ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Numerical modeling  (8)
  • Magmatism  (6)
  • American Geophysical Union  (13)
  • 2010-2014  (13)
  • 1995-1999
  • 1985-1989
  • 2013
  • 2010  (13)
  • 1999
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 10 (2009): Q10T07, doi:10.1029/2008GC002354.
    Description: High-resolution side-scan sonar, near-bottom multibeam bathymetry, and deep-sea photo and bathymetry traverses are used to map the axial summit trough (AST) at the East Pacific Rise between 9 and 10°N. We define three ridge axis morphologic types: no AST, narrow AST, and wide AST, which characterize distinct ridge crest domains spanning tens of kilometers along strike. Near-bottom observations, modeling of deformation above intruding dikes, and comparisons to the geologic and geophysical structure of the ridge crest are used to develop a revised model of AST genesis and evolution. This model helps constrain the record of intrusive and extrusive magmatism and styles of lava deposition along the ridge crest at time scales from hundreds to tens of thousands of years. The grabens in the narrow-AST domain (9°43′–53′N) are consistent with deformation above the most recent (〈10) diking events beneath the ridge crest. Frequent high–effusion rate extrusive volcanism in this domain (several eruptions every ∼100 years) overprints near-axis deformation and maintains a consistent AST width. The most recent eruption at the ridge crest occurred in this area and did not significantly modify the physical characteristics of the AST. The grabens in the wide-AST domain (9°23′–43′N) originated with similar dimensions to the narrow AST. Spreading, driven primarily by the intrusion of shallow dikes within a narrow axial zone, causes the initial graben bounding faults to migrate away from the axis. Infrequent extrusive volcanism (several eruptions every ∼1000 years) fills a portion of the subsidence that accumulates over time but does not significantly modify the width of the AST. Outside of these domains, lower–effusion rate constructional volcanism without efficient drain-back fills and erases the signature of the AST. The relative frequency of intrusive versus extrusive magmatic events controls the morphology of the ridge crest and appears to remain constant over millennial time scales within the domains we have identified; however, over longer time scales (∼10–25 ka), domain-specific intrusive-to-extrusive ratios do not appear to be fixed in space, resulting in a fairly consistent volcanic accretion over the length scale of the second-order ridge segment between 9°N and 10°N.
    Description: This work was supported by NSF grants OCE-0525863 to D. Fornari and S. A. Soule; OCE-0732366 to S. A. Soule; and OCE-9819261 to H. Schouten, M. Tivey, and D. Fornari and by CNRS to J. Escartın.
    Keywords: Mid-ocean ridge ; Submarine volcanism ; Diking ; Seafloor morphology ; Magmatism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): B01101, doi:10.1029/2003JB002499.
    Description: Ocean bottom seismic networks deployed following the 1998 eruption of Axial seamount reveal an evolving pattern of microearthquake activity associated with subsurface magmatism and thermal strain. Seismicity rates decay steadily over 15 months of observation (February 8, 1998, to April 30, 1999), consistent with a trend toward thermal and mechanical equilibrium in the shallow crust after the magmatic event. Immediately after the eruption, seismicity rates were high for about 60 days in the southeast corner of the caldera where lava flows from the 1998 eruption were mapped. A small burst of seismic activity was observed on the southeast shoulder of the volcano from 100 to 150 days after the eruption. These events, which are characterized by slip on nearly vertical faults in the shallow crust, extend about 6 km from the southeast corner of the caldera and overlie a mid-crustal low-velocity zone. After this episode, seismicity rates remain low until the end of the observation period, 455 days after the eruption. Shallow (~0.7 km depth) events, consistent with thermal contraction and volume changes of ~2 × 10−3 m3 in ~5 m3 sources, are observed in individual clusters beneath hydrothermal vents within the 1998 lava flow at the southeast edge of the caldera. Microearthquakes observed during the last 70 days of observation are distributed around the central caldera, most likely representing small amounts of subsidence on caldera faults during the final stages of equilibration following melt withdrawal associated with the 1998 eruption.
    Description: Sohn, Webb, and the field program were supported by NSF grant OCE 97- 11700. Barclay was supported in part by the Woods Hole Oceanographic Institution.
    Keywords: Microearthquakes ; Hydrothermal ; Magmatism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q08O10, doi:10.1029/2008GC001965.
    Description: We use 2-D numerical models to explore the thermal and mechanical effects of magma intrusion on fault initiation and growth at slow and intermediate spreading ridges. Magma intrusion is simulated by widening a vertical column of model elements located within the lithosphere at a rate equal to a fraction, M, of the total spreading rate (i.e., M = 1 for fully magmatic spreading). Heat is added in proportion to the rate of intrusion to simulate the thermal effects of magma crystallization and the injection of hot magma into the crust. We examine a range of intrusion rates and axial thermal structures by varying M, spreading rate, and the efficiency of crustal cooling by conduction and hydrothermal circulation. Fault development proceeds in a sequential manner, with deformation focused on a single active normal fault whose location alternates between the two sides of the ridge axis. Fault spacing and heave are primarily sensitive to M and secondarily sensitive to axial lithosphere thickness and the rate that the lithosphere thickens with distance from the axis. Contrary to what is often cited in the literature, but consistent with prior results of mechanical modeling, we find that thicker axial lithosphere tends to reduce fault spacing and heave. In addition, fault spacing and heave are predicted to increase with decreasing rates of off-axis lithospheric thickening. The combination of low M, particularly when M approaches 0.5, as well as a reduced rate of off-axis lithospheric thickening produces long-lived, large-offset faults, similar to oceanic core complexes. Such long-lived faults produce a highly asymmetric axial thermal structure, with thinner lithosphere on the side with the active fault. This across-axis variation in thermal structure may tend to stabilize the active fault for longer periods of time and could concentrate hydrothermal circulation in the footwall of oceanic core complexes.
    Description: Funding for this research was provided by NSF grants OCE-0327018 (M.D.B.), OCE-0548672 (M.D.B.), OCE- 0327051 (G.I.), and OCE-03-51234 (G.I.).
    Keywords: Mid-ocean ridges ; Faulting ; Magmatism ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 21 (2007): GB3007, doi:10.1029/2006GB002857.
    Description: Results are presented of export production, dissolved organic matter (DOM) and dissolved oxygen simulated by 12 global ocean models participating in the second phase of the Ocean Carbon-cycle Model Intercomparison Project. A common, simple biogeochemical model is utilized in different coarse-resolution ocean circulation models. The model mean (±1σ) downward flux of organic matter across 75 m depth is 17 ± 6 Pg C yr−1. Model means of globally averaged particle export, the fraction of total export in dissolved form, surface semilabile dissolved organic carbon (DOC), and seasonal net outgassing (SNO) of oxygen are in good agreement with observation-based estimates, but particle export and surface DOC are too high in the tropics. There is a high sensitivity of the results to circulation, as evidenced by (1) the correlation of surface DOC and export with circulation metrics, including chlorofluorocarbon inventory and deep-ocean radiocarbon, (2) very large intermodel differences in Southern Ocean export, and (3) greater export production, fraction of export as DOM, and SNO in models with explicit mixed layer physics. However, deep-ocean oxygen, which varies widely among the models, is poorly correlated with other model indices. Cross-model means of several biogeochemical metrics show better agreement with observation-based estimates when restricted to those models that best simulate deep-ocean radiocarbon. Overall, the results emphasize the importance of physical processes in marine biogeochemical modeling and suggest that the development of circulation models can be accelerated by evaluating them with marine biogeochemical metrics.
    Description: R. G. N. and J. L. S. acknowledge the support of NASA grants NAG5-6451 and NAG5-6591, respectively, as part of the JGOFS Synthesis and Modeling Program. G. K. P. and F. J. acknowledge support by the Swiss National Science Foundation. European contributions were supported by the EU GOSAC Project (ENV4-CT97- 0495).
    Keywords: Export production ; Numerical modeling ; Ocean circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): F03016, doi:10.1029/2006JF000666.
    Description: We employ a numerical model to study the development of sorted bed forms under a variety of hydrodynamic and sedimentary conditions. Results indicate that increased variability in wave height decreases the growth rate of the features and can potentially give rise to complicated, a priori unpredictable, behavior. This happens because the system responds to a change in wave characteristics by attempting to self-organize into a patterned seabed of different geometry and spacing. The new wavelength might not have enough time to emerge before a new change in wave characteristics occurs, leading to less regular seabed configurations. The new seabed configuration is also highly dependent on the preexisting morphology, which further limits the possibility of predicting future behavior. For the same reasons, variability in the mean current magnitude and direction slows down the growth of features and causes patterns to develop that differ from classical sorted bed forms. Spatial variability in grain size distribution and different types of net sediment aggradation/degradation can also result in the development of sorted bed forms characterized by a less regular shape. Numerical simulations qualitatively agree with observed geometry (spacing and height) of sorted bed forms. Also in agreement with observations is that at shallower depths, sorted bed forms are more likely to be affected by changes in the forcing conditions, which might also explain why, in shallow waters, sorted bed forms are described as ephemeral features. Finally, simulations indicate that the different sorted bed form shapes and patterns observed in the field might not necessarily be related to diverse physical mechanisms. Instead, variations in sorted bed form characteristics may result from variations in local hydrodynamic and/or sedimentary conditions.
    Description: G.C., M.O.G., and T.M.H. acknowledge funding from the (New Zealand) Foundation for Research, Science and Technology (contract C01X0401). The National Science Foundation (OCE0452178) supported A.B.M.
    Keywords: Self-organization ; Sorted bed forms ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C04S15, doi:10.1029/2006JC003728.
    Description: The summer circulations and hydrographic fields of the Kara Sea are reconstructed for mean, positive and negative Arctic Oscillation regimes employing a variational data assimilation technique which provides the best fit of reconstructed fields to climatological data and satisfies dynamical and kinematic constraints of a quasi-stationary primitive equation ocean circulation model. The reconstructed circulations agree well with the measurements and are characterized by inflow of 0.63, 0.8, 0.51 Sv through Kara Gate and 1.18, 1.1, 1.12 Sv between Novaya Zemlya and Franz Josef Land, for mean climatologic conditions, positive and negative AO indexes, respectively. The major regions of water outflow for these regimes are the St. Anna Trough (1.17, 1.21, 1.34 Sv) and Vilkitsky/Shokalsky Straits (0.52, 0.7, 0.51 Sv). The optimized velocity pattern for the mean climatological summer reveals a strong anticyclonic circulation in the central part of the Kara Sea (Region of Fresh Water Inflow, ROFI zone) and is confirmed by ADCP surveys and laboratory modeling. This circulation is well pronounced for both high and low AO phases, but in the positive AO phase it is shifted approximately 200 km west relatively to its climatological center. During the negative AO phase the ROFI locaion is close to its climatological position. The results of the variational data assimilation approach were compared with the simulated data from the Hamburg Shelf Ocean Model (HAMSOM) and Naval Postgraduate School 18 km resolution (NPS-18) model to validate these models.
    Description: This research is supported by the Frontier Research System for Global Change, through JAMSTEC, Japan, and by the National Science Foundation Office of Polar Programs (under cooperative agreements OPP-0002239 and OPP-0327664 with the International Arctic Research Center, University of Alaska Fairbanks). The development of the data assimilation system, utilized in this study, was also supported by NSF grant OCE-0118200.
    Keywords: Kara Sea ; Variational approach ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Reviews of Geophysics 42 (2004): RG2001, doi:10.1029/2003RG000127.
    Description: Documenting the mass flux through convergent plate margins is important to the understanding of petrogenesis in arc settings and to the origin of the continental crust, since subduction zones are the only major routes by which material extracted from the mantle can be returned to great depths within the Earth. Despite their significance, there has been a tendency to view subduction zones as areas of net crustal growth. Convergent plate margins are divided into those showing long-term landward retreat of the trench and those dominated by accretion of sediments from the subducting plate. Tectonic erosion is favored in regions where convergence rates exceed 6 ± 0.1 cm yr−1 and where the sedimentary cover is 〈1 km. Accretion preferentially occurs in regions of slow convergence (〈7.6 cm yr−1) and/or trench sediment thicknesses 〉1 km. Large volumes of continental crust are subducted at both erosive and accretionary margins. Average magmatic productivity of arcs must exceed 90 km3 m.y.−1 if the volume of the continental crust is to be maintained. Convergence rate rather than height of the melting column under the arc appears to be the primary control on long-term melt production. Oceanic arcs will not be stable if crustal thicknesses exceed 36 km or trench retreat rates are 〉6 km m.y.−1. Continental arcs undergoing erosion are major sinks of continental crust. This loss requires that oceanic arcs be accreted to the continental margins if the net volume of crust is to be maintained.
    Description: This material is partly based upon work supported by the National Science Foundation (Ocean Sciences) under grant 9907137.
    Keywords: Tectonics ; Subduction ; Magmatism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q09O12, doi:10.1029/2008GC001970.
    Description: We investigate the origin of mid-ocean ridge morphology with numerical models that successfully predict axial topographic highs, axial valleys, and the transition between the two. The models are time-dependent, simulating alternating tectonic and magmatic periods where far-field extension is accommodated by faulting and by magmatism, respectively. During tectonic phases, models predict faults to grow on either side of the ridge axis and axial height to decrease. During magmatic phases, models simulate magmatic extension by allowing the axial lithosphere to open freely in response to extension. Results show that fault size and spacing decreases with increasing time fraction spent in the magmatic phase F M . Magmatic phases also simulate the growth of topography in response to local buoyancy forces. The fundamental variable that controls the transition between axial highs and valleys is the “rise-sink ratio,” (F M /F T )(τ T /τ M ), where F M /F T is the ratio of the time spent in the magmatic and tectonic periods and τ T /τ M is the ratio of the characteristic rates for growing topography during magmatic phases (1/τ M ) and for reducing topography during tectonic phases (1/τ T ). Models predict the tallest axial highs when (F M /F T )(τ T /τ M ) ≫ 1, faulted topography without a high or valley when (F M /F T )(τ T /τ M ) ∼ 1, and the deepest median valleys when (F M /F T )(τ M /τ T ) 〈 1. New scaling laws explain a global negative correlation between axial topography and lithosphere thickness as measured by the depths of axial magma lenses and microearthquakes. Exceptions to this trend reveal the importance of other behaviors such as a predicted inverse relation between axial topography and spreading rate as evident along the Lau Spreading Center. Still other factors related to the frequency and spatial pervasiveness of magmatic intrusions and eruptions, as evident at the Mid-Atlantic and Juan de Fuca ridges, influence the rise-sink-ratio (F M /F T )(τ T /τ M ) and thus axial morphology.
    Description: Funding for this research was provided by NSF grants OCE-0327018 (MDB), OCE-0548672 (MDB), OCE-0327051 (GI), and OCE-0351234 (GI).
    Keywords: Mid-ocean ridge ; Magmatism ; Seafloor spreading ; Faulting ; Rifting
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Tectonics 25 (2006): TC4004, doi:10.1029/2005TC001789.
    Description: The Lloyds River Fault Zone is a 10–15 km wide amphibolite-grade shear zone that formed during the Ordovician Taconic Orogeny. It separates ophiolites and arc–back-arc complexes formed in Iapetus from a peri-Laurentian microcontinent (Dashwoods microcontinent). The Lloyds River Fault Zone comprises three high-strain zones, dominantly composed of mylonitic amphibolites, separated by less deformed plutonic rocks. Structural, age and metamorphic data suggest the Lloyds River Fault Zone accommodated sinistral-oblique underthrusting of ophiolites underneath the Dashwoods microcontinent prior to 471 ± 5 Ma at 800°C and 6 kbar. Plutonic rocks within the Lloyds River Fault Zone comprise two suites dated at 464 ± 2 plus 462 ± 2 and 459 ± 3 Ma, respectively. The younger age of the plutons with respect to some of the amphibolites, evidence for magmatic deformation, and the elongate nature of the plutons parallel to the Lloyds River Fault Zone suggest they were emplaced within the fault zone during deformation. Both intrusive episodes triggered renewed deformation at high temperatures (770–750°C), illustrating the positive feedback between deformation and magmatism. Offshoots of the plutons intruded undeformed ophiolitic gabbros outside the Lloyds River Fault Zone. Deformation localized within the intrusive sheets, coeval with static contact metamorphism of the host gabbros, leading to the development of new, small-scale shear zones. This illustrates that channeling of plutons into shear zones and nucleation of shear zones in melt-rich zones may occur simultaneously within the same fault system.
    Description: This research is funded by a scholarship from the Faculty of Graduate and Postdoctoral Studies, University of Ottawa, to C.J.L. and a NSERC grant to C.v.S in his position as Adjunct Professor at the University of Ottawa.
    Keywords: Shear zones ; Magmatism ; Appalachians
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): F01006, doi:10.1029/2007JF000885.
    Keywords: Coastline evolution ; Morphodynamic instabilities ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): F04011, doi:10.1029/2005JF000422.
    Description: Contrary to traditional findings, the deepwater angle of wave approach strongly affects plan view coastal evolution, giving rise to an antidiffusional “high wave angle” instability for sufficiently oblique deepwater waves (with angles between wave crests and the shoreline trend larger than the value that maximizes alongshore sediment transport, ∼45°). A one-contour-line numerical model shows that a predominance of high-angle waves can cause a shoreline to self-organize into regular, quasiperiodic shapes similar to those found along many natural coasts at scales ranging from kilometers to hundreds of kilometers. The numerical model has been updated from a previous version to include a formulation for the widening of an overly thin barrier by the process of barrier overwash, which is assumed to maintain a minimum barrier width. Systematic analysis shows that the wave climate determines the form of coastal response. For nearly symmetric wave climates (small net alongshore sediment transport), cuspate coasts develop that exhibit increasing relative cross-shore amplitude and pointier tips as the proportion of high-angle waves is increased. For asymmetrical wave climates, shoreline features migrate in the downdrift direction, either as subtle alongshore sand waves or as offshore-extending “flying spits,” depending on the proportion of high-angle waves. Numerical analyses further show that the rate that the alongshore scale of model features increases through merging follows a diffusional temporal scale over several orders of magnitude, a rate that is insensitive to the proportion of high-angle waves. The proportion of high-angle waves determines the offshore versus alongshore aspect ratio of self-organized shoreline undulations.
    Description: This research was funded by the Andrew W. Mellon Foundation and NSF grants DEB-05-07987 and EAR-04-44792.
    Keywords: Coastline evolution ; Morphodynamic instabilities ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: video/avi
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C07040, doi:10.1029/2007JC004602.
    Description: A coupled physical/biological modeling system was used to hindcast a massive Alexandrium fundyense bloom that occurred in the western Gulf of Maine in 2005 and to investigate the relative importance of factors governing the bloom's initiation and development. The coupled system consists of a state-of-the-art, free-surface primitive equation Regional Ocean Modeling System (ROMS) tailored for the Gulf of Maine (GOM) using a multinested configuration, and a population dynamics model for A. fundyense. The system was forced by realistic momentum and buoyancy fluxes, tides, river runoff, observed A. fundyense benthic cyst abundance, and climatological nutrient fields. Extensive comparisons were made between simulated (both physical and biological) fields and in situ observations, revealing that the hindcast model is capable of reproducing the temporal evolution and spatial distribution of the 2005 bloom. Sensitivity experiments were then performed to distinguish the roles of three major factors hypothesized to contribute to the bloom: (1) the high abundance of cysts in western GOM sediments; (2) strong ‘northeaster' storms with prevailing downwelling-favorable winds; and (3) a large amount of fresh water input due to abundant rainfall and heavy snowmelt. Model results suggest the following. (1) The high abundance of cysts in western GOM was the primary factor of the 2005 bloom. (2) Wind-forcing was an important regulator, as episodic bursts of northeast winds caused onshore advection of offshore populations. These downwelling favorable winds accelerated the alongshore flow, resulting in transport of high cell concentrations into Massachusetts Bay. A large regional bloom would still have happened, however, even with normal or typical winds for that period. (3) Anomalously high river runoff in 2005 resulted in stronger buoyant plumes/currents, which facilitated the transport of cell population to the western GOM. While affecting nearshore cell abundance in Massachusetts Bay, the buoyant plumes were confined near to the coast, and had limited impact on the gulf-wide bloom distribution.
    Description: Research support was provided through the Woods Hole Center for Oceans and Human Health, National Science Foundation (NSF) grant OCE-0430723 and National Institute of Environmental Health Science (NIEHS) grant 1-P50-ES012742-01, ECOHAB program through NSF grant OCE-9808173 and NOAA grant NA96OP0099, and GOMTOX program through NOAA grant NA06NOS4780245.
    Keywords: Gulf of Maine ; Harmful algal bloom ; Numerical modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): C08002, doi:10.1029/2005JC003254.
    Description: A high-resolution hybrid data assimilative (DA) modeling system is used to study barotropic tides and tidal dynamics on the southeast New England shelf. In situ observations include tidal harmonics of 5 major tidal constituents [M2, S2, N2, O1, and K1] analyzed from coastal sea level and bottom pressure gauges. The DA system consists of both forward and inverse models. The former is the three-dimensional, finite difference, nonlinear Regional Ocean Modeling System (ROMS). The latter is a three-dimensional linearized, frequency domain, finite element model TRUXTON. The DA system assimilates in situ observations via the inversion for the barotropic tidal open boundary conditions (OBCs). Model skill is evaluated by comparing the misfits between the observed and modeled tidal harmonics. The assimilation scheme is found effective and efficient in correcting the tidal OBCs, which in turn improve ROMS tidal solutions. Up to 50% decreases of model/data misfits are achieved after inverse data assimilation. Co-amplitude and co-phase maps and tidal current ellipses for each of 5 tidal constituents are generated, revealing complex tidal variability in this transition region between the tidally amplified Gulf of Maine in the northeast and the tidally much less energetic Middle Atlantic Bight in the southwest. Detailed examinations on the residual circulation, energetics, and momentum balances of the M2 tide reveal the key roles of the unique bottom bathymetry of Nantucket Shoals and the complex coastal geometry in affecting the regional tidal dynamics.
    Description: This work was supported by WHOI Coastal Ocean Institute Research Award. J.W. acknowledges support of the Office of Naval Research.
    Keywords: Continental shelf ; Barotropic tides ; Numerical modeling ; Data assimilation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...