the flight simulator, an electronic version of the Situation Awareness Global Assessment Technique (SAGAT) has been completed for measuring commercial pilot SA in flight tasks. The SAGAT is to be used in both the lab and field studies. Finally, the lab study has been designed and subjects have been recruited for participation in experiments. This study will investigate the effects of five levels of automation, described in Endsley & Kaber's (1999) taxonomy and applied to the MD-11 autoflight system, on private pilot performance and SA in basic flight tasks by using the MD-11 simulator. The field study remains to be planned and executed.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: Performance testing of the International Space Station Carbon Dioxide Removal Assembly flight hardware in the United States Laboratory during 1999 is described. The CDRA exceeded carbon dioxide performance specifications and operated flawlessly. Data from this test is presented.
    Keywords: Man/System Technology and Life Support
    Type: 00ICES-234 , (ISSN 0148-7191)|Environmental Systems; Jul 10, 2000 - Jul 13, 2000; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: The yellow strap seen in the display is a piece of the main restraint layer of a test article for the ISS TransHab spacecraft, First conceived as a technology which is capable of supporting a [human] crew of six on an extended space journey such as the six-month trip to Mars, TransHab (short for "Transit habitat") is the first space inflatable module ever designed. As this text is written it is being considered as a replacement for the Habitation module on the International Space Station (ISS). It constitutes a major breakthrough both in technology and in tectonics: capable of tight packaging at light weight for efficient launch, the vehicle can then be inflated to its full size on orbit via its own inflation tanks. This is made possible by the separation of its main structural elements from its pressure-shell. In other words, all spacecraft flown to date have been of an exoskeletal type---i.e., its hard outer shell acts both as a pressure container and as its main channel for structural loading This includes the ISS, which is currently under construction in Low Earth Orbit [275 miles above the Earth]. By contrast TransHab is the first endoskeletal space Habitat, consisting of a dual system: a light, reconfigurable central structure of graphite composite and a multilayered, deployable pressure shell.
    Keywords: Man/System Technology and Life Support
    Type: Space Architecture; Feb 01, 2000; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: The International Space Station (ISS) design is a very large and complex orbiting structure with thousands of Extravehicular Activity (EVA) worksites. These worksites are used to assemble and maintain the ISS. The challenge facing EVA designers was how to design, verify, and operationally support such a large number of worksites within cost and schedule. This has been solved through the practical use of computer aided design (CAD) graphical techniques that have been developed and used with a high degree of success over the past decade. The EVA design process allows analysts to work concurrently with hardware designers so that EVA equipment can be incorporated and structures configured to allow for EVA access and manipulation. Compliance with EVA requirements is strictly enforced during the design process. These techniques and procedures, coupled with neutral buoyancy underwater testing, have proven most valuable in the development, verification, and on-orbit support of planned or contingency EVA worksites.
    Keywords: Man/System Technology and Life Support
    Type: SAE-TPS-00ICES-208 , (ISSN 0148-7191)|30th International Conference on Environmental Systems; Jul 10, 2000 - Jul 13, 2000; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This document is a presentation about some of the challenges of living and working in space. The presentation shows slides of the Apollo 11 liftoff, Skylab in orbit, a Space Shuttle launch, and a slide of the International Space Station. It reviews the needs and effluents of the astronauts per day, and the Environmental Control and Life Support (ECLS) systems. It shows a flow diagram of the Space Station Regenerative ECLS, which shows the various systems, and how they interact to control the environment and recycle the air, and water. There are other slides some of which show astronauts eating, brushing teeth, shaving, and sipping from a sip bottle while exercising.
    Keywords: Man/System Technology and Life Support
    Type: 2000 National Image, Inc., Training Conference and Convention; Jun 06, 2000 - Jun 11, 2000; Carolina; Puerto Rico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: A life test of a liquid anode feed oxygen generator assembly (OGA) using SPE(R) (United Technologies Corporation, Hamilton Sundstrand Division) membrane technology was terminated in June of 1999. In the total 15,658 hours of operation at MSFC since delivery in 1995, the OGA has produced 2,103 kilograms (kg) (4,632 pounds mass (lbm)) of oxygen, and 263 kg (579 lbm) of hydrogen. Evaluation of cell stack characteristics and oxygen and hydrogen hydrophilic/hydrophobic membrane separators will be discussed.
    Keywords: Man/System Technology and Life Support
    Type: ICES Paper 2000-0232 , Environmental Systems; Jul 10, 2000 - Jul 13, 2000; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: Protection of astronauts from the extreme temperatures in the space environment has been provided in the past using multi-layer insulation in ultra-high vacuum environments of low earth orbit and the lunar surface. For planetary environments with residual gas atmospheres such as Mars with ambient pressures between 8 to 14 hPa (8 to 14 mbar), new protection techniques are required because of the dominating effect of the ambient gas on heat loss through the insulation. At Mars ambient pressure levels, the heat loss can be excessive at expected suit external temperatures of 172 K with state-of-the-art suit insulation, requiring an active heat source and its accompanying weight and volume penalties. Micro-fibers have been identified as one potential structure to reduce the heat losses, but existing fundamental data on fiber heat transfer at low pressure is lacking for integrated fabric structures. This baseline study presents insulation performance test data at different pressures and fabric loads for selected polyesters and aramids as a function of fiber density, fiber diameter, fabric density, and fabric construction. A set of trend data of thermal conductivity versus ambient pressure is presented for each fiber and fabric construction design to identify the design effects on thermal conductivity at various ambient pressures, and to select a fiber and fabric design for further development as a suit insulation. The trend data also shows the pressure level at which thermal conductivity approaches a minimum, below which no further improvement is possible for a given fiber and fabric design. The pressure levels and resulting thermal conductivities from the trend data can then be compared to the ambient pressure at a planetary surface, Mars for example, to determine if a particular fiber and fabric design has potential as a suit insulation.
    Keywords: Man/System Technology and Life Support
    Type: Safety and Protective Fabrics; Apr 26, 2000 - Apr 28, 2000; Arlington, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: Adequate nutrition is critical for crew health and safety during spaceflight. To ensure adequate nutrition, the nutrient requirements need to be both accurate and available from the spaceflight food system. The existing nutritional requirements for extended-duration spaceflight have been defined largely by extrapolation from ground-based research. However, nutritional requirements are influenced by most of the physiological consequences of spaceflight, including loss of lean, adipose, and bone tissue; changes in blood composition; and increased risk of renal stone formation. This review focuses on key areas where information has been gained in recent years: dietary intake and energy metabolism, bone health, fluid and electrolyte homeostasis, and hematological changes. Areas in which specific nutrients have the potential to serve as countermeasures to the negative effects of spaceflight are also reviewed. Dietary Intake
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-20728 , Food for Space conference; Oct 01, 2000; Parma; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: For planetary applications, the space suit insulation has unique requirements because it must perform in a dynamic mode to protect humans in the harsh dust, pressure and temperature environments. Since the presence of a gaseous planetary atmosphere adds significant thermal conductance to the suit insulation, the current multi-layer flexible insulation designed for vacuum applications is not suitable in reduced pressure planetary environments such as that of Mars. Therefore a feasibility study has been conducted at NASA to identify the most promising insulation concepts that can be developed to provide an acceptable suit insulation. Insulation concepts surveyed include foams, microspheres, microfibers, and vacuum jackets. The feasibility study includes a literature survey of potential concepts, an evaluation of test results for initial insulation concepts, and a development philosophy to be pursued as a result of the initial testing and conceptual surveys. The recommended focus is on microfibers due to the versatility of fiber structure configurations, the wide choice of fiber materials available, the maturity of the fiber processing industry, and past experience with fibers in insulation applications
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-6108 , 30th International Conference on Environmental Systems; Jul 10, 2000 - Jul 13, 2000; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-10
    Description: One of the primary goals of NASA Life Sciences research is '... to enable a permanent human presence in space.' To meet this goal, NASA is creating alternative protocols designed to evaluate and test countermeasures that will account for and correct the environmental effects of space flight on crewmembers health, safety, and operational performance. NASA investigators have previously evaluated the effects of long-duration space flight on physiology and performance of cosmonauts aboard the MIR space station. They also initiated tests of a countermeasure, Autogenic-Feedback Training Exercise (AFTE) designed to prevent and/or correct adverse effects, i.e., facilitate adaptation to space and re-adaptation to Earth. AFTE is a six-hour physiological training program that has proven to be a highly efficient and effective method for enabling people to monitor and voluntarily control a range of their own physiological responses, thereby minimizing adverse reactions to environmental stress. However, because of limited opportunities to test this technology with space flight crews, it is essential to find operational or 'real world' environments in which to validate the efficacy of this approach.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-10
    Description: Method and apparatus are described for determining volumes of body fluids in a subject using bioelectrical response spectroscopy. The human body is represented using an electrical circuit. Intra-cellular water is represented by a resistor in series with a capacitor; extra-cellular water is represented by a resistor in series with two parallel inductors. The parallel inductors represent the resistance due to vascular fluids. An alternating, low amperage, multifrequency signal is applied to determine a subject's impedance and resistance. From these data, statistical regression is used to determine a 1% impedance where the subject's impedance changes by no more than 1% over a 25 kHz interval. Circuit component, of the human body circuit are determined based on the 1% impedance. Equations for calculating total body water, extra-cellular water, total blood volume, and plasma volume are developed based on the circuit components.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-10
    Description: The two flight suits currently worn by crew members during Shuttle launch and landing, the Launch and Entry Suit (LES) and the Advanced Crew Escape Suit (ACES), are designed to protect crew members in the case of emergency. Although the Liquid Cooling Garment (LCG) worn under the flight suits was designed to counteract the heat storage of the suits, the suits may increase thermal stress and limit the astronaut's egress capabilities. The purpose of this study was to assess the thermal loads experienced by crew members during a simulated emergency egress before and after spaceflight. Comparisons of skin temperatures were made between the preflight unsuited and suited conditions. between the pre- and postflight suited conditions, and between the two flight suits.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TM-2000-209761 , NAS 1.15:209761 , S-853
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-10
    Description: Motion information is critical for human locomotion and scene segmentation. Currently we have excellent neurophysiological models that are able to predict human detection and discrimination of local signals. Local motion signals are insufficient by themselves to guide human locomotion and to provide information about depth, object boundaries and surface structure. My research is aimed at understanding the mechanisms underlying the combination of motion signals across space and time. A target moving on an extended trajectory amidst noise dots in Brownian motion is much more detectable than the sum of signals generated by independent motion energy units responding to the trajectory segments. This result suggests that facilitation occurs between motion units tuned to similar directions, lying along the trajectory path. We investigated whether the interaction between local motion units along the motion direction is mediated by contrast. One possibility is that contrast-driven signals from motion units early in the trajectory sequence are added to signals in subsequent units. If this were the case, then units later in the sequence would have a larger signal than those earlier in the sequence. To test this possibility, we compared contrast discrimination thresholds for the first and third patches of a triplet of sequentially presented Gabor patches, aligned along the motion direction. According to this simple additive model, contrast increment thresholds for the third patch should be higher than thresholds for the first patch.The lack of a measurable effect on contrast thresholds for these various manipulations suggests that the pooling of signals along a trajectory is not mediated by contrast-driven signals. Instead, these results are consistent with models that propose that the facilitation of trajectory signals is achieved by a second-level network that chooses the strongest local motion signals and combines them if they occur in a spatio-temporal sequence consistent with a trajectory. These results parallel the lack of increased apparent contrast along a static contour made up of similarly oriented elements.
    Keywords: Man/System Technology and Life Support
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-10
    Description: This project aimed to develop a methodology for evaluating performance and acceptability characteristics of the pressurized crew module volume suitability for zero-gravity (g) ingress of a spacecraft and to evaluate the operational acceptability of the NASA crew return vehicle (CRV) for zero-g ingress of astronaut crew, volume for crew tasks, and general crew module and seat layout. No standard or methodology has been established for evaluating volume acceptability in human spaceflight vehicles. Volume affects astronauts'ability to ingress and egress the vehicle, and to maneuver in and perform critical operational tasks inside the vehicle. Much research has been conducted on aircraft ingress, egress, and rescue in order to establish military and civil aircraft standards. However, due to the extremely limited number of human-rated spacecraft, this topic has been un-addressed. The NASA CRV was used for this study. The prototype vehicle can return a 7-member crew from the International Space Station in an emergency. The vehicle's internal arrangement must be designed to facilitate rapid zero-g ingress, zero-g maneuverability, ease of one-g egress and rescue, and ease of operational tasks in multiple acceleration environments. A full-scale crew module mockup was built and outfitted with representative adjustable seats, crew equipment, and a volumetrically equivalent hatch. Human factors testing was conducted in three acceleration environments using ground-based facilities and the KC-135 aircraft. Performance and acceptability measurements were collected. Data analysis was conducted using analysis of variance and nonparametric techniques.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TM-2000-209764 , NAS 1.15:209764 , S-854
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-10
    Description: An apparatus and method for staining particular cell markers is disclosed. The apparatus includes a flexible tube that is reversibly pinched into compartments with one or more clamps. Each compartment of the tube contains a separate reagent and is in selective fluid communication with adjoining compartments.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-10
    Description: An apparatus is provided for a blood pump bearing system within a pump housing to support long-term highspeed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the Ir shaft to support big speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-10
    Description: A system with multimodality instrument for tissue identification includes a computer-controlled motor driven heuristic probe with a multisensory tip is discussed. For neurosurgical applications, the instrument is mounted on a stereotactic frame for the probe to penetrate the brain in a precisely controlled fashion. The resistance of the brain tissue being penetrated is continually monitored by a miniaturized strain gauge attached to the probe tip. Other modality sensors may be mounted near the probe tip to provide real-time tissue characterizations and the ability to detect the proximity of blood vessels, thus eliminating errors normally associated with registration of pre-operative scans, tissue swelling, elastic tissue deformation, human judgement, etc., and rendering surgical procedures safer, more accurate, and efficient. A neural network, program adaptively learns the information on resistance and other characteristic features of normal brain tissue during the surgery and provides near real-time modeling. A fuzzy logic interface to the neural network program incorporates expert medical knowledge in the learning process. Identification of abnormal brain tissue is determined by the detection of change and comparison with previously learned models of abnormal brain tissues. The operation of the instrument is controlled through a user friendly graphical interface. Patient data is presented in a 3D stereographics display. Acoustic feedback of selected information may optionally be provided. Upon detection of the close proximity to blood vessels or abnormal brain tissue, the computer-controlled motor immediately stops probe penetration.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-10
    Description: The X38/CRV is unique in several aspects: it does not afford the pilot a forward view through a window and it utilizes a parafoil in the final landing flight phase. As a result of some of these unique attributes the prototype on-board displays will need to provide enhanced situation awareness to aid a crew member in supervising the onboard GNC software to select a landing site, and possible obstacle avoidance during the final flight phase. In the ESA/ESTEC visualization prototype system the scene is visualized using MultiGen OpenFlight models on high-end SGI machines. The Parafoil Guidance Navigation and Control (PGNC) algorithms are being developed as a joint NASA/ESA venture. These algorithms will be used onboard the vehicle to create nominal flight trajectories for the vehicle to follow. These same algorithms are also used as parafoil simulators in our augmented situation awareness system we are developing. The output of the parafoil simulator is displayed on a Windows-based computer running the LandForm FlightVision software. The FlightVision software is used to create the synthetic environment displays and all the necessary HUD symbology. Maps, such as aeronautical charts, as well as satellite imagery are optionally overlaid on the 3D-terrain model to provide additional situation awareness for the crew.
    Keywords: Man/System Technology and Life Support
    Type: AIAA Paper 2000-4085 , JSC-CN-6295
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-10
    Description: In this project four motion cueing algorithms were initially investigated. The classical algorithm generated results with large distortion and delay and low magnitude. The NASA adaptive algorithm proved to be well tuned with satisfactory performance, while the UTIAS adaptive algorithm produced less desirable results. Modifications were made to the adaptive algorithms to reduce the magnitude of undesirable spikes. The optimal algorithm was found to have the potential for improved performance with further redesign. The center of simulator rotation was redefined. More terms were added to the cost function to enable more tuning flexibility. A new design approach using a Fortran/Matlab/Simulink setup was employed. A new semicircular canals model was incorporated in the algorithm. With these changes results show the optimal algorithm has some advantages over the NASA adaptive algorithm. Two general problems observed in the initial investigation required solutions. A nonlinear gain algorithm was developed that scales the aircraft inputs by a third-order polynomial, maximizing the motion cues while remaining within the operational limits of the motion system. A braking algorithm was developed to bring the simulator to a full stop at its motion limit and later release the brake to follow the cueing algorithm output.
    Keywords: Man/System Technology and Life Support
    Type: NASA/CR-2000-209863 , NAS 1.26:209863
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: Center TRACON Automation System (CTAS)/Flight Management System (FMS) integration on the flightdeck implies flight crews flying coupled in highly automated FMS modes [i.e. Vertical Navigation (VNAV) and Lateral Navigation (LNAV)] from top of descent to the final approach phase of flight. Pilots may also have to make FMS route edits and respond to datalink clearances in the Terminal Radar Approach Control (TRACON) airspace. This full mission simulator study addresses how the introduction of these FMS descent procedures affect crew activities, workload, and performance. It also assesses crew acceptance of these procedures. Results indicate that the number of crew activities and workload ratings are significantly reduced below current day levels when FMS procedures can be flown uninterrupted, but that activity numbers increase significantly above current day levels and workload ratings return to current day levels when FMS procedures are interrupted by common ATC interventions and CTAS routing advisories. Crew performance showed some problems with speed control during FMS procedures. Crew acceptance of the FMS procedures and route modification requirements was generally high; a minority of crews expressed concerns about use of VNAV in the TRACON airspace. Suggestions for future study are discussed.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TM-2000-209607 , NAS 1.15:209607 , IH-012 , HCI International, International Conference on Human-Computer Interaction; Aug 22, 1999 - Aug 27, 1999; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: This paper matches the BIO-Plex crop food production to the crew diet requirements. The expected average calorie requirement for BIO-Plex is 2,975 Calories per crewmember per day, for a randomly selected crew with a typical level of physical activity. The range of 2,550 to 3,400 Calories will cover about two-thirds of all crews. The exact calorie requirement will depend on the gender composition, individual weights, exercise, and work effort of the selected crew. The expected average crewmember calorie requirement can be met by 430 grams of carbohydrate, 100 grams of fat, and 90 grams of protein per crewmember per day, for a total of 620 grams. Some fat can replaced by carbohydrate. Each crewmember requires only 2 grams of vitamins and minerals per day. Only unusually restricted diets may lack essential nutrients. The Advanced Life Support (ALS) consensus is that BIO-Plex should grow wheat, potato, and soybean, and maybe sweet potato or peanut, and maybe lettuce and tomato. The BIO-Plex Biomass Production System food production and the external food supply must be matched to the crew diet requirement for calories and nutritional balance. The crop production and external supply specifications can each be varied as long as their sum matches the required diet specification. We have wide flexibility in choosing the crops and resupply. We can easily grow one-half the crew calories in one BIO-Plex Biomass Production Chamber (BPC) if we grow only the most productive crops (wheat, potato, and sweet potato) and it we achieve nominal crop productivity. If we assume higher productivity we can grow a wider variety of crops. If we grow one-half of the crew calories, externally supplied foods can easily provide the other half of the calories and balance the diet. We can not grow 95 percent of the crew calories in two BPCs at nominal productivity while growing a balanced diet. We produce maximum calories by growing wheat, potato, and peanut.
    Keywords: Man/System Technology and Life Support
    Type: OOICES-434 , 30th International Conference on Environmental Systems; Jul 10, 2000 - Jul 13, 2000; Toulouse; France|(ISSN 0148-7191)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-08-15
    Description: Manual assistance of therapists to help movement of legs of spinal cord injured (SCI) subjects during stepping on a treadmill for locomotion rehabilitation has severe economic and technical limitations. Scientists at the Department of Physiological Science at the University of California Los Angeles (UCLA) and roboticists at the Jet Propulsion Laboratory (JPL) initiated a joint effort to develop a robotic mechanism capable of performing controlled motions equivalent to the arm and hand motions of therapists assisting the stepping of locomotion impaired subjects on a treadmill, while the subjects' body weight is partially supported by an overhead harness. A first necessary technical step towards this development is to measure and understand the kinematics and dynamics of the therapists' arm and hand motions as they are reflected on the subjects' leg movement. This paper describes an initial measurement system developed for this purpose together with the related measurement results, and outlines the planned future technical work.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-08-15
    Description: In the field of aeronautics and astronautics, a paradigm shift has been witnessed by those in academia, research and development, and private industry. Long development life cycles and the budgets to support such programs and projects has given way to aggressive task schedules and leaner resources to draw from all the while challenging assigned individuals to create and produce improved products of processes. however, this "faster, better, cheaper" concept cannot merely be applied to the design, development, and test of complex systems such as earth-orbiting of interplanetary robotic spacecraft. Full advantage is not possible without due consideration and application to mission operations planning and flight operations, Equally as important as the flight system, the mission operations system consisting of qualified personnel, ground hardware and software tools, and verified and validated operational processes, should also be regarded as a complex system requiring personnel to draw upon formal education, training, related experiences, and heuristic reasoning in engineering an effective and efficient system. Unquestionably, qualified personnel are the most important elements of a mission operations system. This paper examines the experiences of the Deep Space I Project, the first in a series of new technology in-flight validation missions sponsored by the United States National Aeronautics and Space Administration (NASA), specifically, in developing a subsystems analysis and technology validation team comprised of former spacecraft development personnel. Human factor considerations are investigated from initial concept/vision formulation; through operational process development; personnel test and training; to initial uplink product development and test support. Emphasis has been placed on challenges and applied or recommended solutions, so as to provide opportunities for future programs and projects to address and disposition potential issues and concerns as early as possible to reap the benefits associated with learning from other's past experiences.
    Keywords: Man/System Technology and Life Support
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-12
    Description: The technologies required to design, fabricate, and utilize an inflatable module for space applications has been demonstrated and proven by the TransHab team during the development phase of the program. Through testing and hands-on development several issues about inflatable space structures have been addressed , such as: ease of manufacturing, structural integrity, micrometeorite protection, folding , and vacuum deployment. The TransHab inflatable technology development program has proven that not only are inflatable structures a viable option, but they also offer significant advantages over conventional metallic structures.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-6300
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Russia and the U.S. provide the current International Space Station (ISS) food system. Each country contributes half of the food supply in their respective flight food packaging. All of the packaged flight food is stowed in Russian provided containers, which interface with the Service Module galley. Each country accepts the other's flight worthiness inspections and qualifications. Some of the food for the first ISS crew was launched to ISS inside the Service Module in July of 2000, and STS-106 in September 2000 delivered more food to the ISS. All subsequent food deliveries will be made by Progress, the Russian re-supply vehicle. The U.S. will ship their portion of food to Moscow for loading onto the Progress. Delivery schedules vary, but the goal is to maintain at least a 45-day supply onboard ISS at all times. The shelf life for ISS food must be at least one year, in order to accommodate the long delivery cycle and onboard storage. Preservation techniques utilized in the US food system include dehydration, thermo stabilization, intermediate moisture, and irradiation. Additional fresh fruits and vegetables will be sent with each Progress and Shuttle flights as permitted by volume allotments. There is limited refrigeration available on the Service Module to store fresh fruits and vegetables. Astronauts and cosmonauts eat half U.S. and half Russian food. Menu planning begins 1 year before a planned launch. The flight crews taste food in the U.S. and in Russia and rate the acceptability. A preliminary menu is planned, based on these ratings and the nutritional requirements. The preliminary menu is then evaluated by the crews while training in Russia. Inputs from this evaluation are used to finalize the menu and flight packaging is initiated. Flight food is delivered 6 weeks before launch. The current challenge for the food system is meeting the nutritional requirements, especially no more than 10 mg iron, and 3500 mg sodium. Experience from Shuttle[Mir also indicated insufficient caloric intake for many crewmembers. Additional thermostabilized and irradiated foods have been developed for ISS to improve the ease of preparation and overall acceptability. Dehydrated foods offer limited advantage, since water must be delivered to ISS. An effort is underway to introduce other International Partner's food into the ISS food system. At first this will be one or two selected foods with the potential for more as the program matures. An increase in the variety of available foods would improve the overall acceptability. Additional galley capability will be required when the crew size increases on ISS. Anticipated improvements include freezers, refrigerators and microwave ovens. All of the ISS food development efforts are devoted to improving the food acceptability and subsequent consumption and mission success
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-6544
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-19
    Description: This study explored the effectiveness of local wrist/palm warming as a potential countermeasure for providing finger comfort during extended duration EVA. Methods: Six subjects (5 males and 1 female) were evaluated in a sagitally divided liquid cooling/warming garment (LCWG) with modified liquid cooling/warming (LCW) gloves in three different experimental conditions. Condition 1: Stage 1- no LCWG; chamber adaptation with LCW glove inlet water temperature 33 C; Stage 2-LCW glove inlet water temperature cooled to 8 C; Stage 3-LCW glove inlet water temperature warmed to 45 C; Condition 2: Stage1-LCWG and LCW glove inlet water temperature 33 C; Stage 2-LCWG inlet temperature cooled to 31 C, LCW gloves, 8 C; Stage 3-LCWG inlet water temperature remains at 31 C, LCW glove inlet water temperature warmed to 45 C; Condition 3: Stage l -LCWG and LCW gloves 33 C; Stage 2-LCWG inlet water temperature cooled to 28 C, LCW gloves, 8 C; Stage 3-LCWG remains at 28 C, LCW glove water temperature warmed to 45 C. Results: Wrist/palm area warming significantly increased finger temperature (Tfing) and blood perfusion in Stage 3 compared to Stage 2. The LCW gloves were most effective in increasing Stage 3 Tfing in Condition 1; and in increasing blood perfusion in Conditions 1 and 2 compared to Condition 3. Ratings of subjective perception of heat in the hand and overall body heat were higher at Stage 3 than Stage 2, with no significant differences across Conditions. Conclusions: Local wrist/palm warming was effective in increasing blood circulation to the distal extremities, suggesting the potential usefulness of this technique for increasing astronaut thermal comfort during EVA while decreasing power requirements. The LCW gloves were effective in heating the highly cooled fingers when the overall body was in a mild heat deficit.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-6254 , 30th International Conference on Environmental Systems; Jul 10, 2000 - Jul 13, 2000; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-19
    Description: The thermal dynamics and design of an Advanced Space Suit are considered. A transient model of the Advanced Space Suit has been developed and implemented using MATLAB/Simulink to help with sizing, with design evaluation, and with the development of an automatic thermal comfort control strategy. The model is described and the thermal characteristics of the Advanced Space suit are investigated including various parametric design studies. The steady state performance envelope for the Advanced Space Suit is defined in terms of the thermal environment and human metabolic rate and the transient response of the human-suit-MPLSS system is analyzed.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-5960
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: TransHab is a, 27-foot diameter by 40-foot, lightweight inflatable habitation module for space applications. TransHab consists of a lightweight graphite-composite core, 11-foot diameter by 23-foot tall, surrounded by a 27-foot diameter inflatable shell. Originally envisioned to be the habitation module of an interplanetary transit vehicle, TransHab is currently being considered as a module for use on the International Space Station (ISS). During the past two years, several tests have been performed at the NASA/Johnson Space Center to demonstrate and prove the technologies required in building a large-scale inflatable habitation module. This paper discusses the results of these tests which including the following: 1) a structural integrity development test article hydJ"Ostatically tested to four times ambient pressure, 2) a full-scale development test article manufactured, assembled, folded and deployed at vacuum, and 3) extensive hypervelocity impact testing of the micro meteoroid and orbital debris protection system.
    Keywords: Man/System Technology and Life Support
    Type: AIAA Paper 2000-1822 , JSC-CN-5992 , 2000 AIAA Space Inflatables Forum; Structures, Structural Dynamics, and Materials Conference; Apr 03, 2000 - Apr 06, 2000; Atlanta,Ga; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: Habitability is a fundamental component of any long-duration human habitat. Due to the pressures on the crew and the criticality of their performance, this is particularly true of habitats or vehicles proposed for use in any human space mission of duration over 30 days. This paper, the second of three on this subject, will focus on evaluating all the vehicles currently under consideration for the Mars Design Reference Mission through application of metrics for habitability (proposed in a previous paper, see references Adams/McCurdy 1999).
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-6083 , Space 2000/Robotics 2000; Feb 20, 2000; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: Human exploration of space requires an understanding of the risks to which crews will be exposed during such missions, and the mitigation of those risks to the fullest extent practical. This becomes a greater imperative as we prepare for interplanetary expeditions involving long periods in weightlessness in transit to and then from the destination (a planet, such as Mars, or perhaps a point in space, such as the Lagrangian point L2), and exposure to the unique environment of the destination itself. We need to know, more definitively, what the risks are to human health, safety, and performance, and how to prevent or counteract them throughout all phases of a long duration mission. The Johnson Space Center's Space and Life Sciences Directorate and the National Space Biomedical Research Institute (NSBRI) have implemented an effort to identify the most critical risks confronting humans on such mission and the types of research and technology efforts required to mitigate and otherwise reduce the probability and severity of those risks. This paper describes the "Critical Path Roadmap Project" to define, assess and prioritize the risks and present the results of the assessment with an emphasis on the research and technology priorities to meet the challenge of long duration human spaceflight mission.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-6311 , Space2000 Conference; Sep 20, 2000; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...