ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (43)
  • Other Sources
  • photosynthesis
  • Springer  (43)
  • 1995-1999  (43)
  • 1999  (43)
Collection
  • Articles  (43)
  • Other Sources
Publisher
  • Springer  (43)
Years
  • 1995-1999  (43)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Mangroves and salt marshes 3 (1999), S. 147-153 
    ISSN: 1572-977X
    Keywords: conductance ; gas exchange ; mangrove ; photorespiration ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photosynthetic characteristics were investigated in the geographically isolated and restricted mangrove species, P.rhizophoreae. Gas exchange measurements were made on two to seven years old hydroponically grown plants maintained in 10%, 50% and 100% seawater. CO2 exchange in the 50% and 100% seawater treatments was reduced by 10% and 26%, respectively, compared to the 10% seawater treatment. CO2 response curves indicated that carboxylation efficiency was greater in 10% than in 50% seawater, while stomatal limitation increased from 11% to 16% as salinity increased from 10% to 50% seawater. Carbon losses via photorespiration (31% and 41%) and CO2 compensation point (67 and 81 μ11−1) were greater in 50% than in the 10% seawater treatment. Maximal CO2 exchange occurred at 30 °C with no differences among the salinity treatments. The results indicate that P. rhizophoreae exhibits many gas exchange characteristics previously reported for other mangroves.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5125
    Keywords: chlorophyll fluorescence ; nutrient limitation ; phytoplankton ; photosynthesis ; quantum efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5125
    Keywords: intertidal areas ; photosynthetically active radiation ; photosynthesis ; Tagus estuary ; tides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photosynthetically active radiation (PAR) and temperature were measured continuously at the surface of estuarine intertidal sediments in the Tagus estuary, Portugal, along two spring-neap tidal cycles. PAR and temperature were strongly conditioned by the periodic tidal inundation, with large and abrupt variations occurring during flooding and ebbing. PAR levels reaching the sediment surface decreased very rapidly to zero or very low values during most of the daytime immersion. Inundation during high tide had the general effect of attenuating the amplitude of daily temperature fluctuation, with the incoming water usually warmer than the sediment during the night or early morning and cooler during the day. The daily progression of tidal emersion resulted in a clear fortnightly variation in total daily PAR reaching the sediment surface, while both daily mean temperature and mean temperature of diurnal low tide periods failed to exhibit a well-defined fortnightly periodicity. The obtained results indicate that the estuarine intertidal environment is dominated, at sub-seasonal time scales, by fortnightly periodicity in irradiance and temperature conditions favourable for benthic photosynthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 11 (1999), S. 195-201 
    ISSN: 1573-5176
    Keywords: dense algal suspension ; light-harvesting pigment ; photosynthesis ; productivity ; cyanobacterium ; Synechocystis PCC 6714
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Microalgal productivity was examined using both a wild type and a phycocyanin-deficient mutant of Synechocystis PCC 6714 (PD-1). The culture was conducted at various light intensities under low and high cell densities in a continuous culture system. At low light intensity, photosynthetic productivity was almost the same for both low and high cell densities. However, at higher light intensities photosynthetic productivity was higher in mutant PD-1 than in the wild type. At 2000 μmol photon m−2 s−1 the productivity was 50% higher in mutant PD-1. This result is consistent with our first report (Nakajima & Ueda, 1997), which showed that photosynthetic productivity can be improved by reducing the light harvesting pigment content in high cell density cultures at high light intensities. It is concluded that the technology for reducing LHP content is a useful method for improving photosynthetic productivity in algal mass production.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 11 (1999), S. 157-163 
    ISSN: 1573-5176
    Keywords: Euglena gracilis ; photosynthesis ; waste water ; pulp and paper industry ; ultraviolet-B radiation (280–320 nm) ; pentachlorophenol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The green flagellate Euglena gracilis has been used as a model organism to elucidate the possible large-scale and short-term effects of waste substances from the pulp and paper industry on photosynthetic efficiency (PE). Different concentrations of waste substances before and after treatment in a cleaning system were studied. The uncleaned sample at concentrations up to 1:10 and the cleaned sample at concentrations up to 1:5 showed stimulating effects on the PE after 7 days of incubation compared to the control. The effects of waste substances on the PE of E. gracilis were also studied in combination with short-term studies (20 and 40 min) of ultraviolet-B radiation (UV-B, 280–320 nm). It was shown that increasing concentrations of the uncleaned sample had continuously stimulating effects on the PE and worked protectively against UV-B radiation. The cleaned sample exhibited no effects, or negative effects, on the PE of E. gracilis together with UV-B radiation compared to the experiments with only UV-B radiation. At the concentration 1:1 of the cleaned sample an increase in the PE was detected due to the high concentration of the coloured substances and a decrease in the UV-B penetration. PE revealed itself to be highly sensitive for detecting toxic effects on E. gracilis and is thus very promising for use in regular toxicity tests of waste water from pulp and paper industry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5176
    Keywords: algal growth ; Porphyra ; inorganic carbon (Ci) ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photosynthetic (oxygen evolution) and growth (biomass increase) responses to ambient pH and inorganic carbon (Ci) supply were determined for Porphyralinearis grown in 0.5 L glass cylinders in the laboratory, or in 40 L fibreglass outdoor tanks with running seawater. While net photosynthetic rates were uniform at pH 6.0–8.0, dropping only at pH 8.7, growth rates were significantly affected by pH levels other than that of seawater (c. pH 8.3). In glass cylinders, weekly growth rates averaged 76% at external pH 8.0, 13% at pH 8.7 and 26% at pH 7.0. Photosynthetic O2 evolution on a daily basis(i.e. total O2 evolved during day time less total O2 consumed during night time) was similar to the growth responses at all experimental pH levels, apparently due to high dark respiration rates measured at acidic pH. Weekly growth rates averaged 53% in algae grown in fibreglass tanks aerated with regular air (360 mg L-1 CO2) and 28% in algae grown in tanks aerated with CO2-enriched air (750 mg L-1 CO2). The pH of the seawater medium in which P. linear is was grown increased slightly during the day and only rarely reached 9.0. The pH at the boundary layer of algae submerged in seawater increased in response to light reaching, about pH 8.9 within minutes, or remained unchanged for algae submerged in a CO2-free artificial sea water medium. Photosynthesis of P. linearissaturated at Ci concentrations of seawater (K0.5560 μM at pH 8.2) and showed low photosynthetic affinity for CO2(K0.5 61 μM) at pH 6.0. It is therefore concluded that P. linearisuses primarily CO2 with HCO3 - being an alternative source of Ci for photosynthesis. Its fast growth could be related to the enzyme carbonic anhydrase whose activity was detected intra- and extracellularly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5176
    Keywords: CO2 ; inorganic carbon ; macroalgae ; photosynthesis ; PAM
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photosynthesis and cell composition of Porphyraleucosticta discs grown at low (〈 0.0001% in air), current (control) and high (1% CO2 in air)inorganic carbon (Ci) concentrations were analyzed. Carbohydrate content in discs grown at high Ci increased (15.1 mg g-1 FW) with respect to the control (6.4 mg g FW-1), whereas soluble protein content decreased to one-third (5.6 to2.1 mg g-1 FW). Carbohydrate content was unaffected and soluble protein slightly increased in discs grown at low Ci. As a consequence of these changes, a lower C/N molar ratio (8.6) was found in the discs grown at low compared to high Ci(12.4). Nitrate reductase activity increased at high Ci from 0.3 ± 0.2 to 1.7 ± 0.4 μmolNO2 - g-1 FW h-1indicating that reduction and assimilation of nitrate were uncoupled. The response of photosynthesis to increasing irradiance, estimated from O2evolution vs. irradiance curves, was affected by the treatments. Maximum quantum yield (Φ O2°) and effective quantum yield (Φ O2) at 150 μmol photon m-2s-1 decreased by 20% and 50%, respectively, at low Ci. These differences could be due to changes in photosynthetic electron flow between PSII and PSI. Treatments also produced changes in maximal (Fv/Fm) and effective (ΔF/Fm′)quantum yield for photosystem II charge separation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 11 (1999), S. 473-477 
    ISSN: 1573-5176
    Keywords: aquaculture ; light ; photosynthesis ; Porphyra
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Due to their rapid growth and nutrient assimilation,Porphyra spp. are good candidates for bioremediation and polyculture. The production potential of two strains of P. purpurea and P. umbilicalis from north-east USA was evaluated by measuring rates of photosynthesis (as O2evolution) of material grown at 20 °C. Photosynthetic rates of P. umbilicalis were 80%higher than P. purpurea over the temperature range 5–20 °C, at both sub-saturating andsaturating irradiances (37 and 289 μmol photonm-2 s-1). Porphyra umbilicalis was more efficient at low irradiances (higher α) and had a higher Pmax (23.0 vs 15.6 μmolO2 g-1 DW min-1) than P.purpurea, suggesting that P. umbilicalis is a better choice for mass culture, where self-shading maybe severe.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of applied phycology 11 (1999), S. 535-541 
    ISSN: 1573-5176
    Keywords: cyanobacterium ; Nostoc flagelliforme ; nutrients ; photosynthesis ; potassium ; re-hydration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of nutrients on the photosynthetic recovery of Nostoc flagelliforme during re-hydration were investigated in order to see if their addition was necessary. Net photosynthesis was negligible in distilled water without nutrient-enrichment. Addition of K+ resulted in significant enhancement of net photosynthesis, whereas other nutrients (Fe3+, Mg2+, Na+, NO3 -, PO4 3-, Cl-) and trace-metals (A5) showed little effect. The recovered net photosynthetic activity increased with the increased K+, and reached the maximum at concentrations above 230 μM. Desiccation and re-hydration did not affect the dependence of photosynthetic recovery on K+. It was concluded that dried field populations of N. flagelliforme require exogenous addition of potassium for photosynthetic recovery and that growth may be potassium-limited in nature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-868X
    Keywords: Carbon dioxide ; coral reefs ; atoll ; lagoon ; photosynthesis ; calcification ; total alkalinity ; partial pressure ; topography ; residence time
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Factors controlling the CO2 system parameters, including the partial pressure of CO2 (PCO2) in coral reef waters, were investigated in three mid-oceanic reefs of the Indo-Pacific region. Surface water PCO2 in the lagoons of Majuro Atoll and Palau barrier reef in the Pacific were 25 µatm and 48 µatm higher than those of the offshore waters, respectively, while South Male Atoll lagoon of the Maldives in the Indian Ocean exhibited relatively small difference in PCO2 compared to the offshore water. Observations from Majuro Atoll and Palau barrier reef are consistent with the view that calcium carbonate production predominates in coral reefs. On the other hand, results from South Male Atoll can be attributed to the thorough flushing of the lagoon, which is connected to the open ocean by numerous deep channels. The offshore-lagoon PCO2 difference depends on system-level net organic-to-inorganic carbon production ratio while reef topography, especially residence time of the lagoon, has a secondary effect on the magnitude of the offshore-lagoon difference. A potential for releasing CO2 might be more evident in an enclosed atoll where the reef water has a longer residence time. Oceanic atoll and barrier reef lagoons, which are in the terminal stage of evolutionary history of oceanic volcanic islands, have the potential to release CO2 to the atmosphere.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Bioscience reports 19 (1999), S. 499-509 
    ISSN: 1573-4935
    Keywords: Arabidopsis ; auxiliary enzymes ; light stress ; photosynthesis ; protein phosphorylation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract An improved cultivation system for Arabidopsis thaliana was developed, allowing advanced biochemical studies in vitro and in vivo of this important model plant. Highly functional Arabidopsis thylakoids were isolated and used to study both basic and regulatory photosynthetic functions with the aim to create a platform for the characterization of mutants deficient in auxiliary proteins. Light-induced proteolytic degradation of the D1 protein could be followed and shown to be a subsequent event to photoinactivation of electron transport. The phosphorylation and dephosphorylation of thylakoid proteins resembled that seen in spinach leaves although phospho-CP43 revealed an unusual regulatory behavior.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1573-5036
    Keywords: elevated CO2 ; leaf transpiration ; nonstructural carbohydrate ; P nutrition ; photosynthesis ; white clover
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The growth response of white clover (Trifolium repens L.) to the expected increase in atmospheric partial pressure of CO2 (pCO2) may depend on P availability. A decrease in the rate of transpiration due to increased pCO2 may reduce the amount of P transported to the shoot, thereby causing a change in the partitioning of P between the root and shoot. To test these hypotheses, four concentrations of P in the nutrient solution, combined with two pCO2 treatments, were applied to nodulated white clover plants. Compared to ambient pCO2 (35 Pa), twice ambient pCO2 (70 Pa) reduced the rate of transpiration but did not impair the total P uptake per plant. However, at twice ambient pCO2 and a moderate to high supply of P, concentrations of structural P and soluble P (Pi) were lower in the leaves and higher in the roots. The activity of root acid phosphatase was lower at twice ambient pCO2 than at ambient pCO2; it depended on the Pi concentration in the roots. At the highest P concentration, twice ambient pCO2 stimulated photosynthesis and the growth rate of the plant without affecting the concentration of nonstructural carbohydrates in the leaves. However, at the lower P concentrations, plants at twice ambient pCO2 lost their stimulation of photosynthesis in the afternoon, they accumulated nonstructural carbohydrates in the leaves and their growth rate was not stimulated; indicating C-sink limitation of growth. P nutrition will be crucial to the growth of white clover under the expected future conditions of increased pCO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 209 (1999), S. 283-295 
    ISSN: 1573-5036
    Keywords: leaf emergence ; phosphorus ; photosynthesis ; tillering ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Phosphorus (P) deficiency limits the yield of wheat, particularly by reducing the number of ears per unit of area because of a poor tiller emergence. The objectives of this work were to (i) determine whether tiller emergence under low phosphorus availability is a function of the availability of assimilates for growth or a direct result of low P availability, (ii) attempt to establish a quantitative relation between an index of the availability of P in the plant and the effects of P deficiency on tiller emergence, and (iii) to provide a better understanding of the mechanisms involved in tiller emergence in field-grown wheat. Wheat (Triticum aestivum L., cv. INTA Oasis), was grown in the field under drip irrigation on a typic Argiudol, low in P (5.5 μg P g-1 soil Bray & Kurtz I) in Balcarce, Argentina. Treatments consisted of the combination of three levels of P fertilization 0, 60 and 200 kg P2O5 ha-1, and two levels of assimilate availability, a control (non-shaded) and 65% of reduction in incident irradiance from seedling emergence until the end of tillering (shaded). Phosphorus treatments significantly modified the pattern of growth and development of the plants. Shading reduced the growth and concentration of water-soluble carbohydrates in leaves and stems. Leaf photosynthetic rate at saturating irradiance was reduced by P deficiency, but was not affected by shading. At shoot P concentrations less than 4.2 g P kg-1 the heterogeneity in the plant population increased with respect to the number of plants bearing a certain tiller. At a shoot P concentration of 1.7 g P kg-1 tillering ceased completely. Phosphorus deficiency directly altered the normal pattern of tiller emergence by slowing the emergence of leaves on the main stem (i.e. increasing the phyllochron), and by reducing the maximum rate of tiller emergence for each tiller.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    ISSN: 1573-5028
    Keywords: green algae ; high-CO2 stress ; photosynthesis ; regulation ; Rubisco activase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract cDNA and the corresponding genomic DNA region encoding Rubisco activase were isolated from the unicellular green alga Chlorococcum littorale. The deduced amino acid sequence encoded by the cDNA was 403 amino acids long and exhibited important homology with those of other known Rubisco activases. Its N-terminal sequence was similar to the chloroplastic transit peptides in Chlamydomonas reinhardtii. The mature protein had a predicted molecular mass of 42 kDa. Five introns were located inside the genomic gene encoding Rubisco activase (rca). Genomic Southern blots indicated that two copies of the rca gene were present in the genome of C. littorale. The level of rca messenger RNA increased when cells of C. littorale were subjected to high-CO2 stress (i.e. grown under at least 20% CO2). Hsp70 heat-shock protein was also induced under high-CO2 conditions and, as expected, was also induced at 35 °C. The rca gene, in contrast, was not induced at 35 °C, indicating that this gene was induced in response to the high CO2 concentration and not to general stress. A search of the promoter-binding proteins by a gel retardation assay showed that, under the high-CO2 conditions, a protein(s) which was probably an activator of the rca transcription was synthesized.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1573-5028
    Keywords: cyanobacteria ; immunogold labelling ; light-harvesting complexes ; photosynthesis ; phycobilins ; phytoplankton
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An intrinsic divinyl-chlorophyll a/b antenna and a particular form of phycobiliprotein, phycoerythrin (PE) III, coexist in the marine oxyphotobacterium Prochlorococcus marinus CCMP 1375. The genomic region including the cpeB/A operon of P. marinus was analysed. It encompasses 10 153 nucleotides that encode three structural phycobiliproteins and at least three (possibly five) different polypeptides analogous to cyanobacterial or red algal proteins involved either in the linkage of subunits or the synthesis and attachment of chromophoric groups. This gene cluster is part of the chromosome and is located within a distance of less than 110 kb from a previously characterized region containing the genes aspA-psbA-aroC. Whereas the Prochlorococcus phycobiliproteins are characterized by distinct deletions and amino acid replacements with regard to analogous proteins from other organisms, the gene arrangement resembles the organization of phycobiliprotein genes in some other cyanobacteria, in particular marine Synechococcus strains. The expression of two of the Prochlorococcus polypeptides as recombinant proteins in Escherichia coli allowed the production of individual homologous antisera to the Prochlorococcus α and β PE subunits. Experiments using these sera show that the Prochlorococcus PEs are specifically associated to the thylakoid membrane and that the protein level does not significantly vary as a function of light irradiance or growth phase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 62 (1999), S. 1-29 
    ISSN: 1573-5079
    Keywords: chloroplast ; chlorosome ; chromatophore ; granules ; inositol ; Neurospora ; path of carbon ; photosynthesis ; polythdroxyalkanoate (PHA) ; prokaryote cellular inclusions ; protozoan biochemistry ; ribulose 1 ; 5-bis-phosphate ; Tetrahymena
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract What follows is a very personal account of my professional life and the early years that preceded it. I have described the social and economic conditions in America and how the nineteen twenties and thirties nurtured our scientific future. The description of the early part of post-World War II research covers my experience in the areas of nutritional biochemistry, biochemical genetics and proceeds to photosynthesis. The latter era lasted around 35 years. For me the most memorable research accomplishments in which I was a participant during this period was the first demonstration of the primary carboxylation enzyme in an in vitro system in algal and higher plants as well to show that it was structurally associated with the chloroplast.Our group while at Oak Ridge and the University of Massachusetts assembled data that described the complete macromolecular assembly of the photosynthetic apparatus of the unusual photosynthetic green bacterium Chloroflexus aurantiacus and created a model of that system which differed greatly from the chomatophore system for the purple bacteria. For the last decade, my scientific journey, with numerous new colleagues has turned to the exciting area of biomaterials.We characterized and modeled the completely new bacterial intracellular inclusions responsible for the synthesis and degredation of biosynthetic, biodegradable and biocompatible bacterial polyesters in the cytoplasm of Pseudomonads.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1573-5079
    Keywords: (bacterio)chlorophyll ; energy transfer ; light harvesting ; membrane proteins ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Unlike the α and β polypeptides of the core light-harvesting complex (LH1) of Rhodobacter (Rb.) sphaeroides, the α and β polypeptides of the peripheral light-harvesting complex (LH2) of this organism will not form a subunit complex by in vitro reconstitution with bacteriochlorophyll. Guided by prior experiments with the LH1 β polypeptides of Rb. sphaeroides and Rhodospirillum rubrum, which defined a set of interactions required to stabilize the subunit complex, a series of mutations to the Rb. sphaeroides LH2 β polypeptide was prepared and studied to determine the minimal changes necessary to enable it to form a subunit-type complex. Three mutants were prepared: Arg at position −10 was changed to Asn (numbering is from the conserved His residue which is known to be coordinated to bacteriochlorophyll); Arg at position −10 and Thr at position +7 were changed to Asn and Arg, respectively; and Arg at position −10 was changed to Trp and the C-terminus from +4 to +10 was replaced with the amino acids found at the corresponding positions in the LH1 β polypeptide of Rb. sphaeroides. Only this last multiple mutant polypeptide formed subunit-type complexes in vitro. Thus, the importance of the C-terminal region, which encompasses conserved residues at positions +4, +6 and +7, is confirmed. Two mutants of the LH1 β polypeptide of Rb. sphaeroides were also constructed to further evaluate the interactions stabilizing the subunit complex and those necessary for oligomerization of subunits to form LH1 complexes. In one of these mutants, Trp at position −10 was changed to Arg, as found in LH2 at this position, and in the other His at position −18 was changed to Val. The results from these mutants allow us to conclude that the residue at the −10 position is unimportant in subunit formation or oligomerization, while the strictly conserved His at −18 is not required for subunit formation but is very important in oligomerization of subunits to form LH1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 398-399 (1999), S. 361-373 
    ISSN: 1573-5117
    Keywords: production ; mathematical model ; Ecklonia cava ; light ; temperature ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The dependence of photosynthesis on light and temperature is modelled through analysis of transition probabilities of photosystems. In the model, two transition probabilities are functions of light, and one transition probability is a function of temperature. The estimated light-saturated photosynthesis of Ecklonia cava blades at 20 °C was 0.037 mg C cm−2 h−1. The value of the activation energy, the standard enthalpy and the standard entropy were estimated to be 56.5 kJ mol−1, 204 kJ mol−1 and 678 J mol−1 K−1, respectively. A production model (an integral photosynthesis model) for an E. cava stand was developed using the photosynthesis model. Production calculated by the model agreed well with observed data during the growing period of an E. cava stand at a field observation site on the west side of Miura Peninsula, Japan. Results of the analysis of the effects of irradiance and temperature on the production of the E. cava community by the model are: 1. Production decreased with irradiance decrease. The estimated compensation irradiance was 26.5 μmol photons m−2 s−1 when the biomass was 3 kg wet mass m−2 (blade:stipe ratio = 2 kg m−2:1 kg m−2) and the temperature was 20 °C. 2. The optimum temperature decreased when irradiance decreased and when biomass increased. The highest estimated value for the optimum temperature was 24.0 °C. The estimated optimum temperature was 18.2 °C when the biomass was 12 kg wet mass m−2 and the photon irradiance was 200 μmol photons m−2 s−1. 3. The amount of biomass that resulted in the maximum production was influenced by irradiance and temperature. At 400 μmol photons m−2 s−1 and 20 °C, the estimated value of the biomass (blade:stipe = 2:1) giving the maximum pr oduction was about 5.3 kg wet mass m−2. However, at 100 μmol photons m−2 s−1 and 24 °C, the estimated value was about 3.0 kg wet mass m−2. The estimated values of the maximum production under the two conditions were 1.05 and 0.30 g C m−2 h−1, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence ; cyclic electron flow ; high temperature ; light scattering ; photosynthesis ; Photosystems II and I
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In illuminated intact spinach chloroplasts, warming to and beyond 40 °C increased the proton permeability of thylakoids before linear electron transport through Photosystem II was inhibited. Simultaneously, antimycin A-sensitive cyclic electron transport around Photosystem II was activated with oxygen or CO2, but not with nitrite as electron acceptors. Between 40 to 42 °C, activation of cyclic electron transport balanced the loss of protons so that a sizeable transthylakoid proton gradient was maintained. When the temperature of darkened spinach leaves was slowly increased to 40°C, reduction of the quinone acceptor of Photosystem II, QA, increased particularly when respiratory CO2 production and autoxidation of plastoquinones was inhibited by decreasing the oxygen content of the atmosphere from 21 to 1%. Simultaneously, Photosystem II activity was partially lost. The enhanced dark QA reduction disappeared after the leaf temperature was decreased to 20 °C. No membrane energization was detected by light-scattering measurements during heating the leaf in the dark. In illuminated spinach leaves, light scattering and nonphotochemical quenching of chlorophyll fluorescence increased during warming to about 40 °C while Photosystem II activity was lost, suggesting extra energization of thylakoid membranes that is unrelated to Photosystem II functioning. After P700 was oxidized by far-red light, its reduction in the dark was biphasic. It was accelerated by factors of up to 10 (fast component) or even 25 (slow component) after short heat exposure of the leaves. Similar acceleration was observed at 20 °C when anaerobiosis or KCN were used to inhibit respiratory oxidation of reductants. Methyl viologen, which accepts electrons from reducing side of Photosystem II, completely abolished heat-induced acceleration of P700+ reduction after far-red light. The data show that increasing the temperature of isolated chloroplasts or intact spinach leaves to about 40 °C not only inhibits linear electron flow through Photosystem II but also activates Photosystem I-driven cyclic electron transport pathways capable of contributing to the transthylakoid proton gradient. Heterogeneity of the kinetics of P700+ reduction after far-red oxidation is discussed in terms of Photosystem I-dependent cyclic electron transport in stroma lamellae and grana margins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 1573-5079
    Keywords: bacteriochlorophyll a ; electron transfer ; light harvesting ; photosynthesis ; Rhodobacter sphaeroides ; reaction center
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of the light harvesting 1 (LH1) antenna complex on the driving force for light-driven electron transfer in the Rhodobacter sphaeroides reaction center has been examined. Equilibrium redox titrations show that the presence of the LH1 antenna complex influences the free energy change for the primary electron transfer reaction through an effect on the reduction potential of the primary donor. A lowering of the redox potential of the primary donor due to the presence of the core antenna is consistently observed in a series of reaction center mutants in which the reduction potential of the primary donor was varied over a 130 mV range. Estimates of the magnitude of the change in driving force for charge separation from time-resolved delayed fluorescence measurements in the mutant reaction centers suggest that the mutations exert their effect on the driving force largely through an influence on the redox properties of the primary donor. The results demonstrate that the energetics of light-driven electron transfer in reaction centers are sensitive to the environment of the complex, and provide indirect evidence that the kinetics of electron transfer are modulated by the presence of the LH1 antenna complexes that surround the reaction center in the natural membrane.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 59 (1999), S. 187-200 
    ISSN: 1573-5079
    Keywords: chlorophyll fluorescence ; CO2 ; oxygen ; photosynthesis ; rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The kinetic properties of photosynthesis (both transient and steady-state) were monitored using three non-invasive techniques to evaluate limitations on triose-phosphate (triose-P) conversion to carbohydrate in rice. These included analyzing the O2 sensitivity of CO2 fixation and the assimilatory charge (AC) using gas exchange (estimate of the ribulose 1,5- bisphosphate pool) and measuring Photosystem II activity by chlorophyll fluorescence analysis under varying light, temperature and CO2 partial pressures. Photosynthesis was inhibited transiently upon switching from 20 to 2 kPa O2 (reversed O2 sensitivity), the degree of which was correlated with a terminal, steady-state suppression of low O2 enhancement of photosynthesis. Under current ambient levels of CO2 and moderate to high light, the transient pattern was more obvious at 18 °C than at 26 °C while at 34 °C no tra nsient response was observed. The transient inhibition at 18 °C ranged from 15% to 31% depending on the pre-measurement temperature. This pattern, symptomatic of feedback, was observed with increasing light and CO2 partial pressures with the degree of feedback decreasing from moderate (18 °C) up to high temperature (34 °C). Under feedback conditions, the rate of assimilation is shifted from being photorespiration limited to being triose-P utilization limited. Transitory changes in CO2 assimilation rates (A) under low O2 indicative of feedback coincided with a transitory drop in assimilatory charge (AC) and inhibition of electron transport. In contrast to previous studies with many C3 species, our studies indicate that rice shows susceptibility to feedback inhibition under moderate temperatures and current atmospheric levels of CO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    ISSN: 1440-1703
    Keywords: chlorophyll fluorescence ; Macaranga gigantea ; Neobalanocarpus heimii ; photosynthesis ; Shorea leprosula ; tropical rainforest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Interspecific ecophysiological differences in response to different light environments are important to consider in regeneration behavior and forest dynamics. The diurnal changes in leaf gas exchange and chlorophyll fluorescence of two dipterocarps, Shorea leprosula (a high light-requiring) and Neobalanocarpus heimii (a low light-requiring), and a pioneer tree species (Macaranga gigantea) growing in open and gap sites were examined. In the open site, the maximum net photosynthetic rate (Pn), photosystem II (PSII) quantum yield (δ; F/Fm′), and relative electron transport rate (r-ETR) through PSII at a given photosynthetic photon flux density (PPFD) was higher in S. leprosula and M. gigantea than in N. heimii, while non-photochemical quenching (NPQ) at a given PPFD was higher in N. heimii. The maximum values of net photosynthetic rate (Pn) in M. gigantea and S. leprosula was higher in the open site (8–11 μmol m−2 s−1) than in the gap site (5 μmol m−2 s−1), whereas that in N. heimii was lower in the open site (2 μmol m−2 s−1) than in the gap site (4 μmol m−2 s−1), indicating that N. heimii was less favorable to the open site. These data provide evidence to support the hypothesis that ecophysiological characteristics link with plant’s regeneration behavior and successional status. Although Pn and stomatal conductance decreased at midday in M. gigantea and S. leprosula in the open site, both r-ETR and leaf temperature remained unchanged. This indicates that stomatal closure rather than reduced photochemical capacity limited Pn in the daytime. Conversely, there was reduced r-ETR under high PPFD conditions in N. heimii in the open site, indicating reduced photochemical capacity. In the gap site, Pn increased in all leaves in the morning before exposure to direct sunlight, suggesting a relatively high use of diffuse light in the morning.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Springer
    Plant cell, tissue and organ culture 58 (1999), S. 31-37 
    ISSN: 1573-5044
    Keywords: carbohydrates ; chlorophylls ; photosynthesis ; tissue culture ; Vitis vinifera L
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Grapevine plantlets multiplied in vitro were acclimatized at 40 or 90 μmol m−2 s−1 photon flux density for 12 or 16 h per day, respectively. In the high-light regime a decrease in total chlorophyll and an increase in chlorophyll a/chlorophyll b ratio occurred. However, at high-light intensity lower photosynthetic capacities and higher apparent photosynthesis were measured than at the low-light regime. In leaves expanded during acclimatization, the light compensation point was higher in plantlets under high-light while quantum yield was higher in low-light conditions. High-light also gave rise to an increase in carbohydrate concentration. As a whole, the results suggest that high-light increases carbon assimilation and growth although with a low investment in the photosynthetic apparatus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 60 (1999), S. 29-42 
    ISSN: 1573-5079
    Keywords: enzyme catalysis ; evolution ; genetic engineering ; photosynthesis ; protein assembly ; protein degradation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) has played a central role in our understanding of chloroplast biogenesis and photosynthesis. In particular, its catalysis of the rate-limiting step of CO2 fixation, and the mutual competition of CO2 and O2 at the active site, makes Rubisco a prime focus for genetically engineering an increase in photosynthetic productivity. Although it remains difficult to manipulate the chloroplast-encoded large subunit and nuclear-encoded small subunit of crop plants, much has been learned about the structure/function relationships of Rubisco by expressing prokaryotic genes in Escherichia coli or by exploiting classical genetics and chloroplast transformation of the green alga Chlamydomonas reinhardtii. However, the complexity of chloroplast Rubisco in land plants cannot be completely addressed with the existing model organisms. Two subunits encoded in different genetic compartments have coevolved in the formation of the Rubisco holoenzyme, but the function of the small subunit remains largely unknown. The subunits are posttranslationally modified, assembled via a complex process, and degraded in regulated ways. There is also a second chloroplast protein, Rubisco activase, that is responsible for removing inhibitory molecules from the large-subunit active site. Many of these complex interactions and processes display species specificity. This means that attempts to engineer or discover a better Rubisco may be futile if one cannot transfer the better enzyme to a compatible host. We must frame the questions that address this problem of chloroplast-Rubisco complexity. We must work harder to find the answers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    ISSN: 1573-5079
    Keywords: absorption ; Kennard–Stepanov theory ; photosynthesis ; spectral equilibration ; thermal equilibration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Absorption and fluorescence spectra of chlorophyll a have been analyzed on the basis of an extended version of Kennard–Stepanov (KS) theory. It is proposed that at least one new electronic state lies just below the normal S1 − S0 transition (Qy), borrowing approximately 2–4% of its strength and contributing to the fluorescence in the tail. The KS anomalies leading to this hypothesis occur in a wide variety of cases, including chlorophyll a in solution and protein-bound chlorophyll a, suggesting that the phenomenon is an intrinsic property of the molecule. Natural candidates for the new state(s) are the second and third triplet states. The relationship of the fluorescence excitation spectrum to KS theory is investigated and applied to explain a red drop in yield.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    ISSN: 1573-5079
    Keywords: ESR ; electron transport ; FTIR ; lipid ; membrane structure ; protein ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The specific effects exerted by different heavy metals on both the function and the structure of the photosynthetic apparatus were addressed. The functional analysis performed via the fluorescence induction kinetics revealed that the applied toxic heavy metals can be classified into two groups: Cd and Ni had no significant effect on the photosynthetic electron transport, while Cu, Pb and Zn strongly inhibited the Photosystem II (PS II) activity, as evidenced by the dramatic decreases in both the variable (Fv) and the maximal (Fm) fluorescence. The structural effects of the heavy metal ions on the thylakoid membranes were considered in three relations: (1) lipids, (2) proteins — studied by Fourier transform infrared (FTIR) spectroscopy, and (3) lipid—protein interactions — investigated by electron spin resonance (ESR) spectroscopy using spin-labeled probe molecules. The studied heavy metal ions had only a non-specific rigidifying effect on the thylakoid lipids. As regards proteins, Cd and Ni had no effect on the course of their heat denaturation. The heat denaturation of the proteins was accompanied by a decrease in the α-helix content (1656 cm-1), a parallel increase in the disordered segments (1651 cm-1), a decrease in the intramolecular β-sheet (1636 cm-1) content and the concomitant appearance of an intermolecular β-structure (1621 cm-1). In contrast with Cd and Ni, Cu and Zn blocked the appearance of the intermolecular β-structure. Pb represented an intermediate case. It seems that these heavy metals alter the native membrane structure in such a way that heat-induced aggregation becomes more limited. The ESR data revealed that certain heavy metals also affect the lipid—protein interactions. While Cd and Ni had hardly any effect on the solvation fraction of thylakoid lipids, Cu, Pb and Zn increased the fraction of lipids solvating the proteins. On the basis of the FTIR and ESR data, it seems that Cu, Pb, and Zn increase the surfaces available for lipid—protein interactions by dissociating membrane protein complexes, and that these ‘lipidated’ proteins have a smaller chance to aggregate upon heat denaturation. The data presented here indicate that the damaging effects of poisonous heavy metals are element-specific, Cu, Pb and Zn interact directly with the thylakoid membranes of the photosynthetic apparatus, while Cd and Ni interfere rather with other metabolic processes of plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    ISSN: 1573-5079
    Keywords: CO2 assimilation ; metabolic control analysis ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to explain the mechanisms of Calvin-cycle regulation, the general properties of metabolic systems under homeostatic flux control are analyzed. It is shown that the main characteristic point for an enzyme in such a system can be the value of a sharp transition from some constant homeostatic flux to a limitation by this enzyme. A special method for the quantitative treatment of the experimental dependence of a metabolic flux such as photosynthesis on enzyme content is developed. It is pointed out that reactions close to a thermodynamic equilibrium under normal conditions can considerably limit the homeostatic fluxes with a decrease of the enzyme content. Calvin-cycle enzymes are classified as non-limiting, near-limiting and limiting. The deduced rules for the regulation of a homeostatic metabolic pathway are used to explain the data obtained for transgenic plants with reduced activities of Calvin-cycle enzymes. The role of compensating mechanisms that maintain the photosynthesis rate constant upon the changes of enzyme contents is analyzed for the Calvin cycle. The developed analysis explains the sharp transitions between limiting and non-limiting conditions that can be seen in transgenic plants with reduced content of some Calvin-cycle enzymes, and the limiting role of such reversible enzymes as aldolase, transketolase and others. The attempt is made to predict the properties of plants with increased enzyme contents in the Calvin cycle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 60 (1999), S. 1-28 
    ISSN: 1573-5079
    Keywords: biodiversity ; carboxylase ; genetic selection ; photosynthesis ; regulation ; specificity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Marine and terrestrial photosynthetic and chemoautotrophic microorganisms assimilate considerable amounts of carbon dioxide. Like green plastids, the predominant means by which this process occurs is via the Calvin-Benson-Bassham reductive pentose phosphate pathway, where ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) plays a paramount role. Recent findings indicate that this enzyme is subject to diverse means of control, including specific and elaborate means to guarantee its high rate and extent of synthesis. In addition, powerful and specific means to regulate Rubisco activity is a characteristic feature of many microbial systems. In many respects, the diverse properties of microbial Rubisco enzymes suggest interesting strategies to elucidate the molecular basis of CO2/O2 specificity, the ‘holy grail’ of Rubisco biochemistry. These systems thus provide, as the title suggests, ‘different perspectives’ to this fundamental problem. These include vast possibilities for imaginative biological selection using metabolically versatile organisms with well-defined genetic transfer capabilities to solve important issues of Rubisco specificity and molecular control. This review considers the major issues of Rubisco biochemistry and regulation in photosynthetic microoganisms including proteobacteria, cyanobacteria, marine nongreen algae, as well as other interesting prokaryotic and eukaryotic microbial systems recently shown to possess this enzyme.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthesis research 60 (1999), S. 247-256 
    ISSN: 1573-5079
    Keywords: irradiance ; kinetics ; method ; photosynthesis ; regulation ; rubisco
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An in vivo method for the estimation of kinetic parameters of partial reactions of carboxylation of ribulose 1,5-bisphosphate (RuBP) catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is described. Rubisco in barley, wheat and bean is different in the ability of its active centers to bind RuBP. The rate constant of the formation of the Rubisco-RuBP complex in these plants at 25 °C is 0.414, 0.245 and 0.660 mM-1 s-1, respectively. The rate constant of the reaction of the Rubisco-bound enediol with CO2 does not differ significantly in barley and wheat, and averages 66 mM-1 s-1. Decreased irradiance inhibits Rubisco in two ways: by reducing the concentration of operating catalytic sites and by decreasing the rate constant of binding of RuBP to Rubisco. High concentrations of CO2 inhibit Rubisco by decreasing the concentration of competent carboxylation centers, without any s ignificant influence upon the rate constants of partial reactions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    ISSN: 1573-5079
    Keywords: EPR ; iron-sulphur ; photosynthesis ; P700 ; reaction center
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A site directed mutant of the Photosystem I reaction center of Chlamydomonas reinhardtii has been described previously. [Hallahan et al. (1995) Photosynth Res 46: 257–264]. The mutation, PsaA: D576L, changes the conserved aspartate residue adjacent to one of the cysteine ligands binding the Fe-SX center to PsaA. The mutation, which prevents photosynthetic growth, was observed to change the EPR spectrum of the Fe-SA/B centers bound to the PsaC subunit. We suggested that changes in binding of PsaC to the PsaA/PsaB reaction center prevented efficient electron transfer. Second site suppressors of the mutation have now been isolated which have recovered the ability to grow photosynthetically. DNA analysis of four suppressor strains showed the original D576L mutation is intact, and that no mutations are present elsewhere within the Fe-SX binding region of either PsaA or PsaB, nor within PsaC or PsaJ. Subsequent genetic analysis has indicated that the suppressor mutation(s) is nuclear encoded. The suppressors retain the altered binding of PsaC, indicating that this change is not the cause of failure to grow photosynthetically. Further analysis showed that the rate of electron transfer from the quinone electron carrier A1 to Fe-SX is slowed in the mutant (by a factor of approximately two) and restored to wild type rates in the suppressors. ENDOR spectra of A1 ·– in wild-type and mutant preparations are identical, indicating that the electronic structure of the phyllosemiquinone is not changed. The results suggest that the quinone to Fe-SX center electron transfer is sensitive to the structure of the iron-sulfur center, and may be a critical step in the energy conversion process. They also indicate that the structure of the reaction center may be modified as a result of changes in proteins outside the core of the reaction center.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    ISSN: 1573-5079
    Keywords: photosynthesis ; photosynthetic induction ; sunflecks
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of CO2 concentration and the effects of growth-light conditions on Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) deactivation were examined for Spinacea oleracea (spinach). Rubisco deactivation kinetics and the degree that Rubisco activation limited the rise in photosynthesis following an increase in photon flux density (PFD) were determined from gas-exchange time courses. There were no significant differences in the apparent relaxation time for Rubisco deactivation among leaves exposed to high or low CO2 (50 or 1000 μmol mol-1) and low PFD (170 μmol m-2 s-1) or darkness. However, when PFD was increased to 1700 μmol m-2 s-1 following a period of low PFD or darkness, leaves exposed to low CO2 × low PFD showed a lower contribution to the photosynthetic induction process by the activation of Rubisco than leaves exposed to the other treatments. For the growth-light experiments, spinach was grown under high PFD × high red:far-red ratio (R:FR), low PFD × high R:FR, or low PFD × low R:FR light environments. Leaves that matured under the low PFD × low R:FR treatment showed a lower percent change in photosynthesis due to Rubisco activation than leaves exposed to the other growth-light treatments. However, there were no significant differences among the growth-light treatments in the maximum contribution of Rubisco activation to the induction response or in the apparent relaxation time for Rubisco deactivation during shade events.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 398-399 (1999), S. 355-359 
    ISSN: 1573-5117
    Keywords: CO2 ; emersion ; macroalgae ; photosynthesis ; seaweeds
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to assess the ecological impacts of the atmospheric CO2 increase on the intertidal macroalgae during emersion, the photosynthesis of Enteromorpha linza (a green alga), Ishige okamurae (a brown alga) and Gloiopeltis furcata (a red alga) was investigated in air as a function of CO2 concentrations and water loss. Their photosynthesis was not saturated at the present atmospheric CO2 level (350 μl l −1 or 15.6 μM), the CO2 compensation point and $$K_{[{\text{mCO}}_{\text{2}} ]} $$ increased with increasing desiccation, showing that desiccation lowers the CO2 affinity of the intertidal macroalgae. It was concluded that E. linza, I. okamurae and G. furcata, while exposed to air, can benefit from atmospheric CO2 rise, especially when the algae have lost some water.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    ISSN: 1573-5117
    Keywords: photosynthesis ; respiration ; Gelidiella acerosa ; culture ; tidal habitat ; salinity ; temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Several samples of the red seaweed, Gelidiella acerosa (Forssk.) Feldmann & Hamel occurring in tidepools, high intertidal rocks, and shallow subtidal areas on a reef flat in Ilocos Norte, northern Philippines were studied in terms of their photosynthetic and respiratory responses (μl O2 gDW−1 h−1) to four salinity (22, 28, 34, 40‰) and three temperature (22, 28, 34 °C) combinations. The upper intertidal plants tolerated low salinities (22–28‰) better than high salinities (34–40‰), while tidepool and subtidal plants were not affected. Temperatures of 22 through 34 °C resulted in a one-fold increase in their photosynthetic rates and insignificant differences in their respiratory rates while tidepool and subtidal plants almost doubled their photosynthetic rates and their respiration rates increased by about 5–50 times. There were no interaction effects. Therefore, intertidal plants appe ared to be more tolerant to wide temperature fluctuations and low salinity levels; while tidepool and subtidal plants were least affected by salinity variations but were quite sensitive to temperature fluctuations. Vegetative and tetrasporic plants had similar photosynthetic and respiratory responses to salinity and temperature variations, although vegetative plants had significantly higher net photosynthesis under the minimum and maximum temperatures tested (22 and 34 °C). Reproductive G. acerosa showed greater tolerance to temperature fluctuations. These responses indicated that physiological changes may have occurred when the species became reproductive. Tolerance of G. acerosa to low salinities suggests that lowering the salinities in culture tanks could be used to eradicate contaminants, i.e., dinoflagellates and filamentous green algae. Temperature of 28 °C appeared to be optimum for all plant types as reflected by their high photosynthetic and low respiratory rates .
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthetica 36 (1999), S. 321-331 
    ISSN: 1573-9058
    Keywords: Calvin cycle enzymes ; chlorophyll ; chloroplast structure ; heavy metals ; photosynthesis ; photosystems ; plant growth ; uptake of mineral elements
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cadmium is one of the most dangerous environmental pollutants, affecting, among other things, plant mineral composition. It easily interacts with iron, one of the most important elements for plant growth and metabolism. This interaction, including modifying effects of lowered or excessive Fe supply on Cd-exposed plants and its consequences for the photosynthetic apparatus is reviewed. The influence of modified Fe and Cd supply on the uptake of both metals, their distribution, plant growth, and photosynthesis is also explained. Moderate Fe excess has a beneficial influence on Cd-treated plants, resulting in more intensive growth, photosynthetic pigments accumulation, and more efficient light phase of photosynthesis. Nutrient-medium Fe deficiency increases plant susceptibility to Cd. The main open questions of Cd/Fe interaction are: (1) the strong Fe-dependency of Cd mobility within the plant, and (2) photosynthetic dark phase adaptation to Cd stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    ISSN: 1573-9058
    Keywords: chloroplast dimensions ; electron microscopy ; peripheral reticulum ; photosynthesis ; plastoglobuli ; starch ; stereology ; stroma ; thylakoids
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Changes in Hill reaction activity (HRA) and ultrastructure of mesophyll cell (MC) chloroplasts were studied during the ontogeny of third leaf of maize plants using polarographic oxygen evolution measurement, transmission electron microscopy, and stereology. The chloroplast ultrastructure was compared in young (actively growing), mature, and senescing leaves of two different inbreds and their reciprocal F1 hybrids. Statistically significant differences in both HRA and MC chloroplast ultrastructure were observed between different stages of leaf ontogeny. Growth of plastoglobuli was the most striking characteristic of chloroplast maturation and senescence. The chloroplasts in mature and senescing leaves had a more developed system of thylakoids compared to the young leaves. Higher HRA was usually connected with higher thylakoid volume density of MC chloroplasts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    ISSN: 1573-9058
    Keywords: carbon partitioning ; photosynthesis ; plant growth ; microbial biomass ; respiration rate ; Triticum aestivum L.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We examined the carbon budget of young winter wheat plants and their associated microorganisms as affected by a doubling of the atmospheric CO2 concentration (700 µmol mol-1). Plants were grown hydroponically in pre-sterilised sand at a controlled irradiance and temperature regime. Net photosynthesis (PN) and respiration (RD) rates of roots and shoots were measured continuously, plant growth and carbon distribution in the plant-root medium-associated microorganism system were determined destructively in interval-based analyses. PN in elevated CO2 grown plants (EC) was 123% of that in the control (AC) plants when averaged over the whole life span (39-d-old plants, 34 d in EC), but the percentage varied with the developmental stage being 115, 88, and 167% in the pretillering, tillering, and posttillering phase, respectively. There was a transient depression of PN, higher amplitude of day/night fluctuations of the chloroplast starch content, and depression of carbon content in rhizosphere of EC plants during the period of tillering. After 34 d in EC, carbon content in shoots, roots, and in rhizodepositions was enhanced by the factors 1.05, 1.28, and 1.96, respectively. Carbon partitioning between above and belowground biomass was not affected by EC, however, proportionally more C in the belowground partitioning was allocated into the root biomass. Carbon flow from roots to rhizodepositions and rhizosphere microflora was proportional to PN; its fraction in daily assimilated carbon decreased from young (17%) to order (3-4%) plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    ISSN: 1573-9058
    Keywords: Amphisorus ; Amphistegina ; chlorophyll fluorescence kinetics ; electron transport ; irradiance ; photosynthesis ; photosystem 2 ; quantum yield ; Sorites ; temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Coral reef bleaching is a global phenomenon poorly understood today. We investigated during 7 d the photosynthetic behaviour of symbionts of coral reef and temperate foraminifers in hospite, by means of the JIP-test. By this screening test the fast fluorescence rise O-J-I-P, measured by a Plant Efficiency Analyser (PEA) with 10 µs time resolution and 12 bit signal resolution, was analysed. It informs about the structure and function of photosystem 2 being at different physiological states established by adaptation to different irradiance and temperature. The test needs a measuring time in vivo of only 1 to 5 s, and thus many samples can be analysed. The measurements can be done continuously even on a single cell in a test tube or on the reef. The reef foraminifers tested here were Amphistegina and Amphisorus, freshly collected in Mauritius. As a temperate foraminifer, Sorites from the Mediterranean Sea was tested. The cells are very sensitive to slight temperature changes (25 to 32 °C). The comparison showed that the more the foraminifers live in an environment with constant temperature the less they are able to respond to temperature changes and, thus, the less they can adapt. Rising the temperature increases in general the sensitivity to different stress factors, such as high irradiance, pH, CO2, etc. After the test series, the cells recovered fully and were kept in an aquarium for long time observation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthetica 36 (1999), S. 259-266 
    ISSN: 1573-9058
    Keywords: chlorophyll fluorescence ; fern ; fertilization ; growth ; photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Plants grown at low irradiance were fertilized with 0, 60, and 600 g m-3 NH4NO3 once every fortnight. Plants treated with high N concentrations showed an increased growth, producing longer and broader fronds with larger areas, and were darker green in colour. Nitrogen also increased the content of chlorophyll (Chl) and carotenoids per leaf area unit. Different N treatments did not affect the photosynthetic efficiency of photosystem 2, as reflected by the high values of Chl fluorescence kinetics Fv/Fm, ranging between 0.81 to 0.84, and Fv/F0 of 4.30 to 5.10. An increase in photochemical quenching (qP), accompanied by a decrease in non-photochemical quenching (qN), was observed in sporophytes fertilized with increased concentrations of NH4NO3. Nitrogen availability allowed sporophytes of Acrostichum aureum to become more established under natural condi tions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    Springer
    Photosynthetica 36 (1999), S. 471-476 
    ISSN: 1573-9058
    Keywords: Ambrosia trifida ; Apocynum cannabinum ; Aster pilosus ; competition ; Eryngium yuccifolium ; Lespedeza capitata ; photosynthesis ; Solidago canadensis ; stomatal conductance ; water potential
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An ecophysiological approach was used to determine if competition can be detected among plants in a recently abandoned old-field and in a native tallgrass prairie in northeastern Kansas. In situ photosynthetic parameters and water potentials (Ψ) of target plants were measured 1-2 d after neighbor (intra- and interspecific) removal as well as 1-4 weeks later, and compared with values for plants with neighbors. Only two of the six study species (four old-field and two prairie species) responded to removal of neighboring plants, and only after several weeks had elapsed. Net photosynthetic rates (PN) and stomatal conductances (gs) of Ambrosia trifida in an old-field increased after removal of both intra- and interspecific neighbors. For Apocynum cannabinum, another old-field species, PN of target plants without neighbors was significantly higher than that of target plants with neighbors. For both these species, values of Ψ were not different between target plants with and without neighbors, suggesting that increased availability of nutrients may have been responsible for the observed ecophysiological responses. Though numerous past studies indicate that competition is a major factor influencing plants in old-field and in prairie communities, the experimental approach used in this study revealed that neighbor removal had only limited effects on ecophysiology of the target plants in either community.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    ISSN: 1573-9058
    Keywords: endophyte ; Lolium perenne ; Neotyphodium lolii ; photosynthesis ; stomatal conductance ; transpiration rate ; water potential
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The symbiotic association of endophyte fungus, Neotyphodium lolii, and ryegrass improves the ryegrass resistance to drought. This is shown by a 30 % increase in the number of suckers in infected plants (E+), compared to plants lacking endophyte (E−), and by a higher water potential in the E+ than E− plants. The E+ plants have higher stomatal conductance (g s), transpiration rate, net photosynthetic rate (P N), and photorespiratory electron transport rate than the E− plants. The maximal photochemical efficiency (Fv/Fm) and the actual photochemical efficiency (ΦPS2) are not affected by the endophyte fungus. The increase in P N of the E+ plants subjected to water stress was independent from internal CO2 concentration. An increased P N was observed in E+ plants also in optimal water supply. Hence the drought resistance of E+ plants results in increased g s, P N, and photorespiratory electron transport rate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    ISSN: 1573-9058
    Keywords: diurnal pattern ; intercellular CO2 concentration ; leaf conductance ; leaf water potential ; micro-habitat ; photosynthesis ; seasonal dominance ; soil-to-leaf hydraulic conductance ; trampling tolerance ; transpiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Field gas exchange and water potential in the leaves of a C3 dicot, Plantago asiatica L., and a C4 monocot, Eleusine indica Gaertn., which dominate in trampled vegetation in eastern Japan were surveyed during the growing periods for two consecutive years. Net photosynthetic rate (P N) of E. indica increased with photosynthetic photon flux density (PPFD) and leaf temperature (TL). P N was not saturated at PPFDs above 1500 µmol m−2 s−1 and at TL above 30 °C. On a sunny day in mid summer, maximum P N was two times higher in E. indica than in P. asiatica [42 vs. 20 µmol(CO2) m−2 s−1], but their transpiration rate (E) and the leaf water potential (ΨL) were similar. Soil-to-leaf hydraulic conductance, which probably plays a role in water absorption from the trampled compact soil, was higher in E. indica than in P. asiatica. The differences in photosynthetic traits between E. indica explain why E. indica communities more commonly develop at heavily trampled sites in summer than the P. asiatica communities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    ISSN: 1573-2932
    Keywords: Genetic variability ; elevated CO2 ; climate change ; pine ; conifer ; photosynthesis ; growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Genetic variability can have profound effects on the interpretation of results from elevated CO2 studies, and future forest management decisions. Information on which varieties are best suited to future atmospheric conditions is needed to develop future forest management practices. A large-scale screening study of the effects of elevated CO2 on 15 half-sibling sources of genetically superior ponderosa pine (Pinus ponderosa Dougl ex P. Laws.) is presented. These sources represent multiple elevations and latitudes throughout California. Among-provenance variability in the effects of elevated CO2 on gas exchange and growth, and their correlation with geographic origin were investigated in ponderosa pine seedlings subjected to ambient or elevated CO2 concentrations (525 μmol mol-1 CO2, and 700 μmol mol-1 CO2) for more than two years in open-top chambers. Substantial among-provenance variability in growth response to elevated CO2 was evident, with 8 sources demonstrating no significant growth response to elevated CO2 while 7 sources responded positively. For all sources, elevated CO2 increased photosynthesis (ranging from 19% increase at 525 μmol mol-1 CO2 to 49% increase at 700 μmol mol-1 CO2). A modest correlation existed between geographic origin and above ground growth response to elevated CO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 25 (1999), S. 1611-1621 
    ISSN: 1573-1561
    Keywords: Hydroquinone ; allelopathy ; plant water balance ; photosynthesis ; chlorophyll fluorescence ; 13C isotopes ; leafy spurge ; Euphorbia esula ; small everlasting ; Antennaria microphylla Rydb
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Field observations indicate leafy spurge (Euphorbia esula) is inhibited by the presence of Antennaria microphylla. Hydroquinone (HQ), one of several compounds isolated from A. microphylla has been shown to inhibit leafy spurge seed germination, root elongation, and callus culture growth. The present study was designed to analyze the effects of HQ on water relations and photosynthesis of leafy spurge. Plants grown in 0.25 mM HQ had consistently higher leaf diffusive resistance and lower transpiration rates than control plants (P 〈 0.05). Chlorophyll fluorescence was significantly lower than controls (P 〈 0.05) towards the end of the treatment period. At the end of the treatment, tissue from 0.25 mM HQ plants had higher levels of 13C, indicating there had been a sustained interference with stomatal function. These data suggest that a disruption of the plant water balance is one mechanism of leafy spurge inhibition by A. microphylla.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...