ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Air-sea interaction  (3)
  • American Meteorological Society  (3)
  • American Chemical Society
  • 2010-2014  (3)
  • 1995-1999
  • 2014  (3)
  • 1998
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 229–245, doi:10.1175/JPO-D-12-0218.1.
    Description: Data from a mooring deployed at the edge of the East Greenland shelf south of Denmark Strait from September 2007 to October 2008 are analyzed to investigate the processes by which dense water is transferred off the shelf. It is found that water denser than 27.7 kg m−3—as dense as water previously attributed to the adjacent East Greenland Spill Jet—resides near the bottom of the shelf for most of the year with no discernible seasonality. The mean velocity in the central part of the water column is directed along the isobaths, while the deep flow is bottom intensified and veers offshore. Two mechanisms for driving dense spilling events are investigated, one due to offshore forcing and the other associated with wind forcing. Denmark Strait cyclones propagating southward along the continental slope are shown to drive off-shelf flow at their leading edges and are responsible for much of the triggering of individual spilling events. Northerly barrier winds also force spilling. Local winds generate an Ekman downwelling cell. Nonlocal winds also excite spilling, which is hypothesized to be the result of southward-propagating coastally trapped waves, although definitive confirmation is still required. The combined effect of the eddies and barrier winds results in the strongest spilling events, while in the absence of winds a train of eddies causes enhanced spilling.
    Description: The authors wish to thank Paula Fratantoni, Frank Bahr, and Dan Torres for processing the mooring data. The mooring array was capably deployed by the crew of the R/V Arni Fridriksson and recovered by the crew of the R/V Knorr. We thank Hedinn Valdimarsson for his assistance in the field work. Ken Brink provided valuable insights regarding the dynamics of shelf waves. Funding for the study was provided by National Science Foundation Grant OCE-0722694, the Arctic Research Initiative of the Woods Hole Oceanographic Institution. We also wish to thank the Natural Environment Research Council for Ph.D. studentship funding, and the University of East Anglia’s Roberts Fund and Royal Meteorological Society for supporting travel for collaboration.
    Description: 2014-07-01
    Keywords: Geographic location/entity ; Continental shelf/slope ; Circulation/ Dynamics ; Meridional overturning circulation ; Upwelling/downwelling ; Atm/Ocean Structure/ Phenomena ; Eddies ; Extreme events ; Physical Meteorology and Climatology ; Air-sea interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 8422–8443, doi:10.1175/JCLI-D-14-00141.1.
    Description: This study quantifies, from a systematic set of regional ocean–atmosphere coupled model simulations employing various coupling intervals, the effect of subdaily sea surface temperature (SST) variability on the onset and intensity of Madden–Julian oscillation (MJO) convection in the Indian Ocean. The primary effect of diurnal SST variation (dSST) is to raise time-mean SST and latent heat flux (LH) prior to deep convection. Diurnal SST variation also strengthens the diurnal moistening of the troposphere by collocating the diurnal peak in LH with those of SST. Both effects enhance the convection such that the total precipitation amount scales quasi-linearly with preconvection dSST and time-mean SST. A column-integrated moist static energy (MSE) budget analysis confirms the critical role of diurnal SST variability in the buildup of column MSE and the strength of MJO convection via stronger time-mean LH and diurnal moistening. Two complementary atmosphere-only simulations further elucidate the role of SST conditions in the predictive skill of MJO. The atmospheric model forced with the persistent initial SST, lacking enhanced preconvection warming and moistening, produces a weaker and delayed convection than the diurnally coupled run. The atmospheric model with prescribed daily-mean SST from the coupled run, while eliminating the delayed peak, continues to exhibit weaker convection due to the lack of strong moistening on a diurnal basis. The fact that time-evolving SST with a diurnal cycle strongly influences the onset and intensity of MJO convection is consistent with previous studies that identified an improved representation of diurnal SST as a potential source of MJO predictability.
    Description: The authors gratefully acknowledge support from the Office of Naval Research (N00014-13-1-0133 and N00014-13-1-0139) and National Science Foundation EaSM-3 (OCE-1419235). HS especially thanks the Penzance Endowed Fund for their support of Assistant Scientists at WHOI.
    Description: 2015-05-15
    Keywords: Deep convection ; Diurnal effects ; Madden-Julian oscillation ; Air-sea interaction ; Numerical weather prediction/forecasting ; Regional models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 977–99, doi:10.1175/JCLI-D-13-00067.1.
    Description: Ammassalik in southeast Greenland is known for strong wind events that can reach hurricane intensity and cause severe destruction in the local town. Yet, these winds and their impact on the nearby fjord and shelf region have not been studied in detail. Here, data from two meteorological stations and the European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) are used to identify and characterize these strong downslope wind events, which are especially pronounced at a major east Greenland fjord, Sermilik Fjord, within Ammassalik. Their local and regional characteristics, their dynamics and their impacts on the regional sea ice cover, and air–sea fluxes are described. Based on a composite of the events it is concluded that wind events last for approximately a day, and seven to eight events occur each winter. Downslope wind events are associated with a deep synoptic-scale cyclone between Iceland and Greenland. During the events, cold dry air is advected down the ice sheet. The downslope flow is accelerated by gravitational acceleration, flow convergence inside the Ammassalik valley, and near the coast by an additional thermal and synoptic-scale pressure gradient acceleration. Wind events are associated with a large buoyancy loss over the Irminger Sea, and it is estimated that they drive one-fifth of the net wintertime loss. Also, the extreme winds drive sea ice out of the fjord and away from the shelf.
    Description: This study was supported by grants of the National Science Foundation (OCE-0751554 and OCE-1130008) as well as the Natural Sciences and Engineering Research Council of Canada.
    Description: 2014-08-01
    Keywords: Downslope winds ; Synoptic climatology ; Katabatic winds ; Air-sea interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...