ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (7)
  • Nitrification
  • Springer  (7)
  • American Chemical Society
  • Cambridge University Press
  • 1995-1999  (7)
  • 1997  (7)
Collection
  • Articles  (7)
Publisher
  • Springer  (7)
  • American Chemical Society
  • Cambridge University Press
Years
  • 1995-1999  (7)
Year
  • 1
    ISSN: 1432-0789
    Keywords: Key words Grassland ; Denitrification ; N-fertiliser ; Nitrification ; Nitrous oxide emissions ; Global warming ; Ozone layer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The aim was to investigate the effects of different N fertilisers on nitrous oxide (N2O) flux from agricultural grassland, with a view to suggesting fertiliser practices least likely to cause substantial N2O emissions, and to assess the influence of soil and environmental factors on the emissions. Replicate plots on a clay loam grassland were fertilised with ammonium sulphate (AS), urea (U), calcium nitrate (CN), ammonium nitrate (AN), or cattle slurry supplemented with AN on three occasions in each of 2 years. Frequent measurements were made of N2O flux and soil and environmental variables. The loss of N2O-N as a percentage of N fertiliser applied was highest from the supplemented slurry (SS) treatment and U, and lowest from AS. The temporal pattern of losses was different for the different fertilisers and between years. Losses from U were lower than those from AN and CN in the spring, but higher in the summer. The high summer fluxes were associated with high water-filled pore space (WFPS) values. Fluxes also rose steeply with temperature where WFPS or mineral N values were not limiting. Total annual loss was higher in the 2nd year, probably because of the rainfall pattern: the percentage losses were 2.2, 1.4, 1.2, 1.1 and 0.4 from SS, U, AN, CN and AS, respectively. Application of U in the spring and AN twice in the summer in the 2nd year gave an average emission factor of 0.8% – lower than from application of either individual fertiliser. We suggest that similar varied fertilisation practices, modified according to soil and crop type and climatic conditions, might be employed to minimise N2O emissions from agricultural land.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0789
    Keywords: Forest soil ; Tree species ; Pinus sylvestris L. ; Picea abies L. ; Betula pendula L. ; Field afforestation ; Microbial biomass C ; Microbial biomass N ; Microbial respiration ; Ammonification ; Nitrification
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Microbial biomass C and N, and activities related to C and N cycles, were compared in needle and leaf litter, and in the uppermost 10 cm of soil under the litter layer in Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies L.) and silver birch (Betula pendula L.) stands, planted on originally similar field afforestation sites 23–24 years ago. The ground vegetation was differentiated under different tree species, consisting of grasses and herbs under birch and pine, and mosses or no vegetation with a thick layer of needles under spruce. The C:N ratio of the soils was 13–21 and the soil pHCaCl 2 3.8–5.2. Both showed little variation under different tree species. Microbial biomass C and N, C mineralization, net ammonification, reduction) did not differ significantly in soil under different tree species either. Birch leaf litter had a higher pHCaCl 2 (5.9) than spruce and pine needle litter (pH 5.0 and 4.8, respectively). The C:N ratio of spruce needles was 30, and was considerably higher in pine needles (69) and birch leaves (54). Birch leaves tended to have the highest microbial biomass C and C mineralization. Spruce needles appeared to have the highest microbial biomass N and net formation of mineral N, whereas formation of mineral N in pine needles and birch leaves was negligible. Microbial biomass C and N were of the same order of magnitude in the soil and litter samples but C mineralization was tenfold higher in the litter samples.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0789
    Keywords: Key words Ammonia volatilization ; Denitrification ; Dicyandiamide ; Iron pyrites ; Luvisols ; Nitrification ; Urea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Laboratory incubation study showed that iron pyrites retarded nitrification of urea-derived ammonium (NH4 +), the effect being greatest at the highest level (10000 mg kg–1 soil). Nitrification inhibition with 10000 mg pyrite kg–1 soil, at the end of 30 days, was 40.3% compared to 55.9% for dicyandiamide (DCD). The inhibitory effect with lower rates of pyrite (100–500 mg kg–1) lasted only up to 9 days. Urea+pyrite treatment was also found to have higher exchangeable NH4 +-N compared to urea alone. DCD-amended soils had the highest NH4 +-N content throughout. Pyrite-treated soils had about 7–86% lower ammonia volatilization losses than urea alone. Total NH3 loss was the most with urea+DCD (7.9% of applied N), about 9% more than with urea alone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 25 (1997), S. 82-88 
    ISSN: 1432-0789
    Keywords: Key words Denitrification ; Nitrification ; NO reduction ; NO oxidation ; KM
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The kinetics of nitric oxide consumption in four tropical soils were studied under oxic and anoxic conditions in a flow-through system in the laboratory. Under anoxic conditions the soils had a very high affinity for NO, resulting in K M values of 0.02–0.27 ppmv NO (equivalent to 0.04–0.50 nM NO in the aqueous phase). These K M values were lower than literature values for NO consumption by denitrifying bacteria. Under oxic conditions the kinetics of NO consumption in the tropical soils were completely different, exhibiting K M values higher than 1.7 ppmv. These higher K M values were similar to literature values for NO consumption by aerobic heterotrophic bacteria. Thus, the tropical soils studied seem to contain two different NO consumption activities which can be distinguished by their kinetics and which predominate under aerobic and anaerobic conditions, respectively. However, it was not possible to quantify the contribution of each process to total NO consumption under natural conditions. Under aerobic conditions NO turnover kinetics were positively correlated with soil respiration, N mineralisation and soil organic carbon, whereas under anaerobic conditions they were positively correlated with potential and actual denitrification rates and pH.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 26 (1997), S. 28-30 
    ISSN: 1432-0789
    Keywords: Key words Soil microbial biomass ; Specific respiration ; Ammonification ; Nitrification ; Priming effect
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soil microbial biomass (SMB) activity was investigated in a long-term experiment in which grazed swards received annual inputs of 200 N kg ha–1. SMB total C and total N, specific respiration, ammonification and nitrification were examined over a 10 week period, following the first and the second seasonal applications of N. Whilst there was no effect on biomass C and N, additions of N appeared to increase biomass activity. Nitrification was weakly correlated with ammonification (r 2=0.413) and the latter was stimulated by the addition of N (P〈0.05), suggesting a ‘priming’ effect.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 24 (1997), S. 211-220 
    ISSN: 1432-0789
    Keywords: Key words Denitrification ; Fertilizer efficiency ; 15N ; Labelled dinitrogen ; Nitrification ; Nitrous oxide ; Urea ; Waterlogged soil ; Water-soluble organic carbon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A laboratory study was conducted to compare the effects of different N fertilizers on emission of N2 and N2O during denitrification of NO3 – in waterlogged soil. Field-moist samples of Drummer silty clay loam soil (fine-silty, mixed, mesic Typic Haplaquoll) were incubated under aerobic conditions for 0, 2, 4, 7, 14, 21, or 42 days with or without addition of unlabelled (NH4)2SO4, urea, NH4H2PO4, (NH4)2HPO4, NH4NO3 (200 or 1000 mg N kg–1 soil), or liquid anhydrous NH3 (1000 mg N kg–1 soil). The incubated soil samples were then treated with 15N-labelled KNO3 (250 mg N kg–1 soil, 73.7 atom% 15N), and incubation was carried out under waterlogged conditions for 5 days, followed by collection of atmospheric samples for 15N analyses to determine labelled N2 and N2O. Compared to samples incubated without addition of unlabelled N, all of the fertilizers promoted denitrification of 15NO3 –. Emission of labelled N2 and N2O decreased in the order: Anhydrous NH3〉urea〈$〉\gg〈$〉 (NH4)2HPO4〉(NH4)2SO4≃NH4NO3≃NH4H2PO4. The highest emissions observed with anhydrous NH3 or urea coincided with the presence of NO2 –, and 15N analyses indicated that these emissions originated from NO2 – rather than NO3 –. Emissions of labelled N2 and N2O were significantly correlated with fertilizer effects on soil pH and water-soluble organic C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 24 (1997), S. 231-238 
    ISSN: 1432-0789
    Keywords: Key words N2O ; Mechanistic model ; Nitrification ; Denitrification ; Michaelis-Menten kinetics ; Grassland ; Spatial variablity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Seasonal and annual N2O fluxes from urine-affected pasture were approximated with a mechanistic model based on Michaelis-Menten kinetics. The model combined the effects of soil nitrate-N, soil ammonium-N, soil temperature and soil moisture (all from the top 5cm) to calculate N2O emissions from nitrification (F nit ) and denitrification (F den ), with total N2O emission being the sum of the two (F tot =F nit +F den ). Best results were obtained when different kinetic parameters were used for periods of constant soil moisture conditions and after heavy rainfalls when a rapid change of the soil moisture status occurred. Modelled N2O emissions over a year were within the range of uncertainties of measured N2O emissions. Results indicate that the spatial variability of N2O emissions at times when all the model inupt variables were constant may be related to microorganism growth dynamics or enzyme production rates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...