ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2,230)
  • Annual Reviews
  • 2000-2004  (2,230)
  • 1990-1994
  • 1985-1989
  • 1975-1979
  • 2004  (1,093)
  • 2000  (1,137)
Collection
  • Articles  (2,230)
Years
  • 2000-2004  (2,230)
  • 1990-1994
  • 1985-1989
  • 1975-1979
Year
Journal
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 27-47 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Owing to the rapid development of in vivo applications for non-viral gene delivery vectors, it is necessary to have a better understanding of how the structure-activity relationships of these lipid-DNA complexes are affected by their environment. Indeed, research in gene therapy first focused on in vitro cell culture studies to determine the mechanisms involved in the delivery of DNA into the cell. New biophysical techniques such as electron microscopy and X-ray diffraction have been developed to discern the structure of the lipid-DNA complex. However, further studies have revealed discrepancies between optimal lipid-DNA formulations for in vitro transfection and for in vivo administration of these vectors. Furthermore, some immune stimulatory effects have been associated with in vivo lipid-DNA administration. This review summarizes the current state of knowledge on in vitro and in vivo lipid-DNA complex transfections. New prospects of vectors for in vivo gene transfer are also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 81-103 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Hundreds of acetyltransferases exist. All use a common acetyl donor-acetyl coenzyme A-and each exhibits remarkable specificity for acetyl acceptors, which include small molecules and proteins. Analysis of the primary sequences of these enzymes indicates that they can be sorted into several superfamilies. This review covers the three-dimensional structures of members of one of these superfamilies, now referred to in the literature as the GCN5-related N-acetyltransferases (GNAT), reflecting the importance of one functional category, the histone acetyltransferases. Despite the diversity of substrate specificities, members of the GNAT superfamily demonstrate remarkable similarity in protein topology and mode of acetyl coenzyme A binding, likely reflecting a conserved catalytic mechanism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 49-79 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Protein kinase C homology-1 and -2, FYVE, and pleckstrin homology domains are ubiquitous in eukaryotic signal transduction and membrane-trafficking proteins. These domains regulate subcellular localization and protein function by binding to lipid ligands embedded in cell membranes. Structural and biochemical analysis of these domains has shown that their molecular mechanisms of membrane binding depend on a combination of specific and nonspecific interactions with membrane lipids. In vivo studies of green fluorescent protein fusions have highlighted the key roles of these domains in regulating protein localization to plasma and internal membranes in cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 1-26 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Although the force fields and interaction energies that control protein behavior can be inferred indirectly from equilibrium and kinetic measurements, recent developments have made it possible to quantify directly (a) the ranges, magnitudes, and time dependence of the interaction energies and forces between biological materials; (b) the mechanical properties of isolated proteins; and (c) the strength of single receptor-ligand bonds. This review describes recent results obtained by using the atomic force microscope, optical tweezers, the surface force apparatus, and micropipette aspiration to quantify short-range protein-ligand interactions and the long-range, nonspecific forces that together control protein behavior. The examples presented illustrate the power of force measurements to quantify directly the force fields and energies that control protein behavior.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 183-212 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Cys2His2 zinc fingers are one of the most common DNA-binding motifs found in eukaryotic transcription factors. These proteins typically contain several fingers that make tandem contacts along the DNA. Each finger has a conserved betabetaalpha structure, and amino acids on the surface of the alpha-helix contact bases in the major groove. This simple, modular structure of zinc finger proteins, and the wide variety of DNA sequences they can recognize, make them an attractive framework for attempts to design novel DNA-binding proteins. Several studies have selected fingers with new specificities, and there clearly are recurring patterns in the observed side chain-base interactions. However, the structural details of recognition are intricate enough that there are no general rules (a "recognition code") that would allow the design of an optimal protein for any desired target site. Construction of multifinger proteins is also complicated by interactions between neighboring fingers and the effect of the intervening linker. This review analyzes DNA recognition by Cys2His2 zinc fingers and summarizes progress in generating proteins with novel specificities from fingers selected by phage display.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 327-359 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract This review describes how kinetic experiments using techniques with dramatically improved time resolution have contributed to understanding mechanisms in protein folding. Optical triggering with nanosecond laser pulses has made it possible to study the fastest-folding proteins as well as fundamental processes in folding for the first time. These include formation of alpha-helices, beta-sheets, and contacts between residues distant in sequence, as well as overall collapse of the polypeptide chain. Improvements in the time resolution of mixing experiments and the use of dynamic nuclear magnetic resonance methods have also allowed kinetic studies of proteins that fold too fast (〉 103 s-1) to be observed by conventional methods. Simple statistical mechanical models have been extremely useful in interpreting the experimental results. One of the surprises is that models originally developed for explaining the fast kinetics of secondary structure formation in isolated peptides are also successful in calculating folding rates of single domain proteins from their native three-dimensional structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 411-438 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract ClC-type chloride channels are ubiquitous throughout the biological world. Expressed in nearly every cell type, these proteins have a host of biological functions. With nine distinct homologues known in eukaryotes, the ClCs represent the only molecularly defined family of chloride channels. ClC channels exhibit features of molecular architecture and gating mechanisms unprecedented in other types of ion channels. They form two-pore homodimers, and their voltage-dependence arises not from charged residues in the protein, but rather via coupling of gating to the movement of chloride ions within the pore. Because the functional characteristics of only a few ClC channels have been studied in detail, we are still learning which properties are general to the whole family. New approaches, including structural analyses, will be crucial to an understanding of ClC architecture and function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 439-461 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract In the past decade, a general design for sequence-specific minor groove ligands has evolved, based on the natural products distamycin and netropsin. By utilizing a basic set of design rules for connecting pyrrole, imidazole, and hydroxypyrrole modules, new ligands can be prepared to target almost any sequence of interest with both high affinity and specificity. In this review we present the design rules with a brief history of how they evolved. The structural basis for sequence-specific recognition is explained, together with developments that allow linking of recognition modules that enable targeting of long DNA sequences. Examples of the affinity and specificity that can be achieved with a number of variations on the basic design are given. Recently these molecules have been used to compete with proteins both in vitro and in vivo, and a brief description of the experimental results are given.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 387-413 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Residual dipolar couplings (RDCs) have recently emerged as a new tool in nuclear magnetic resonance (NMR) with which to study macromolecular structure and function in a solution environment. RDCs are complementary to the more conventional use of NOEs to provide structural information. While NOEs are local-distance restraints, RDCs provide long-range orientational information. RDCs are now widely utilized in structure calculations. Increasingly, they are being used in novel applications to address complex issues in structural biology such as the accurate determination of the global structure of oligonucleotides and the relative orientation of protein domains. This review briefly describes the theory and methods for obtaining RDCs and then describes the range of biological applications where RDCs have been used.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 269-295 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Views of how cell membranes are organized are presently changing. The lipid bilayer that constitutes these membranes is no longer understood to be a homogeneous fluid. Instead, lipid assemblies, termed rafts, have been introduced to provide fluid platforms that segregate membrane components and dynamically compartmentalize membranes. These assemblies are thought to be composed mainly of sphingolipids and cholesterol in the outer leaflet, somehow connected to domains of unknown composition in the inner leaflet. Specific classes of proteins are associated with the rafts. This review critically analyzes what is known of phase behavior and liquid-liquid immiscibility in model systems and compares these data with what is known of domain formation in cell membranes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 593-618 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: During brain development, neurons migrate great distances from proliferative zones to generate the cortical gray matter. A series of studies has identified genes that are critical for migration and targeting of neurons to specific brain regions. These genes encode three basic groups of proteins and produce three distinct phenotypes. The first group encodes cytoskeletal molecules and produces graded and dosage-dependent effects, with a significant amount of functional redundancy. This group also appears to play important roles during the initiation and ongoing progression of neuronal movement. The second group encodes signaling molecules for which homozygous mutations lead to an inverted cortex. In addition, this group is responsible for movement of neurons through anatomic boundaries to specific cortical layers. The third group encodes enzymatic regulators of glycosylation and appears to delineate where neuronal migration will arrest. There is significant cross-talk among these different groups of molecules, suggesting possible points of pathway convergence.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 725-757 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: The principles underlying regeneration in planarians have been explored for over 100 years through surgical manipulations and cellular observations. Planarian regeneration involves the generation of new tissue at the wound site via cell proliferation (blastema formation), and the remodeling of pre-existing tissues to restore symmetry and proportion (morphallaxis). Because blastemas do not replace all tissues following most types of injuries, both blastema formation and morphallaxis are needed for complete regeneration. Here we discuss a proliferative cell population, the neoblasts, that is central to the regenerative capacities of planarians. Neoblasts may be a totipotent stem-cell population capable of generating essentially every cell type in the adult animal, including themselves. The population properties of the neoblasts and their descendants still await careful elucidation. We identify the types of structures produced by blastemas on a variety of wound surfaces, the principles guiding the reorganization of pre-existing tissues, and the manner in which scale and cell number proportions between body regions are restored during regeneration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 481-504 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Plant membrane trafficking shares many features with other eukaryotic organisms, including the machinery for vesicle formation and fusion. However, the plant endomembrane system lacks an ER-Golgi intermediate compartment, has numerous Golgi stacks and several types of vacuoles, and forms a transient compartment during cell division. ER-Golgi trafficking involves bulk flow and efficient recycling of H/KDEL-bearing proteins. Sorting in the Golgi stacks separates bulk flow to the plasma membrane from receptor-mediated trafficking to the lytic vacuole. Cargo for the protein storage vacuole is delivered from the endoplasmic reticulum (ER), cis-Golgi, and trans-Golgi. Endocytosis includes recycling of plasma membrane proteins from early endosomes. Late endosomes appear identical with the multivesiculate prevacuolar compartment that lies on the Golgi-vacuole trafficking pathway. In dividing cells, homotypic fusion of Golgi-derived vesicles forms the cell plate, which expands laterally by targeted vesicle fusion at its margin, eventually fusing with the plasma membrane.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 285-308 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: We review the current status of research in dorsal-ventral (D-V) patterning in vertebrates. Emphasis is placed on recent work on Xenopus, which provides a paradigm for vertebrate development based on a rich heritage of experimental embryology. D-V patterning starts much earlier than previously thought, under the influence of a dorsal nuclear -Catenin signal. At mid-blastula two signaling centers are present on the dorsal side: The prospective neuroectoderm expresses bone morphogenetic protein (BMP) antagonists, and the future dorsal endoderm secretes Nodal-related mesoderm-inducing factors. When dorsal mesoderm is formed at gastrula, a cocktail of growth factor antagonists is secreted by the Spemann organizer and further patterns the embryo. A ventral gastrula signaling center opposes the actions of the dorsal organizer, and another set of secreted antagonists is produced ventrally under the control of BMP4. The early dorsal -Catenin signal inhibits BMP expression at the transcriptional level and promotes expression of secreted BMP antagonists in the prospective central nervous system (CNS). In the absence of mesoderm, expression of Chordin and Noggin in ectoderm is required for anterior CNS formation. FGF (fibroblast growth factor) and IGF (insulin-like growth factor) signals are also potent neural inducers. Neural induction by anti-BMPs such as Chordin requires mitogen-activated protein kinase (MAPK) activation mediated by FGF and IGF. These multiple signals can be integrated at the level of Smad1. Phosphorylation by BMP receptor stimulates Smad1 transcriptional activity, whereas phosphorylation by MAPK has the opposite effect. Neural tissue is formed only at very low levels of activity of BMP-transducing Smads, which require the combination of both low BMP levels and high MAPK signals. Many of the molecular players that regulate D-V patterning via regulation of BMP signaling have been conserved between Drosophila and the vertebrates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 455-480 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Macrophages are essential modulators of lipid metabolism and the innate immune system. Lipid and inflammatory pathways induced in activated macrophages are central to the pathogenesis of human diseases including atherosclerosis. Recent work has shown that expression of genes involved in lipid uptake and cholesterol efflux in macrophages is controlled by peroxisome proliferator-activated receptors (PPARs) and liver X receptors (LXRs). Other studies have implicated these same receptors in the modulation of macrophage inflammatory gene expression. Together, these observations position PPARs and LXRs at the crossroads of lipid metabolism and inflammation and suggest that these receptors may serve to integrate these pathways in the control of macrophage gene expression. In this review, we summarize recent work that has advanced our understanding of the roles of PPARs and LXRs in macrophage biology and discuss the implication of these results for cardiovascular physiology and disease.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 87-123 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: The endoplasmic reticulum (ER) and the Golgi comprise the first two steps in protein secretion. Vesicular carriers mediate a continuous flux of proteins and lipids between these compartments, reflecting the transport of newly synthesized proteins out of the ER and the retrieval of escaped ER residents and vesicle machinery. Anterograde and retrograde transport is mediated by distinct sets of cytosolic coat proteins, the COPII and COPI coats, respectively, which act on the membrane to capture cargo proteins into nascent vesicles. We review the mechanisms that govern coat recruitment to the membrane, cargo capture into a transport vesicle, and accurate delivery to the target organelle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 427-453 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: The one-cell Caenorhabditis elegans embryo divides asymmetrically into a larger and smaller blastomere, each with a different fate. How does such asymmetry arise? The sperm-supplied centrosome establishes an axis of polarity in the embryo that is transduced into the establishment of anterior and posterior cortical domains. These cortical domains define the polarity of the embryo, acting upstream of the PAR proteins. The PAR proteins, in turn, determine the subsequent segregation of fate determinants and the plane of cell division. We address how cortical asymmetry could be established, relying on data from C. elegans and other polarized cells, as well as from applicable models. We discuss how cortical polarity influences spindle position to accomplish an asymmetric division, presenting the current models of spindle orientation and anaphase spindle displacement. We focus on asymmetric cell division as a function of the actin and microtubule cytoskeletons, emphasizing the cell biology of polarity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 695-723 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: The study of the epithelium of the adult mammalian intestine touches upon many modern aspects of biology. The epithelium is in a constant dialogue with the underlying mesenchyme to control stem cell activity, proliferation in transit-amplifying compartments, lineage commitment, terminal differentiation and, ultimately, cell death. There are spatially distinct compartments dedicated to each of these events. The Wnt, TGF-beta, BMP, Notch, and Par polarity pathways are the major players in homeostatic control of the adult epithelium. Several hereditary cancer syndromes deregulate these same signaling cascades through mutational (in)activation. Moreover, these mutations often also occur in sporadic tumors. Thus symmetry exists between the roles that these signaling pathways play in physiology and in cancer of the intestine. This is particularly evident for the Wnt/APC pathway, for which the mammalian intestine has become one of the most-studied paradigms. Here, we integrate recent knowledge of the molecular inner workings of the prototype signaling cascades with their specific roles in intestinal epithelial homeostasis and in neoplastic transformation of the epithelium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 34 (2004), S. 83-122 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Semiconductor nanowires and nanotubes exhibit novel electronic and optical properties owing to their unique structural one-dimensionality and possible quantum confinement effects in two dimensions. With a broad selection of compositions and band structures, these one-dimensional semiconductor nanostructures are considered to be the critical components in a wide range of potential nanoscale device applications. To fully exploit these one-dimensional nanostructures, current research has focused on rational synthetic control of one-dimensional nanoscale building blocks, novel properties characterization and device fabrication based on nanowire building blocks, and integration of nanowire elements into complex functional architectures. Significant progress has been made in a few short years. This review highlights the recent advances in the field, using work from this laboratory for illustration. The understanding of general nanocrystal growth mechanisms serves as the foundation for the rational synthesis of semiconductor heterostructures in one dimension. Availability of these high-quality semiconductor nanostructures allows systematic structural-property correlation investigations, particularly of a size- and dimensionality-controlled nature. Novel properties including nanowire microcavity lasing, phonon transport, interfacial stability and chemical sensing are surveyed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 34 (2004), S. 1-40 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Highly strained semiconductors grow epitaxially on mismatched substrates in the Stranski-Krastanow growth mode, wherein islands are formed after a few monolayers of layer-by-layer growth. Elastic relaxation on the facet edges, renormalization of the surface energy of the facets, and interaction between neighboring islands via the substrate are the driving forces for self-organized growth. The dimensions of the defect-free islands are of the order lambaB, the de Broglie wavelength, and provide three-dimensional quantum confinement of carriers. Self-organized In(Ga)As/GaAs quantum dots, or quantum boxes, are grown by molecular beam expitaxy (MBE) or metal-organic vapor phase epitaxy (MOVPE) on GaAs, InP, and other substrates and are being incorporated in microelectronic and opto-electronic devices. The use of strain to produce self-organized quantum dots has now become a well-accepted approach and is widely used in III-V semiconductors and other material systems. Much progress has been made in the area of growth, where focus has been on size control, and on optical characterization, where the goal has been the application to lasers and detectors. The unique carrier dynamics in the dots, characterized by femtosecond pump-probe spectroscopy, has led to novel device applications. This article reviews the growth and electronic properties of InGaAs quantum dots and the characteristics of interband and intersublevel lasers and detectors and modulation devices.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 34 (2004), S. 123-150 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Carbon nanotubes functionalized with biological molecules (such as protein peptides and nucleic acids) show great potential for application in bioengineering and nanotechnology. Fundamental understanding, description, and regulation of such bio-nano-systems will ultimately lead to a new generation of integrated systems that combine unique properties of the carbon nanotube (CNT) with biological recognition capabilities. In this review, we describe recent advances in understanding the interactions between deoxyribonucleic acids (DNA) and CNT, as well as relevant simulation techniques. We also review progress in simulating DNA noncovalent interactions with CNTs in an aqueous environment. Molecular dynamics simulations indicate that DNA molecules may be encapsulated inside or wrap around CNT owing to van der Waals attraction between DNA and CNT. We focus on the dynamics and energetics of DNA encapsulation inside nanotubes and discuss the mechanism of encapsulation and the effects of nanotube size, nanotube end-group, DNA base sequence, solvent temperature and pressure on the encapsulation process. Finally, we discuss the likely impact of DNA encapsulation on bioengineering and nanotechnology, as well as other potential applications.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Materials Research 34 (2004), S. 279-314 
    ISSN: 1531-7331
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Modeling and simulation are becoming increasingly accepted components of materials research. In this review we discuss application of modeling and simulation in the developing field of biomaterials. To restrict the discussion somewhat, we focus primarily on the structure and properties of biomaterials and do not discuss biochemical or biomedical applications. We start with a discussion of how atomistic-level simulation can be used to study molecules and collections of molecules. We then focus on mesoscale simulations of structure and properties, followed by a brief review of continuum-scale approaches. We end with some thoughts on the future of modeling and simulation in biomaterials applications.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 35 (2004), S. 557-581 
    ISSN: 1543-592X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: We review the evidence of regime shifts in terrestrial and aquatic environments in relation to resilience of complex adaptive ecosystems and the functional roles of biological diversity in this context. The evidence reveals that the likelihood of regime shifts may increase when humans reduce resilience by such actions as removing response diversity, removing whole functional groups of species, or removing whole trophic levels; impacting on ecosystems via emissions of waste and pollutants and climate change; and altering the magnitude, frequency, and duration of disturbance regimes. The combined and often synergistic effects of those pressures can make ecosystems more vulnerable to changes that previously could be absorbed. As a consequence, ecosystems may suddenly shift from desired to less desired states in their capacity to generate ecosystem services. Active adaptive management and governance of resilience will be required to sustain desired ecosystem states and transform degraded ecosystems into fundamentally new and more desirable configurations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 35 (2004), S. 285-322 
    ISSN: 1543-592X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Studies of plant and animal assemblages from both the terrestrial and the marine fossil records reveal persistence for extensive periods of geological time, sometimes millions of years. Persistence does not require lack of change or the absence of variation from one occurrence of the assemblage to the next in geological time. It does, however, imply that assemblage composition is bounded and that variation occurs within those bounds. The principal cause for these patterns appears to be species-, and perhaps clade-level, environmental fidelity that results in long-term tracking of physical conditions. Other factors that influence persistent recurrence of assemblages are historical, biogeographic effects, the "law of large numbers," niche differentiation, and biotic interactions. Much research needs to be done in this area, and greater uniformity is needed in the approaches to studying the problem. However, great potential also exists for enhanced interaction between paleoecology and neoecology in understanding spatiotemporal complexity of ecological dynamics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 35 (2004), S. 523-556 
    ISSN: 1543-592X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: The evolutionary succession of marine photoautotrophs began with the origin of photosynthesis in the Archean Eon, perhaps as early as 3.8 billion years ago. Since that time, Earth's atmosphere, continents, and oceans have undergone substantial cyclic and secular physical, chemical, and biological changes that selected for different phytoplankton taxa. Early in the history of eukaryotic algae, between 1.6 and 1.2 billion years ago, an evolutionary schism gave rise to "green" (chlorophyll b-containing) and "red" (chlorophyll c-containing) plastid groups. Members of the "green" plastid line were important constituents of Neoproterozoic and Paleozoic oceans, and, ultimately, one green clade colonized land. By the mid-Mesozoic, the green line had become ecologically less important in the oceans. In its place, three groups of chlorophyll c-containing eukaryotes, the dinoflagellates, coccolithophorids, and diatoms, began evolutionary trajectories that have culminated in ecological dominance in the contemporary oceans. Breakup of the supercontinent Pangea, continental shelf flooding, and changes in ocean redox chemistry may all have contributed to this evolutionary transition. At the same time, the evolution of these modern eukaryotic taxa has influenced both the structure of marine food webs and global biogeochemical cycles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 35 (2004), S. 199-227 
    ISSN: 1543-592X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Species are routinely used as fundamental units of analysis in biogeography, ecology, macroevolution, and conservation biology. A large literature focuses on defining species conceptually, but until recently little attention has been given to the issue of empirically delimiting species. Researchers confronted with the task of delimiting species in nature are often unsure which method(s) is (are) most appropriate for their system and data type collected. Here, we review twelve of these methods organized into two general categories of tree- and nontree-based approaches. We also summarize the relevant biological properties of species amenable to empirical evaluation, the classes of data required, and some of the strengths and limitations of each method. We conclude that all methods will sometimes fail to delimit species boundaries properly or will give conflicting results, and that virtually all methods require researchers to make qualitative judgments. These facts, coupled with the fuzzy nature of species boundaries, require an eclectic approach to delimiting species and caution against the reliance on any single data set or method when delimiting species. No one definition has as yet satisfied all naturalists; yet every naturalist knows vaguely what he means when he speaks of a species. Darwin (1859/1964)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 35 (2004), S. 175-197 
    ISSN: 1543-592X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Mutualisms occur when interactions between species produce reciprocal benefits. However, the outcome of these interactions frequently shifts from positive, to neutral, to negative, depending on the environmental and community context, and indirect effects commonly produce unexpected mutualisms that have community-wide consequences. The dynamic, and context dependent, nature of mutualisms can transform consumers, competitors, and parasites into mutualists, even while they consume, compete with, or parasitize their partner species. These dynamic, and often diffuse, mutualisms strongly affect community organization and ecosystem processes, but the historic focus on pairwise interactions decoupled from their more complex community context has obscured their importance. In aquatic systems, mutualisms commonly support ecosystem-defining foundation species, underlie energy and nutrient dynamics within and between ecosystems, and provide mechanisms by which species can rapidly adjust to ecological variance. Mutualism is as important as competition, predation, and physical disturbance in determining community structure, and its impact needs to be adequately incorporated into community theory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 35 (2004), S. 467-490 
    ISSN: 1543-592X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Spatial synchrony refers to coincident changes in the abundance or other time-varying characteristics of geographically disjunct populations. This phenomenon has been documented in the dynamics of species representing a variety of taxa and ecological roles. Synchrony may arise from three primary mechanisms:(a) dispersal among populations, reducing the size of relatively large populations and increasing relatively small ones; (b) congruent dependence of population dynamics on a synchronous exogenous random factor such as temperature or rainfall, a phenomenon known as the "Moran effect"; and (c) trophic interactions with populations of other species that are themselves spatially synchronous or mobile. Identification of the causes of synchrony is often difficult. In addition to intraspecific synchrony, there are many examples of synchrony among populations of different species, the causes of which are similarly complex and difficult to identify. Furthermore, some populations may exhibit complex spatial dynamics such as spiral waves and chaos. Statistical tests based on phase coherence and/or time-lagged spatial correlation are required to characterize these more complex patterns of spatial dynamics fully.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 35 (2004), S. 435-466 
    ISSN: 1543-592X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Ecologists and evolutionary biologists are broadly interested in how the interactions among organisms influence their abundance, distribution, phenotypes, and genotypic composition. Recently, we have seen a growing appreciation of how multispecies interactions can act synergistically or antagonistically to alter the ecological and evolutionary outcomes of interactions in ways that differ fundamentally from outcomes predicted by pairwise interactions. Here, we review the evidence for criteria identified to detect community-based, diffuse coevolution. These criteria include (a) the presence of genetic correlations between traits involved in multiple interactions, (b) interactions with one species that alter the likelihood or intensity of interactions with other species, and (c) nonadditive combined effects of multiple interactors. In addition, we review the evidence that multispecies interactions have demographic consequences for populations, as well as evolutionary consequences. Finally, we explore the experimental and analytical techniques, and their limitations, used in the study of multispecies interactions. Throughout, we discuss areas in particular need of future research.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 35 (2004), S. 375-403 
    ISSN: 1543-592X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Floral evolution has often been associated with differences in pollination syndromes. Recently, this conceptual structure has been criticized on the grounds that flowers attract a broader spectrum of visitors than one might expect based on their syndromes and that flowers often diverge without excluding one type of pollinator in favor of another. Despite these criticisms, we show that pollination syndromes provide great utility in understanding the mechanisms of floral diversification. Our conclusions are based on the importance of organizing pollinators into functional groups according to presumed similarities in the selection pressures they exert. Furthermore, functional groups vary widely in their effectiveness as pollinators for particular plant species. Thus, although a plant may be visited by several functional groups, the relative selective pressures they exert will likely be very different. We discuss various methods of documenting selection on floral traits. Our review of the literature indicates overwhelming evidence that functional groups exert different selection pressures on floral traits. We also discuss the gaps in our knowledge of the mechanisms that underlie the evolution of pollination syndromes. In particular, we need more information about the relative importance of specific traits in pollination shifts, about what selective factors favor shifts between functional groups, about whether selection acts on traits independently or in combination, and about the role of history in pollination-syndrome evolution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 38 (2000), S. 1-33 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Abstract I have had a very fortunate career in astronomy, benefiting greatly from numerous accidents of fate. I grew up in Cincinnati, Ohio, served in the US Army Air Force in World War II, and had all my further education at the University of Chicago, from PhB in the College to PhD in astronomy and astrophysics. There, as a postdoc at Princeton University, and as a young faculty member at Caltech and Mount Wilson and Palomar Observatories, I had excellent teachers and mentors. I have done research primarily on gaseous nebulae and active galactic nuclei, but also made a few early contributions on stellar interiors and the heating in the outer layers of the Sun. The major part of my scientific career was at the University of Wisconsin and Lick Observatory, but I also had three productive years at the Institute for Advanced Study.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 38 (2000), S. 289-335 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Abstract ROSAT observations indicate that approximately half of all nearby groups of galaxies contain spatially extended X-ray emission. The radial extent of the X-ray emission is typically 50-500 h-1100 kpc or approximately 10-50% of the virial radius of the group. Diffuse X-ray emission is generally restricted to groups that contain at least one early-type galaxy. X-ray spectroscopy suggests the emission mechanism is most likely a combination of thermal bremsstrahlung and line emission. This interpretation requires that the entire volume of groups be filled with a hot, low-density gas known as the intragroup medium. ROSAT and ASCA observations indicate that the temperature of the diffuse gas in groups ranges from approximately 0.3 keV to 2 keV. Higher temperature groups tend to follow the correlations found for rich clusters between X-ray luminosity, temperature, and velocity dispersion. However, groups with temperatures below approximately 1 keV appear to fall off the cluster LX-T relationship (and possibly the LX-sigma and sigma-T cluster relationships, although evidence for these latter departures is at the present time not very strong). Deviations from the cluster LX-T relationship are consistent with preheating of the intragroup medium by an early generation of stars and supernovae. There is now considerable evidence that most X-ray groups are real, physical systems and not chance superpositions or large-scale filaments viewed edge-on. Assuming the intragroup gas is in hydrostatic equilibrium, X-ray observations can be used to estimate the masses of individual systems. ROSAT observations indicate that the typical mass of an X-ray group is ~1013 h-1100 M out to the radius to which X-ray emission is currently detected. The observed baryonic masses of groups are a small fraction of the X-ray determined masses, which implies that groups are dominated by dark matter. On scales of the virial radius, the dominant baryonic component in groups is likely the intragroup medium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 38 (2000), S. 485-519 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Abstract The brown dwarfs occupy the gap between the least massive star and the most massive planet. They begin as dimly stellar in appearance and experience fusion (of at least deuterium) in their interiors. But they are never able to stabilize their luminosity or temperature and grow ever fainter and cooler with time. For that reason, they can be viewed as a constituent of baryonic "dark matter." Indeed, we currently have a hard time directly seeing an old brown dwarf beyond 100 pc. After 20 years of searching and false starts, the first confirmed brown dwarfs were announced in 1995. This was due to a combination of increased sensitivity, better search strategies, and new means of distinguishing substellar from stellar objects. Since then, a great deal of progress has been made on the observational front. We are now in a position to say a substantial amount about actual brown dwarfs. We have a rough idea of how many of them occur as solitary objects and how many are found in binary systems. We have obtained the first glimpse of atmospheres intermediate in temperature between stars and planets, in which dust formation is a crucial process. This has led to the proposal of the first new spectral classes in several decades and the need for new diagnostics for classification and setting the temperature scale. The first hints on the substellar mass function are in hand, although all current masses depend on models. It appears that numerically, brown dwarfs may well be almost as common as stars (though they appear not to contain a dynamically interesting amount of mass).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 38 (2000), S. 613-666 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Abstract This review deals with the winds from "normal" hot stars such as O-stars, B- and A-supergiants, and Central Stars of Planetary Nebulae with O-type spectra. The advanced diagnostic methods of stellar winds, including an assessment of the accuracy of the determinations of global stellar wind parameters (terminal velocities, mass-loss rates, wind momenta, and energies), are introduced and scaling relations as a function of stellar parameters are provided. Observational results are interpreted in the framework of the stationary, one-dimensional (1-D) theory of line-driven winds. Systematic effects caused by nonhomogeneous structures, time dependence, and deviations from spherical symmetry are discussed. The review finishes with a brief description of the role of stellar winds as extragalactic distance indicators and as tracers of the chemical composition of galaxies at high redshift.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 42 (2004), S. 211-273 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Turbulence affects the structure and motions of nearly all temperature and density regimes in the interstellar gas. This two-part review summarizes the observations, theory, and simulations of interstellar turbulence and their implications for many fields of astrophysics. The first part begins with diagnostics for turbulence that have been applied to the cool interstellar medium and highlights their main results. The energy sources for interstellar turbulence are then summarized along with numerical estimates for their power input. Supernovae and superbubbles dominate the total power, but many other sources spanning a large range of scales, from swing-amplified gravitational instabilities to cosmic ray streaming, all contribute in some way. Turbulence theory is considered in detail, including the basic fluid equations, solenoidal and compressible modes, global inviscid quadratic invariants, scaling arguments for the power spectrum, phenomenological models for the scaling of higher-order structure functions, the direction and locality of energy transfer and cascade, velocity probability distributions, and turbulent pressure. We emphasize expected differences between incompressible and compressible turbulence. Theories of magnetic turbulence on scales smaller than the collision mean free path are included, as are theories of magnetohydrodynamic turbulence and their various proposals for power spectra. Numerical simulations of interstellar turbulence are reviewed. Models have reproduced the basic features of the observed scaling relations, predicted fast decay rates for supersonic MHD turbulence, and derived probability distribution functions for density. Thermal instabilities and thermal phases have a new interpretation in a supersonically turbulent medium. Large-scale models with various combinations of self-gravity, magnetic fields, supernovae, and star formation are beginning to resemble the observed interstellar medium in morphology and statistical properties. The role of self-gravity in turbulent gas evolution is clarified, leading to new paradigms for the formation of star clusters, the stellar mass function, the origin of stellar rotation and binary stars, and the effects of magnetic fields. The review ends with a reflection on the progress that has been made in our understanding of the interstellar medium and offers a list of outstanding problems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 42 (2004), S. 169-210 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Observation of cooling neutron stars can potentially provide information about the states of matter at supernuclear densities. We review physical properties important for cooling such as neutrino emission processes and superfluidity in the stellar interior, surface envelopes of light elements owing to accretion of matter, and strong surface magnetic fields. The neutrino processes include the modified Urca process and the direct Urca process for nucleons and exotic states of matter, such as a pion condensate, kaon condensate, or quark matter. The dependence of theoretical cooling curves on physical input and observations of thermal radiation from isolated neutron stars are described. The comparison of observation and theory leads to a unified interpretation in terms of three characteristic types of neutron stars: high-mass stars, which cool primarily by some version of the direct Urca process; low-mass stars, which cool via slower processes; and medium-mass stars, which have an intermediate behavior. The related problem of thermal states of transiently accreting neutron stars with deep crustal burning of accreted matter is discussed in connection with observations of soft X-ray transients. Observations imply that some stars cool more rapidly than can be explained on the basis of nonsuperfluid neutron star models cooling via the modified Urca process, whereas other star cool less rapidly. We describe possible theoretical models that are consistent with observations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 42 (2004), S. 79-118 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: We review recent theoretical results on the formation of the first stars in the universe, and emphasize related open questions. In particular, we discuss the initial conditions for Population III star formation, as given by variants of the cold dark matter cosmology. Numerical simulations have investigated the collapse and the fragmentation of metal-free gas, showing that the first stars were predominantly very massive. The exact determination of the stellar masses, and the precise form of the primordial initial mass function, is still hampered by our limited understanding of the accretion physics and the protostellar feedback effects. We address the importance of heavy elements in bringing about the transition from an early star formation mode dominated by massive stars to the familiar mode dominated by low-mass stars at later times. We show how complementary observations, both at high redshifts and in our local cosmic neighborhood, can be utilized to probe the first epoch of star formation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 42 (2004), S. 685-721 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: Until the late 1990s the rich Hyades and the sparse UMa clusters were the only coeval, comoving concentrations of stars known within 60 pc of Earth. Both are hundreds of millions of years old. Then beginning in the late 1990s the TW Hydrae Association, the Tucana/Horologium Association, the beta Pictoris Moving Group, and the AB Doradus Moving Group were identified within ~60 pc of Earth, and the eta Chamaeleontis cluster was found at 97 pc. These young groups (ages 8-50 Myr), along with other nearby, young stars, will enable imaging and spectroscopic studies of the origin and early evolution of planetary systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Astronomy and Astrophysics 42 (2004), S. 317-364 
    ISSN: 0066-4146
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Physics
    Notes: GRS 1915+105-the first stellar-scale, highly relativistic jet source identified-is a key system for our understanding of the disc-jet coupling in accreting black hole systems. Comprehending the coupling between inflow and outflow in this source not only is important for X-ray binary systems but has a broader relevance for studies of active galactic nuclei and gamma-ray bursts. In this paper, we present a detailed review of the observational properties of the system, as established in the decade since its discovery. We attempt to place it in context by a detailed comparison with other sources, and construct a simple model for the disc-jet coupling, which may be more widely applicable to accreting black hole systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 32 (2000), S. 137-164 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The active control of sound waves has become an extraordinarily large and vigorous area of academic research and technological development. In this paper we describe the physical principles underlying the control of sound and review their application in a wide range of contexts. One scenario involves the control of noise from a primary source by the introduction of secondary sources, and this technique is described for fields in ducts, in free space, in enclosures (with particular reference to aircraft cabins), and for turbomachinery. A second scenario involves the use of the active control of sound to eliminate large-scale oscillations in more complicated flows, in which part of an unstable feedback cycle is mediated via acoustic waves. Successful applications of this idea include the control of combustion instabilities and compressor surge.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 32 (2000), S. 165-202 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract This article reviews some aspects of the roles that laboratory experiments have played in the study of orographic effects in the Earth's atmosphere and oceans. The review focuses on, but is not restricted to, physical systems for which the effects of both background stratification and rotation are important. In the past, such laboratory studies have been largely decoupled from attempts to make quantitative comparisons with the results of numerical-model studies or observations from field programs. Rather, they have been used mostly in the important task of better understanding the physics of rotating and stratified flows. Furthermore, most laboratory experiments concerned with the effects of orography on either homogeneous or stratified rotating fluids have considered laminar flows, whereas their counterpart flows in the atmosphere and ocean are turbulent. We argue that laboratory investigations are likely to be more useful in addressing critical environmental problems if the studies are more closely allied with numerical-modeling efforts. The latter, in turn, should be tied to field projects, with the overall objective of improving our ability to predict the behavior of natural systems. In this same spirit, we conclude that far more attention should be given to the laboratory simulation of the turbulent characteristics of natural flows. The availability of rapidly developing technology to acquire and analyze laboratory data provides the capability necessary to support the increasingly important roles that laboratory experiments can play in understanding and predicting the behavior of our natural environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 32 (2000), S. 241-274 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract We concentrate on the rich effects that surface tension has on free and forced surface waves for linear, nonlinear, and especially strongly nonlinear waves close to or at breaking or their limiting form. These effects are discussed in the context of standing gravity and gravity-capillary waves, Faraday waves, and parasitic capillary waves. Focus is primarily on post-1989 research. Regarding standing waves, new waveforms and the large effect that small capillarity can have are considered. Faraday waves are discussed principally with regard to viscous effects, hysteresis, and limit cycles; nonlinear waveforms of low mode numbers; contact-line effects and surfactants; breaking and subharmonics; and drop ejection. Pattern formation and chaotic and nonlinear dynamics of Faraday waves are mentioned only briefly. Gravity and gravity-capillary wave generation of parasitic capillaries and dissipation are considered at length. We conclude with our view on the direction of future research in these areas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 32 (2000), S. 203-240 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract Passive scalar behavior is important in turbulent mixing, combustion, and pollution and provides impetus for the study of turbulence itself. The conceptual framework of the subject, strongly influenced by the Kolmogorov cascade phenomenology, is undergoing a drastic reinterpretation as empirical evidence shows that local isotropy, both at the inertial and dissipation scales, is violated. New results of the complex morphology of the scalar field are reviewed, and they are related to the intermittency problem. Recent work on other aspects of passive scalar behavior-its spectrum, probability density function, flux, and variance-is also addressed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 32 (2000), S. 573-611 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract A vapor explosion results from the rapid and intense heat transfer that may follow contact between a hot liquid and a cold, more volatile one. Because it can happen during severe-accident sequences of a nuclear power plan, that is, when a large part of the core is molten, vapor explosions have been widely studied. The different sequences of a vapor explosion are presented, including premixing, triggering, propagation, and expansion. Typical experimental results are also analyzed to understand the involved physics. Then the different physics involved in the sequences are addressed, as well as the present experimental program.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 32 (2000), S. 779-811 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract In the framework of the classical gas dynamics, no steady flow is induced in a gas without an external force, such as gravity, by the effect of a temperature field. In a rarefied gas, on the other hand, the temperature field of a gas (often in combination with a solid boundary) plays an important role in inducing a steady flow. In the present article, we introduce various kinds of flows induced by the temperature effect and discuss their physical mechanisms. These flows vanish in the continuum limit (the limit where the mean free path of the gas molecules tends to zero), but it has been found recently that they, strangely, affect the behavior of a gas in this limit. This interesting effect, called a ghost effect, is also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 21-59 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Plasmid-encoded partition genes determine the dynamic localization of plasmid molecules from the mid-cell position to the 1/4 and 3/4 positions. Similarly, bacterial homologs of the plasmid genes participate in controlling the bidirectional migration of the replication origin (oriC) regions during sporulation and vegetative growth in Bacillus subtilis, but not in Escherichia coli. In E. coli, but not B. subtilis, the chromosomal DNA is fully methylated by DNA adenine methyltransferase. The E. coli SeqA protein, which binds preferentially to hemimethylated nascent DNA strands, exists as discrete foci in vivo. A single SeqA focus, which is a SeqA-hemimethylated DNA cluster, splits into two foci that then abruptly migrate bidirectionally to the 1/4 and 3/4 positions during replication. Replicated oriC copies are linked to each other for a substantial period of generation time, before separating from each other and migrating in opposite directions. The MukFEB complex of E. coli and Smc of B. subtilis appear to participate in the reorganization of bacterial sister chromosomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 563-591 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract In an age when the majority of monogenic human disease genes have been identified, a particular challenge for the coming generation of human geneticists will be resolving complex polygenic and multifactorial diseases. The tools of molecular and population genetic association have much potential as well as peril in uncovering small cryptic genetic effects in disease. We have used a candidate gene approach to identify eight distinct human loci with alleles that in different ways influence the outcome of exposure to HIV-1, the AIDS virus. The successes in these gene hunts have validated the approach and illustrate the strengths and limitations of association analysis in an actual case history. The integration of genetic associations, well-described clinical cohorts, extensive basic research on AIDS pathogenesis, and functional interpretation of gene connections to disease offers a formula for detecting such genes in complex human genetic phenotypes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 653-686 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract In 1990, David Baltimore predicted that the 1990s would be the decade of the mouse (1). This certainly proved to be true: The mouse has contributed immensely to biological research through transgenic, embryonic stem cell (ES) knockout, and classical genetic technologies. But its usefulness as a model organism is by no means over; indeed it is still rising to its peak: The mouse as a model mammalian organism still has much to offer. This article reviews use of the mouse to dissect complex genetic traits using quantitative trait analysis, with a particular emphasis on medically important diseases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 479-497 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Be they prokaryotic or eukaryotic, organisms are exposed to a multitude of deoxyribonucleic acid (DNA) damaging agents ranging from ultraviolet (UV) light to fungal metabolites, like Aflatoxin B1. Furthermore, DNA damaging agents, such as reactive oxygen species, can be produced by cells themselves as metabolic byproducts and intermediates. Together, these agents pose a constant threat to an organism's genome. As a result, organisms have evolved a number of vitally important mechanisms to repair DNA damage in a high fidelity manner. They have also evolved systems (cell cycle checkpoints) that delay the resumption of the cell cycle after DNA damage to allow more time for these accurate processes to occur. If a cell cannot repair DNA damage accurately, a mutagenic event may occur. Most bacteria, including Escherichia coli, have evolved a coordinated response to these challenges to the integrity of their genomes. In E. coli, this inducible system is termed the SOS response, and it controls both accurate and potentially mutagenic DNA repair functions [reviewed comprehensively in (25) and also in (78, 94)]. Recent advances have focused attention on the umuD+C+-dependent, translesion DNA synthesis (TLS) process that is responsible for SOS mutagenesis (70, 86). Here we discuss the SOS response of E. coli and concentrate in particular on the roles of the umuD+C+ gene products in promoting cell survival after DNA damage via TLS and a primitive DNA damage checkpoint.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 457-477 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract At a small number of mammalian loci, only one of the two copies of a gene is expressed. Just which copy is expressed depends on the sex of the parent from which that copy was inherited. Such genes are said to be imprinted. The functional haploidy implied by imprinting has a number of population genetic consequences. Moreover, since diploidy is widely believed to be advantageous, the evolution of this non-Mendelian form of expression requires an explanation. Here I examine some of the theoretical and mathematical models investigating these two aspects of imprinting. For instance, the dynamics and equilibrium properties of many models of natural selection at imprinted loci are formally equivalent to models without imprinting. And different approaches to modeling the problem of the evolution of imprinting reveal the weakness of several of the apparent predictions of various verbal hypotheses about why imprinting has evolved.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 687-745 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Obesity is a health problem of epidemic proportions in the industrialized world. The cloning and characterization of the genes for the five naturally occurring monogenic obesity syndromes in the mouse have led to major breakthroughs in understanding the physiology of energy balance and the contribution of genetics to obesity in the human population. However, the regulation of energy balance is an extremely complex process, and it is quickly becoming clear that hundreds of genes are involved. In this article, we review the naturally occurring monogenic and polygenic obese mouse strains, as well as the large number of transgenic and knockout mouse models currently available for the study of obesity and energy balance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 34 (2000), S. 499-531 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract RNA editing can be broadly defined as any site-specific alteration in an RNA sequence that could have been copied from the template, excluding changes due to processes such as RNA splicing and polyadenylation. Changes in gene expression attributed to editing have been described in organisms from unicellular protozoa to man, and can affect the mRNAs, tRNAs, and rRNAs present in all cellular compartments. These sequence revisions, which include both the insertion and deletion of nucleotides, and the conversion of one base to another, involve a wide range of largely unrelated mechanisms. Recent advances in the development of in vitro editing and transgenic systems for these varied modifications have provided a better understanding of similarities and differences between the biochemical strategies, regulatory sequences, and cellular factors responsible for such RNA processing events.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 38 (2004), S. 203-232 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Completion of the cell cycle requires the temporal and spatial coordination of chromosome segregation with mitotic spindle disassembly and cytokinesis. In budding yeast, the protein phosphatase Cdc14 is a key regulator of these late mitotic events. Here, we review the functions of Cdc14 and how this phosphatase is regulated to accomplish the coupling of mitotic processes. We also discuss the function and regulation of Cdc14 in other eukaryotes, emphasizing conserved features.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 38 (2004), S. 771-791 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Recent advances in DNA-sequencing technologies have made available an enormous resource of data for the study of bacterial genomes. The broad sample of complete genomes currently available allows us to look at variation in the gross features and characteristics of genomes while the detail of the sequences reveal some of the mechanisms by which these genomes evolve. This review aims to describe bacterial genome structures according to current knowledge and proposed hypotheses. We also describe examples where mechanisms of genome evolution have acted in the adaptation of bacterial species to particular niches.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 38 (2004), S. 749-770 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Ribosomal RNA transcription is the rate-limiting step in ribosome synthesis in bacteria and has been investigated intensely for over half a century. Multiple mechanisms ensure that rRNA synthesis rates are appropriate for the cell's particular growth condition. Recently, important advances have been made in our understanding of rRNA transcription initiation in Escherichia coli. These include (a) a model at the atomic level of the network of protein-DNA and protein-protein interactions that recruit RNA polymerase to rRNA promoters, accounting for their extraordinary strength; (b) discovery of the nonredundant roles of two small molecule effectors, ppGpp and the initiating NTP, in regulation of rRNA transcription initiation; and (c) identification of a new component of the transcription machinery, DksA, that is absolutely required for regulation of rRNA promoter activity. Together, these advances provide clues important for our molecular understanding not only of rRNA transcription, but also of transcription in general.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 38 (2004), S. 587-614 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Many of the patterning mechanisms in plants were discovered while studying postembryonic processes and resemble mechanisms operating during animal development. The emergent role of the plant hormone auxin, however, seems to represent a plant-specific solution to multicellular patterning. This review summarizes our knowledge on how diverse mechanisms that were first dissected at the postembryonic level are now beginning to provide an understanding of plant embryogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 38 (2004), S. 553-585 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: The kinship theory of genomic imprinting proposes that parent-specific gene expression evolves at a locus because a gene's level of expression in one individual has fitness effects on other individuals who have different probabilities of carrying the maternal and paternal alleles of the individual in which the gene is expressed. Therefore, natural selection favors different levels of expression depending on an allele's sex-of-origin in the previous generation. This review considers the strength of evidence in support of this hypothesis for imprinted genes in four "clusters," associated with the imprinted loci Igf2, Igf2r, callipyge, and Gnas. The clusters associated with Igf2 and Igf2r both contain paternally expressed transcripts that act as enhancers of prenatal growth and maternally expressed transcripts that act as inhibitors of prenatal growth. This is consistent with predictions of the kinship theory. However, the clusters also contain imprinted genes whose phenotypes as yet remain unexplained by the theory. The principal effects of imprinted genes in the callipyge and Gnas clusters appear to involve lipid and energy metabolism. The kinship theory predicts that maternally expressed transcripts will favor higher levels of nonshivering thermogenesis (NST) in brown adipose tissue (BAT) of animals that huddle for warmth as offspring. The phenotypes of reciprocal heterozygotes for Gnas knockouts provide provisional support for this hypothesis, as does some evidence from other imprinted genes (albeit more tentatively). The diverse effects of imprinted genes on the development of white adipose tissue (WAT) have so far defied a unifying hypothesis in terms of the kinship theory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 38 (2004), S. 793-818 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: For pollination to succeed, pollen must carry sperm through a variety of different floral tissues to access the ovules within the pistil. The pistil provides everything the pollen requires for success in this endeavor including distinct guidance cues and essential nutrients that allow the pollen tube to traverse enormous distances along a complex path to the unfertilized ovule. Although the pistil is a great facilitator of pollen function, it can also be viewed as an elaborate barrier that shields ovules from access from inappropriate pollen, such as pollen from other species. Each discrete step taken by pollen tubes en route to the ovules is a potential barrier point to ovule access and waste by inappropriate mates. In this review, we survey the current molecular understanding of how pollination proceeds, and ask to what extent is each step important for mate discrimination. As this field progresses, this synthesis of functional biology and evolutionary studies will provide insight into the molecular basis of the species barriers that maintain the enormous diversity seen in flowering plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 38 (2004), S. 819-845 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: The driving interest in adeno-associated virus (AAV) has been its potential as a gene delivery vector. The early observation that AAV can establish a latent infection by integrating into the host chromosome has been central to this interest. However, chromosomal integration is a two-edged sword, imparting on one hand the ability to maintain the therapeutic gene in progeny cells, and on the other hand, the risk of mutations that are deleterious to the host. A clearer understanding of the mechanism and efficiency of AAV integration, in terms of contributing viral and host-cell factors and circumstances, will provide a context in which to evaluate these potential benefits and risks. Research to date suggests that AAV integration in any context is inefficient, and that the persistence of AAV gene delivery vectors in tissues is largely attributable to episomal genomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Genetics 38 (2004), S. 87-117 
    ISSN: 0066-4197
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Plants utilize several families of photoreceptors to fine-tune growth and development over a large range of environmental conditions. The UV-A/blue light sensing phototropins mediate several light responses enabling optimization of photosynthetic yields. The initial event occurring upon photon capture is a conformational change of the photoreceptor that activates its protein kinase activity. The UV-A/blue light sensing cryptochromes and the red/far-red sensing phytochromes coordinately control seedling establishment, entrainment of the circadian clock, and the transition from vegetative to reproductive growth. In addition, the phytochromes control seed germination and shade-avoidance responses. The molecular mechanisms involved include light-regulated subcellular localization of the photoreceptors, a large reorganization of the transcriptional program, and light-regulated proteolytic degradation of several photoreceptors and signaling components.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 155-181 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Electrokinetic forces are emerging as a powerful means to drive microfluidic systems with flow channel cross-sectional dimensions in the tens of micrometers and flow rates in the nanoliter per second range. These systems provide many advantages such as improved analysis speed, improved reproducibility, greatly reduced reagent consumption, and the ability to perform multiple operations in an integrated fashion. Planar microfabrication methods are used to make these analysis chips in materials such as glass or polymers. Many applications of this technology have been demonstrated, such as DNA separations, enzyme assays, immunoassays, and PCR amplification integrated with microfluidic assays. Further development of this technology is expected to yield higher levels of functionality of sample throughput on a single microfluidic analysis chip.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 105-153 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of any symmetry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 239-263 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract A fundamental perspective can be achieved by targeting single cells for analysis with the goal of deconvoluting complex biological functions. However, single-cell studies have their own difficulties, such as minute volumes and sample amounts. Quantitative chemical analysis of single cells has emerged as a powerful new area in recent years due to several technological advancements. The development of microelectrodes has allowed the measurement of redox-active species as a function of cellular dynamics. This miniaturization trend is also evident in the separation sciences with the application of small column separations to single cells. Desorption ionization methods with mass spectrometric detection have shown single-cell capability owing to numerous technological developments. Finally, fluorescence imaging has also progressed to the point where single-cell dynamics can be probed by native fluorescence utilizing either single or multiple photon excitation. The results of these studies are reviewed with an emphasis on the quantitation of single-cell dynamics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 265-289 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Vancomycin is the archetype among naturally occurring compounds known as glycopeptide antibiotics. Because it is a vital therapeutic agent used worldwide for the treatment of infections with gram-positive bacteria, emerging bacterial resistance to vancomycin is a major public health threat. Recent investigations into the mechanisms of action of glycopeptide antibiotics are driven by a need to understand their detailed mechanism of action so that new agents can be developed to overcome resistance. These investigations have revealed that glycopeptide antibiotics exhibit a rich array of complex cooperative phenomena when they bind target ligands, making them valuable model systems for the study of molecular recognition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 291-325 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Comparative modeling predicts the three-dimensional structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. The number of protein sequences that can be modeled and the accuracy of the predictions are increasing steadily because of the growth in the number of known protein structures and because of the improvements in the modeling software. Further advances are necessary in recognizing weak sequence-structure similarities, aligning sequences with structures, modeling of rigid body shifts, distortions, loops and side chains, as well as detecting errors in a model. Despite these problems, it is currently possible to model with useful accuracy significant parts of approximately one third of all known protein sequences. The use of individual comparative models in biology is already rewarding and increasingly widespread. A major new challenge for comparative modeling is the integration of it with the torrents of data from genome sequencing projects as well as from functional and structural genomics. In particular, there is a need to develop an automated, rapid, robust, sensitive, and accurate comparative modeling pipeline applicable to whole genomes. Such large-scale modeling is likely to encourage new kinds of applications for the many resulting models, based on their large number and completeness at the level of the family, organism, or functional network.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 213-238 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract In order to solve the immensely difficult protein-folding problem, it will be necessary to characterize the barriers that slow folding and the intermediate structures that promote it. Although protein-folding intermediates are not accessible to the usual structural studies, hydrogen exchange (HX) methods have been able to detect and characterize intermediates in both kinetic and equilibrium modes-as transient kinetic folding intermediates on a subsecond time scale, as labile equilibrium molten globule intermediates under destabilizing conditions, and as infinitesimally populated intermediates in the high free-energy folding landscape under native conditions. Available results consistently indicate that protein-folding landscapes are dominated by a small number of discrete, metastable, native-like partially unfolded forms (PUFs). The PUFs appear to be produced, one from another, by the unfolding and refolding of the protein's intrinsically cooperative secondary structural elements, which can spontaneously create stepwise unfolding and refolding pathways. Kinetic experiments identify three kinds of barrier processes: (a) an initial intrinsic search-nucleation-collapse process that prepares the chain for intermediate formation by pinning it into a condensed coarsely native-like topology; (b) smaller search-dependent barriers that put the secondary structural units into place; and (c) optional error-dependent misfold-reorganization barriers that can cause slow folding, intermediate accumulation, and folding heterogeneity. These conclusions provide a coherent explanation for the grossly disparate folding behavior of different globular proteins in terms of distinct folding pathways.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 463-495 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Photosystem II uses visible light to drive the oxidation of water, resulting in bioactivated electrons and protons, with the production of molecular oxygen as a byproduct. This water-splitting reaction is carried out by a manganese cluster/tyrosine radical ensemble, the oxygen-evolving complex. Although conventional continuous-wave, perpendicular-polarization electron paramagnetic resonance (EPR) spectroscopy has significantly advanced our knowledge of the structure and function of the oxygen-evolving complex, significant additional information can be obtained with the application of additional EPR methodologies. Specifically, parallel-polarization EPR spectroscopy can be used to obtain highly resolved EPR spectra of integer spin Mn species, and pulsed EPR spectroscopy with electron spin echo-based sequences, such as electron spin echo envelope modulation and electron spin echo-electron nuclear double resonance, can be used to measure weak interactions obscured in continuous-wave spectroscopy by inhomogeneous broadening.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 523-543 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The ability to manipulate, stretch and twist biomolecules opens the way to an understanding of their structural transitions. We review some of the recently discovered stress-induced structural transitions in DNA as well as the application of single molecule manipulation techniques to DNA unzipping and to the study of protein folding/unfolding transitions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 497-521 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract The genomes of higher cells consist of double-helical DNA, a densely charged polyelectrolyte of immense length. The intrinsic physical properties of DNA, as well as the properties of its complexes with proteins and ions, are therefore of fundamental interest in understanding the functions of DNA as an informational macromolecule. Because individual DNA molecules often exceed 1 cm in length, it is clear that DNA bending, folding, and interaction with nuclear proteins are necessary for packaging genomes in small volumes and for integrating the nucleotide sequence information that guides genetic readout. This review first focuses on recent experiments exploring how the shape of the densely charged DNA polymer and asymmetries in its surrounding counterion distribution mutually influence one another. Attention is then turned to experiments seeking to discover the degree to which asymmetric phosphate neutralization can lead to DNA bending in protein-DNA complexes. It is argued that electrostatic effects play crucial roles in the intrinsic, sequence-dependent shape of DNA and in DNA shapes induced by protein binding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 361-410 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Atomic force microscopy (AFM) has been used to study protein, nucleic acid, and virus crystals in situ, in their mother liquors, as they grow. From sequential AFM images taken at brief intervals over many hours, or even days, the mechanisms and kinetics of the growth process can be defined. The appearance of both two- and three-dimensional nuclei on crystal surfaces have been visualized, defect structures of crystals were clearly evident, and defect densities of crystals were also determined. The incorporation of a wide range of impurities, ranging in size from molecules to microns or larger microcrystals, and even foreign particles were visually recorded. From these observations and measurements, a more complex understanding of the detailed character of macromolecular crystals is emerging, one that reveals levels of complexity previously unsuspected. The unique features of these crystals, apparently in AFM images, undoubtedly influence the diffraction properties of the crystals and the quality of the molecular images obtained by X-ray crystallography.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 29 (2000), S. 545-576 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract We review how motile cells regulate actin filament assembly at their leading edge. Activation of cell surface receptors generates signals (including activated Rho family GTPases) that converge on integrating proteins of the WASp family (WASp, N-WASP, and Scar/WAVE). WASP family proteins stimulate Arp2/3 complex to nucleate actin filaments, which grow at a fixed 70o angle from the side of pre-existing actin filaments. These filaments push the membrane forward as they grow at their barbed ends. Arp2/3 complex is incorporated into the network, and new filaments are capped rapidly, so that activated Arp2/3 complex must be supplied continuously to keep the network growing. Hydrolysis of ATP bound to polymerized actin followed by phosphate dissociation marks older filaments for depolymerization by ADF/cofilins. Profilin catalyzes exchange of ADP for ATP, recycling actin back to a pool of unpolymerized monomers bound to profilin and thymosin-beta4 that is poised for rapid elongation of new barbed ends.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Abstract Small molecules that modulate the activity of biological signaling molecules can be powerful probes of signal transduction pathways. Highly specific molecules with high affinity are difficult to identify because of the conserved nature of many protein active sites. A newly developed approach to discovery of such small molecules that relies on protein engineering and chemical synthesis has yielded powerful tools for the study of a wide variety of proteins involved in signal transduction (G-proteins, protein kinases, 7-transmembrane receptors, nuclear hormone receptors, and others). Such chemical genetic tools combine the advantages of traditional genetics and the unparalleled temporal control over protein function afforded by small molecule inhibitors/activators that act at diffusion controlled rates with targets.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 363-385 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: The effect of force on the thermodynamics and kinetics of reactions is described. The key parameters are the difference in end-to-end distance between reactant and product for thermodynamics, and the distance to the transition state for kinetics. I focus the review on experimental results on force unfolding of RNA. Methods to measure Gibbs free energies and kinetics for reversible and irreversible reactions are described. The use of the worm-like-chain model to calculate the effects of force on thermodynamics and kinetics is illustrated with simple models. The main purpose of the review is to describe the simple experiments that have been done so far, and to encourage more people to enter a field that is new and full of opportunities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 177-198 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: The structural elucidation of clear but distant homologs of actin and tubulin in bacteria and GFP labeling of these proteins promises to reinvigorate the field of prokaryotic cell biology. FtsZ (the tubulin homolog) and MreB/ParM (the actin homologs) are indispensable for cellular tasks that require the cell to accurately position molecules, similar to the function of the eukaryotic cytoskeleton. FtsZ is the organizing molecule of bacterial cell division and forms a filamentous ring around the middle of the cell. Many molecules, including MinCDE, SulA, ZipA, and FtsA, assist with this process directly. Recently, genes much more similar to tubulin than to FtsZ have been identified in Verrucomicrobia. MreB forms helices underneath the inner membrane and probably defines the shape of the cell by positioning transmembrane and periplasmic cell wall-synthesizing enzymes. Currently, no interacting proteins are known for MreB and its relatives that help these proteins polymerize or depolymerize at certain times and places inside the cell. It is anticipated that MreB-interacting proteins exist in analogy to the large number of actin binding proteins in eukaryotes. ParM (a plasmid-borne actin homolog) is directly involved in pushing certain single-copy plasmids to the opposite poles by ParR/parC-assisted polymerization into double-helical filaments, much like the filaments formed by actin, F-actin. Mollicutes seem to have developed special systems for cell shape determination and motility, such as the fibril protein in Spiroplasma.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 119-140 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Molecular motions are widely regarded as contributing factors in many aspects of protein function. The enzyme dihydrofolate reductase (DHFR), and particularly that from Escherichia coli, has become an important system for investigating the linkage between protein dynamics and catalytic function, both because of the location and timescales of the motions observed and because of the availability of a large amount of structural and mechanistic data that provides a detailed context within which the motions can be interpreted. Changes in protein dynamics in response to ligand binding, conformational change, and mutagenesis have been probed using numerous experimental and theoretical approaches, including X-ray crystallography, fluorescence, nuclear magnetic resonance (NMR), molecular dynamics simulations, and hybrid quantum/classical dynamics methods. These studies provide a detailed map of changes in conformation and dynamics throughout the catalytic cycle of DHFR and give new insights into the role of protein motions in the catalytic activity of this enzyme.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 199-223 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: The genomics revolution has provided a deluge of new targets for drug discovery. To facilitate the drug discovery process, many researchers are turning to fragment-based approaches to find lead molecules more efficiently. One such method, Tethering1, allows for the identification of small-molecule fragments that bind to specific regions of a protein target. These fragments can then be elaborated, combined with other molecules, or combined with one another to provide high-affinity drug leads. In this review we describe the background and theory behind Tethering and discuss its use in identifying novel inhibitors for protein targets including interleukin-2 (IL-2), thymidylate synthase (TS), protein tyrosine phosphatase 1B (PTP-1B), and caspases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 157-176 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Recent work is extending the methodology of X-ray crystallography to the structure determination of noncrystalline specimens. The phase problem is solved using the oversampling method, which takes advantage of "continuous" diffraction patterns from noncrystalline specimens. Here we review the principle of this newly developed technique and discuss the ongoing experiments of imaging nonperiodic objects, such as cells and cellular structures, using coherent and bright X rays produced by third-generation synchrotron sources. In the longer run, the technique may be applicable to image single biomolecules using anticipated X-ray free electron lasers. Here, computer simulations have so far demonstrated two important steps: (a) by using an extremely intense femtosecond X-ray pulse, a diffraction pattern can be recorded from a macromolecule before radiation damage manifests itself; and (b) the phase information can be retrieved in an ab initio fashion from a set of calculated noisy diffraction patterns of single protein molecules.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 95-118 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Topoisomerases are enzymes that use DNA strand scission, manipulation, and rejoining activities to directly modulate DNA topology. These actions provide a powerful means to effect changes in DNA supercoiling levels, and allow some topoisomerases to both unknot and decatenate chromosomes. Since their initial discovery over three decades ago, researchers have amassed a rich store of information on the cellular roles and regulation of topoisomerases, and have delineated general models for their chemical and physical mechanisms. Topoisomerases are now known to be necessary for the survival of cellular organisms and many viruses and are rich clinical targets for anticancer and antimicrobial treatments. In recent years, crystal structures have been obtained for each of the four types of topoisomerases in a number of distinct conformational and substrate-bound states. In addition, sophisticated biophysical methods have been utilized to study details of topoisomerase reaction dynamics and enzymology. A synthesis of these approaches has provided researchers with new physical insights into how topoisomerases employ chemistry and allostery to direct the large-scale molecular motions needed to pass DNA strands through each other.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 141-155 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Emerging methods in cryo-electron microscopy allow determination of the three-dimensional architectures of objects ranging in size from small proteins to large eukaryotic cells, spanning a size range of more than 12 orders of magnitude. Advances in determining structures by "single particle" microscopy and by "electron tomography" provide exciting opportunities to describe the structures of subcellular assemblies that are either too large or too heterogeneous to be investigated by conventional crystallographic methods. Here, we review selected aspects of progress in structure determination by cryo-electron microscopy at molecular resolution, with a particular emphasis on topics at the interface of single particle and tomographic approaches. The rapid pace of development in this field suggests that comprehensive descriptions of the structures of whole cells and organelles in terms of the spatial arrangements of their molecular components may soon become routine.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 245-268 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: F1-ATPase is a rotary motor made of a single protein molecule. Its rotation is driven by free energy obtained by ATP hydrolysis. In vivo, another motor, Fo, presumably rotates the F1 motor in the reverse direction, reversing also the chemical reaction in F1 to let it synthesize ATP. Here we attempt to answer two related questions, How is free energy obtained by ATP hydrolysis converted to the mechanical work of rotation, and how is mechanical work done on F1 converted to free energy to produce ATP? After summarizing single-molecule observations of F1 rotation, we introduce a toy model and discuss its free-energy diagrams to possibly answer the above questions. We also discuss the efficiency of molecular motors in general.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 297-316 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Mass spectrometry provides key tools for the analysis of proteins. New types of mass spectrometers that provide enhanced capability to discover protein identities and perform improved proteomic experiments are discussed. Handling the complex mixtures of peptides and proteins generated from protein complexes and whole cells requires multidimensional separations; several forms of separation are discussed. Applications of mass spectrometry-based approaches for contemporary proteomic analyses are described.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biophysics and Biomolecular Structure 33 (2004), S. 317-342 
    ISSN: 1056-8700
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Physics
    Notes: Nucleic acids are characterized by a vast structural variability. Secondary structural conformations include the main polymorphs A, B, and Z, cruciforms, intrinsic curvature, and multistranded motifs. DNA secondary motifs are stabilized and regulated by the primary base sequence, contextual effects, environmental factors, as well as by high-order DNA packaging modes. The high-order modes are, in turn, affected by secondary structures and by the environment. This review is concerned with the flow of structural information among the hierarchical structural levels of DNA molecules, the intricate interplay between the various factors that affect these levels, and the regulation and physiological significance of DNA high-order structures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 1-18 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Ethylene regulates a multitude of plant processes, ranging from seed germination to organ senescence. Of particular economic importance is the role of ethylene as an inducer of fruit ripening. Ethylene is synthesized from S-adenosyl-L-methionine via 1-aminocyclopropane-1-carboxylic acid (ACC). The enzymes catalyzing the two reactions in this pathway are ACC synthase and ACC oxidase. Environmental and endogenous signals regulate ethylene biosynthesis primarily through differential expression of ACC synthase genes. Components of the ethylene signal transduction pathway have been identified by characterization of ethylene-response mutants in Arabidopsis thaliana. One class of mutations, exemplified by etr1, led to the identification of the ethylene receptors, which turned out to be related to bacterial two-component signaling systems. Mutations that eliminate ethylene binding to the receptor yield a dominant, ethylene-insensitive phenotype. CTR1 encodes a Raf-like Ser/Thr protein kinase that acts downstream from the ethylene receptor and may be part of a MAP kinase cascade. Mutants in CTR1 exhibit a constitutive ethylene-response phenotype. Both the ethylene receptors and CTR1 are negative regulators of ethylene responses. EIN2 and EIN3 are epistatic to CTR1, and mutations in either gene lead to ethylene insensitivity. Whereas the function of EIN2 in ethylene transduction is not known, EIN3 is a putative transcription factor involved in regulating expression of ethylene-responsive genes. Biotechnological modifications of ethylene synthesis and of sensitivity to ethylene are promising methods to prevent spoilage of agricultural products such as fruits, whose ripening is induced by ethylene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 19-49 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Chemical synaptic transmission serves as the main form of cell to cell communication in the nervous system. Neurotransmitter release occurs through the process of regulated exocytosis, in which a synaptic vesicle releases its contents in response to an increase in calcium. The use of genetic, biochemical, structural, and functional studies has led to the identification of factors important in the synaptic vesicle life cycle. Here we focus on the prominent role of SNARE (soluble NSF attachment protein receptor) proteins during membrane fusion and the regulation of SNARE function by Rab3a, nSec1, and NSF. Many of the proteins important for transmitter release have homologs involved in intracellular vesicle transport, and all forms of vesicle trafficking share common basic principles. Finally, modifications to the synaptic exocytosis pathway are very likely to underlie certain forms of synaptic plasticity and therefore contribute to learning and memory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 113-143 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The ezrin-radixin-moesin (ERM) family of proteins have emerged as key regulatory molecules in linking F-actin to specific membrane proteins, especially in cell surface structures. Merlin, the product of the NF2 tumor suppressor gene, has sequence similarity to ERM proteins and binds to some of the same membrane proteins, but lacks a C-terminal F-actin binding site. In this review we discuss how ERM proteins and merlin are negatively regulated by an intramolecular association between their N- and C-terminal domains. Activation of at least ERM proteins can be accomplished by C-terminal phosphorylation in the presence of PIP2. We also discuss membrane proteins to which ERM and merlin bind, including those making an indirect linkage through the PDZ-containing adaptor molecules EBP50 and E3KARP. Finally, the function of these proteins in cortical structure, endocytic traffic, signal transduction, and growth control is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 145-171 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Adipogenesis, or the development of fat cells from preadipocytes, has been one of the most intensely studied models of cellular differentiation. In part this has been because of the availability of in vitro models that faithfully recapitulate most of the critical aspects of fat cell formation in vivo. More recently, studies of adipogenesis have proceeded with the hope that manipulation of this process in humans might one day lead to a reduction in the burden of obesity and diabetes. This review explores some of the highlights of a large and burgeoning literature devoted to understanding adipogenesis at the molecular level. The hormonal and transcriptional control of adipogenesis is reviewed, as well as studies on a less well known type of fat cell, the brown adipocyte. Emphasis is placed, where possible, on in vivo studies with the hope that the results discussed may one day shed light on basic questions of cellular growth and differentiation in addition to possible benefits in human health.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 173-189 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Enteropathogenic Escherichia coli (EPEC) is a gram-negative bacterial pathogen that adheres to human intestinal epithelial cells, resulting in watery, persistent diarrhea. It subverts the host cell cytoskeleton, causing a rearrangement of cytoskeletal components into a characteristic pedestal structure underneath adherent bacteria. In contrast to other intracellular pathogens that affect the actin cytoskeleton from inside the host cytoplasm, EPEC remains extracellular and transmits signals through the host cell plasma membrane via direct injection of virulence factors by a "molecular syringe," the bacterial type III secretion system. One injected factor is Tir, which functions as the plasma membrane receptor for EPEC adherence. Tir directly links extracellular EPEC through the epithelial membrane and firmly anchors it to the host cell actin cytoskeleton, thereby initiating pedestal formation. In addition to stimulating actin nucleation and polymerization in the host cell, EPEC activates several other signaling pathways that lead to tight junction disruption, inhibition of phagocytosis, altered ion secretion, and immune responses. This review summarizes recent developments in our understanding of EPEC pathogenesis and discusses similarities and differences between EPEC pedestals, focal contacts, and Listeria monocytogenes actin tails.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 191-220 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Early development of the vertebrate skeleton depends on genes that pattern the distribution and proliferation of cells from cranial neural crest, sclerotomes, and lateral plate mesoderm into mesenchymal condensations at sites of future skeletal elements. Within these condensations, cells differentiate to chondrocytes or osteoblasts and form cartilages and bones under the control of various transcription factors. In most of the skeleton, organogenesis results in cartilage models of future bones; in these models cartilage is replaced by bone by the process of endochondral ossification. Lastly, through a controlled process of bone growth and remodeling the final skeleton is shaped and molded. Significant and exciting insights into all aspects of vertebrate skeletal development have been obtained through molecular and genetic studies of animal models and humans with inherited disorders of skeletal morphogenesis, organogenesis, and growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 221-241 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Stomatal guard cells are unique as a plant cell model and, because of the depth of present knowledge on ion transport and its regulation, offer a first look at signal integration in higher plants. A large body of data indicates that Ca2+ and H+ act independently, integrating with protein kinases and phosphatases, to control the gating of the K+ and Cl- channels that mediate solute flux for stomatal movements. Oscillations in the cytosolic-free concentration of Ca2+ contribute to a signaling cassette, integrated within these events through an unusual coupling with membrane voltage for solute homeostasis. Similar cassettes are anticipated to include control pathways linked to cytosolic pH. Additional developments during the last two years point to events in membrane traffic that play equally important roles in stomatal control. Research in these areas is now adding entirely new dimensions to our understanding of guard cell signaling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 243-271 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract During the past decade, much progress has been made in understanding how the adult fly is built. Some old concepts such as those of compartments and selector genes have been revitalized. In addition, recent work suggests the existence of genes involved in the regionalization of the adult that do not have all the features of selector genes. Nevertheless, they generate morphological distinctions within the body plan. Here we re-examine some of the defining criteria of selector genes and suggest that these newly characterized genes fulfill many, but not all, of these criteria. Further, we propose that these genes can be classified according to the domains in which they function. Finally, we discuss experiments that address the molecular mechanisms by which selector and selector-like gene products function in the fly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 273-300 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Cajal bodies are small nuclear organelles first described nearly 100 years ago by Ramon y Cajal in vertebrate neural tissues. They have since been found in a variety of animal and plant nuclei, suggesting that they are involved in basic cellular processes. Cajal bodies contain a marker protein of unknown function, p80-coilin, and many components involved in transcription and processing of nuclear RNAs. Among these are the three eukaryotic RNA polymerases and factors required for transcribing and processing their respective nuclear transcripts: mRNA, rRNA, and pol III transcripts. A model is discussed in which Cajal bodies are the sites for preassembly of transcriptosomes, unitary particles involved in transcription and processing of RNA. A parallel is drawn to the nucleolus and the preassembly of ribosomes, which are unitary particles involved in translation of proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 301-332 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract M cells are distinctive epithelial cells that occur only in the follicle-associated epithelia that overlie organized mucosa-associated lymphoid tissues. They are structurally and functionally specialized for transepithelial transport, delivering foreign antigens and microorganisms to organized lymphoid tissues within the mucosae of the small and large intestines, tonsils and adenoids, and airways. M cell transport is a double-edged sword: Certain pathogens exploit the features of M cells that are intended to promote uptake for the purpose of immunological sampling. Eludication of the molecular architecture of M cell apical surfaces is important for understanding the strategies that pathogens use to exploit this pathway and for utilizing M cell transport for delivery of vaccines to the mucosal immune system. This article reviews the functional and biochemical features that distinguish M cells from other intestinal cell types. In addition it synthesizes the available information on development and differentiation of organized lymphoid tissues and the specialized epithelium associated with these immune inductive sites.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 483-519 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Dynamin, a 100-kDa GTPase, is an essential component of vesicle formation in receptor-mediated endocytosis, synaptic vesicle recycling, caveolae internalization, and possibly vesicle trafficking in and out of the Golgi. In addition to the GTPase domain, dynamin also contains a pleckstrin homology domain (PH) implicated in membrane binding, a GTPase effector domain (GED) shown to be essential for self-assembly and stimulated GTPase activity, and a C-terminal proline-rich domain (PRD), which contains several SH3-binding sites. Dynamin partners bind to the PRD and may either stimulate dynamin's GTPase activity or target dynamin to the plasma membrane. Purified dynamin readily self-assembles into rings or spirals. This striking structural property supports the hypothesis that dynamin wraps around the necks of budding vesicles where it plays a key role in membrane fission. The focus of this review is on the relationship between the GTPase and self-assembly properties of dynamin and its cellular function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 459-481 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Cholesterol balance is maintained by a series of regulatory pathways that control the acquisition of cholesterol from endogenous and exogenous sources and the elimination of cholesterol, facilitated by its conversion to bile acids. Over the past decade, investigators have discovered that a family of membrane-bound transcription factors, sterol regulatory element-binding proteins (SREBPs), mediate the end-product repression of key enzymes of cholesterol biosynthesis. Recently orphan members of another family of transcription factors, the nuclear hormone receptors, have been found to regulate key pathways in bile acid metabolism, thereby controlling cholesterol elimination. The study of these orphan nuclear receptors suggests their potential as targets for new drug therapies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 521-555 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Voltage-gated Ca2+ channels mediate Ca2+ entry into cells in response to membrane depolarization. Electrophysiological studies reveal different Ca2+ currents designated L-, N-, P-, Q-, R-, and T-type. The high-voltage-activated Ca2+ channels that have been characterized biochemically are complexes of a pore-forming alpha1 subunit of ~190-250 kDa; a transmembrane, disulfide-linked complex of alpha2 and delta subunits; an intracellular beta subunit; and in some cases a transmembrane gamma subunit. Ten alpha1 subunits, four alpha2delta complexes, four beta subunits, and two gamma subunits are known. The Cav1 family of alpha1 subunits conduct L-type Ca2+ currents, which initiate muscle contraction, endocrine secretion, and gene transcription, and are regulated primarily by second messenger-activated protein phosphorylation pathways. The Cav2 family of alpha1 subunits conduct N-type, P/Q-type, and R-type Ca2+ currents, which initiate rapid synaptic transmission and are regulated primarily by direct interaction with G proteins and SNARE proteins and secondarily by protein phosphorylation. The Cav3 family of alpha1 subunits conduct T-type Ca2+ currents, which are activated and inactivated more rapidly and at more negative membrane potentials than other Ca2+ current types. The distinct structures and patterns of regulation of these three families of Ca2+ channels provide a flexible array of Ca2+ entry pathways in response to changes in membrane potential and a range of possibilities for regulation of Ca2+ entry by second messenger pathways and interacting proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 557-589 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Green fluorescent protein chimerae acting as reporters for protein localization and trafficking within the secretory membrane system of living cells have been used in a wide variety of applications, including time-lapse imaging, double-labeling, energy transfer, quantitation, and photobleaching experiments. Results from this work are clarifying the steps involved in the formation, translocation, and fusion of transport intermediates; the organization and biogenesis of organelles; and the mechanisms of protein retention, sorting, and recycling in the secretory pathway. In so doing, they are broadening our thinking about the temporal and spatial relationships among secretory organelles and the membrane trafficking pathways that operate between them.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 591-626 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract SUMO (small ubiquitin-related modifier) is the best-characterized member of a growing family of ubiquitin-related proteins. It resembles ubiquitin in its structure, its ability to be ligated to other proteins, as well as in the mechanism of ligation. However, in contrast to ubiquitination-often the first step on a one-way road to protein degradation-SUMOlation does not seem to mark proteins for degradation. In fact, SUMO may even function as an antagonist of ubiquitin in the degradation of selected proteins. While most SUMO targets are still at large, available data provide compelling evidence for a role of SUMO in the regulation of protein-protein interactions and/or subcellular localization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 627-651 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract Because many viruses replicate in the nucleus of their host cells, they must have ways of transporting their genome and other components into and out of this compartment. For the incoming virus particle, nuclear entry is often one of the final steps in a complex transport and uncoating program. Typically, it involves recognition by importins (karyopherins), transport to the nucleus, and binding to nuclear pore complexes. Although all viruses take advantage of cellular signals and factors, viruses and viral capsids vary considerably in size, structure, and in how they interact with the nuclear import machinery. Influenza and adenoviruses undergo extensive disassembly prior to genome import; herpesviruses release their genome into the nucleus without immediate capsid disassembly. Polyoma viruses, parvoviruses, and lentivirus preintegration complexes are thought to enter in intact form, whereas the corresponding complexes of onco-retroviruses have to wait for mitosis because they cannot infect interphase nuclei.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 16 (2000), S. 653-699 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Abstract The Myc/Max/Mad network comprises a group of transcription factors whose distinct interactions result in gene-specific transcriptional activation or repression. A great deal of research indicates that the functions of the network play roles in cell proliferation, differentiation, and death. In this review we focus on the Myc and Mad protein families and attempt to relate their biological functions to their transcriptional activities and gene targets. Both Myc and Mad, as well as the more recently described Mnt and Mga proteins, form heterodimers with Max, permitting binding to specific DNA sequences. These DNA-bound heterodimers recruit coactivator or corepressor complexes that generate alterations in chromatin structure, which in turn modulate transcription. Initial identification of target genes suggests that the network regulates genes involved in the cell cycle, growth, life span, and morphology. Because Myc and Mad proteins are expressed in response to diverse signaling pathways, the network can be viewed as a functional module which acts to convert environmental signals into specific gene-regulatory programs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Cell and Developmental Biology 20 (2004), S. 29-59 
    ISSN: 1081-0706
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Notes: Plasmodium sporozoites display complex phenotypes including gliding motility and invasion of and transmigration through cells in the mosquito vector and the vertebrate host. Sporozoite studies have been difficult to perform because of technical concerns. Nevertheless, they have already provided insights into several aspects of sporozoite biology, shared in part with other apicomplexan invasive stages. Structure/function analysis of the thrombospondin-related anonymous protein paved the way to the understanding of the molecular mechanisms of apicomplexan gliding motility and host cell invasion. Functional studies of circumsporozoite protein revealed its role in Plasmodium sporozoite morphogenesis in addition to its well-known function in host cell invasion. Transcriptional surveys, which facilitate the investigation of gene expression programs that control sporozoite phenotypes, have revealed a high degree of previously unappreciated complexity and novel proteins that mediate sporozoite host cell infection.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...