ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (681)
  • Fluid Mechanics and Heat Transfer  (445)
  • Meteorology and Climatology  (236)
  • Chemistry
  • Inorganic Chemistry
  • Theoretical, Physical and Computational Chemistry
  • 1995-1999  (681)
  • 1950-1954
  • 1997  (247)
  • 1996  (434)
Collection
Keywords
Years
  • 1995-1999  (681)
  • 1950-1954
Year
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Svante Arrhenius' research in atmospheric physics extended beyond the recent past and the near future states of the Earth, which today are at the center of sociopolitical attention. His plan encompassed all of the physical phenomena known at the time to relate to the formation and evolution of stars and planets. His two-volume textbook on cosmic physics is a comprehensive synopsis of the field. The inquiry into the possible cause of the ice ages and the theory of selective wavelength filter control led Arrhenius to consider the surface states of the other terrestrial planets, and of the ancient Earth before it had been modified by the emergence of life. The rapid escape of hydrogen and the equilibration with igneous rocks required that carbon in the early atmosphere prevailed mainly in oxidized form as carbon dioxide, together with other photoactive gases exerting a greenhouse effect orders of magnitude larger than in our present atmosphere. This effect, together with the ensuing chemical processes, would have set the conditions for life to evolve on our planet, seeded from spores spreading through an infinite Universe, and propelled, as Arrhenius thought, by stellar radiation pressure.
    Keywords: Meteorology and Climatology
    Type: Ambio (ISSN 0044-7447); Volume 26; 1; 12-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The addition of the "dioxin-like" polychlorinated biphenyl (PCB) congeners to the assessment of risk associated with the 2,3,7,8-chlorine substituted dioxins and furans has dramatically increased the number of laboratories worldwide that are developing analytical procedures for their detection and quantitation. Most of these procedures are based on established sample preparation and analytical techniques employing high resolution gas chromatography/high resolution mass spectrometry (HRGC/HRMS), which are used for the analyses of dioxin/furans at low parts-per-trillion (ppt) levels. A significant and widespread problem that arises when using these sample preparation procedures for the analysis of coplanar PCBs is the presence of background levels of these congeners. Industrial processes, urban incineration, leaking electrical transformers, hazardous waste accidents, and improper waste disposal practices have released appreciable quantities of PCBs into the environment. This contamination has resulted in the global distribution of these compounds via the atmosphere and their ubiquitous presence in ambient air. The background presence of these compounds in method blanks must be addressed when determining the exact concentrations of these and other congeners in environmental samples. In this study reliable procedures were developed to accurately define these background levels and assess their variability over the course of the study. The background subtraction procedures developed and employed increase the probability that the values reported accurately represent the concentrations found in the samples and were not biased due to this background contamination.
    Keywords: Meteorology and Climatology
    Type: Chemosphere (ISSN 0045-6535); Volume 34; 11; 2451-65
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Now that extrasolar planets have been found, it is timely to ask whether some of them might be suitable for life. Climatic constraints on planetary habitability indicate that a reasonably wide habitable zone exists around main sequence stars with spectral types in the early-F to mid-K range. However, it has not been demonstrated that planets orbiting such stars would be habitable when biologically-damaging energetic radiation is also considered. The large amounts of UV radiation emitted by early-type stars have been suggested to pose a problem for evolving life in their vicinity. But one might also argue that the real problem lies with late-type stars, which emit proportionally less radiation at the short wavelengths (lambda 〈 200 nm) required to split O2 and initiate ozone formation. We show here that neither of these concerns is necessarily fatal to the evolution of advanced life: Earth-like planets orbiting F and K stars may well receive less harmful UV radiation at their surfaces than does the Earth itself.
    Keywords: Meteorology and Climatology
    Type: Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life (ISSN 0169-6149); Volume 27; 4; 413-20
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: The use of unmanned aerial vehicles (UAVs), a platform for investigations in an environment hostile to manned spacecraft, is discussed. A program which includes the use of UAVs coupled with ground-based measurements to conduct scientific studies on the electrical state of the atmosphere during electrically active periods is proposed. The radiating power from alternate current and transient components of the storm electrification was investigated.
    Keywords: Meteorology and Climatology
    Type: ; 317-323
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: A methodology for the simulation of turbine cooling flows is being developed. The methodology seeks to combine numerical techniques that optimize both accuracy and computational efficiency. Key components of the methodology include the use of multiblock grid systems for modeling complex geometries, and multigrid convergence acceleration for enhancing computational efficiency in highly resolved fluid flow simulations. The use of the methodology has been demonstrated in several turbo machinery flow and heat transfer studies. Ongoing and future work involves implementing additional turbulence models, improving computational efficiency, adding AMR.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: 1996 Coolant Flow Management Workshop; 299-310; NASA-CP-10195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: The following are conclusions and recomendations from the study. Primary wake effect is linear reduction in (eta) with St. Secondary wake effect is skewing of suction/pressure side cooling. Steady computations match experimental Nu, but overpredict (eta). Unsteady computations elucidate wake/film interaction. Model may be used to estimate wake passing effect. Need boundary layer and full stage experiments. Need resolved film hole and full stage unsteady computations. Need validated turbulence models for film cooling.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: 1996 Coolant Flow Management Workshop; 225-237; NASA-CP-10195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: The following topics are discussed: (1) The Transient Liquid-Crystal Heat-Transfer Technique; (2) 2-D Film-Cooling Heat-Transfer on an AlliedSignal Vane; and (3) Effects of Tab Vortex Generators on Surface Heat Transfer. Downstream of a Jet in Crossflow.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: 1996 Coolant Flow Management Workshop; 191-198; NASA-CP-10195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-03
    Description: A tab placed on the leeward side of the nozzle was expected to increase jet penetration into the cross-flow. An experiment at UTRC showed insignificant effect. The primary objective of the present study was to confirm and explain the ineffectiveness. The overall approach of the study was to conduct experiments in a low-speed wind tunnel and to conduct hot-wire measurements for mean velocity and streamwise vorticity fields.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: 1996 Coolant Flow Management Workshop; 181-190; NASA-CP-10195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-03
    Description: Testing is currently in progress to acquire simple geometry surface heat transfer data for internal channels with trips and bleed holes which can be used in the development and validation of models. The transient liquid crystal technique is used on a simple multipass model with rectangular channels and normal ribs. Normal bleed holes are located on the floor of the model in the first channel. Each hole is attached to a flow meter, allowing various bleed flow rates to simulate external pressures on the blade.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: 1996 Coolant Flow Management Workshop; 97-102; NASA-CP-10195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-03
    Description: Reasonable heat transfer prediction can be achieved in complex geometries. Multi-block grid allows efficient placement of grid points, and efficient use of computer resources. Wilcox k-(omega) turbulence model predicts heat transfer well, and has good numerical behavior.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: 1996 Coolant Flow Management Workshop; 33-45; NASA-CP-10195
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The SPAcecraft SIMulator (SPASIM) simulates the functions and resources of a spacecraft to quickly perform conceptual design (Phase A) trade-off and sensitivity analyses and uncover any operational bottlenecks during any part of the mission. Failure modes and operational contingencies can be evaluated allowing operational planning (what-if scenarios) and optimization for a range of mission scenarios. The payloads and subsystems are simulated, using a hierarchy of graphical models, in terms of how their functions affect resources such as propellant, power, and data. Any of the inputs and outputs of the payloads and subsystems can be plotted during the simulation or stored in a file so they can be used by other programs. Most trade-off analyses, including those that compare current versus advanced technology, can be performed by changing values in the parameter menus. However, when a component is replaced by one with a different functional architecture, its graphical model can also be modified or replaced by drawing from a component library. SPASIM has been validated using several spacecraft designs that were at least at the Critical Design Review level. The user and programmer guide, including figures, is available on line as a hypertext document. This is an easy-to-use and expandable tool which is based on MATLAB(R) and SIMULINK(R). It runs on Silicon Graphics Inc. workstations and personal computers with Windows 95(TM) or NT(TM).
    Keywords: Fluid Mechanics and Heat Transfer
    Type: The Sixth Alumni Conference of the International Space University; 205-226; NASA-CP-3355
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-23
    Description: Taiwan is situated in the prevalent typhoon track in the northwestern Pacific. On average, about one third of the island total annual precipitation is due to typhoons, with the other two third being contributed by the summer monsoon, or Meiyu, and wintertime large scale frontal rainfall. While the typhoons bring the needed moisture for agricultural consumption and industrial utilization, heavy rainfall associated with typhoons often result in large scale flooding and land slide. The prediction of the typhoon track and its severity is therefore a high priority topic both for operation and research. The severity of a typhoon can be defined in terms of the wind strength and the moisture content. The Special Sensor Microwave/Imager (SSM/I) on board of the Defense Meteorological Satellite Program (DMSP) satellites measures microwave radiation in 19.4, 22.2, 37, and 85.5 GHz. These measurements provide an opportunity to estimate parameters such as surface wind speed, water vapor and cloud water contents, and rainfall rate over oceans. In 1994, Taiwan experienced an above normal frequency of typhoon hits, five typhoons hit the island in two months. In this report, estimates of the moisture content of these typhoons are made based on the SSM/I measurements. An assessment of the relative strength of the typhoons are made with analyzed data.
    Keywords: Meteorology and Climatology
    Type: Laboratory for Hydrospheric Processes Research Publications; 77-78
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-23
    Description: Detailed flow field measurements have been carried out for a turbulent circular jet perturbed by tabs and artificial excitation. Two "delta tabs" were placed at the nozzle exit at diametrically opposite locations. The excitation condition involved subharmonic resonance that manifested in a periodic vortex pairing in the near flow field. While the excitation and the tabs independently increased jet spreading, a combination of the two diminished the effect. The jet spreading was most pronounced with the tabs but was reduced when excitation was applied to the tabbed jet. The tabs generated streamwise vortex pairs that caused a lateral spreading of the jet in a direction perpendicular to the plane containing the tabs. The excitation, on the other band, organized the azimuthal vorticity into coherent ring structures whose evolution and pairing also increased entrainment by the jet. In the tabbed case, the excitation produced coherent azimuthal structures that were distorted and asymmetric in shape. The self-induction of these structures produced an effect that opposed the tendency for the lateral spreading of the streamwise vortex pairs. The passage of the distorted vortices, and their pairing, also had a cancellation effect on the time-averaged streamwise vorticity field. These led to the reduction in jet spreading.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Physics of Fluids; Volume 9; No. 12; 3733-3741
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-23
    Description: Simultaneous measurements with the millimeter-wave imaging radiometer (MIR), cloud lidar system (CLS), and the MODIS airborne simulator (MAS) were made aboard the NASA ER-2 aircraft over the western Pacific Ocean on 17-18 January 1993. These measurements were used to study the effects of clouds on water vapor profile retrievals based on millimeter-wave radiometer measurements. The CLS backscatter measurements (at 0.532 and 1.064 am) provided information on the heights and a detailed structure of cloud layers; the types of clouds could be positively identified. All 12 MAS channels (0.6-13 Am) essentially respond to all types of clouds, while the six MIR channels (89-220 GHz) show little sensitivity to cirrus clouds. The radiances from the 12-/Am and 0.875-gm channels of the MAS and the 89-GHz channel of the MIR were used to gauge the performance of the retrieval of water vapor profiles from the MIR observations under cloudy conditions. It was found that, for cirrus and absorptive (liquid) clouds, better than 80% of the retrieval was convergent when one of the three criteria was satisfied; that is, the radiance at 0.875 Am is less than 100 W/cm.sr, or the brightness at 12 Am is greater than 260 K, or brightness at 89 GHz is less than 270 K (equivalent to cloud liquid water of less than 0.04 g/cm). The range of these radiances for convergent retrieval increases markedly when the condition for convergent retrieval was somewhat relaxed. The algorithm of water vapor profiling from the MIR measurements could not perform adequately over the areas of storm-related clouds that scatter radiation at millimeter wavelengths.
    Keywords: Meteorology and Climatology
    Type: Laboratory for Hydrospheric Processes Research Publications; 165-166
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-23
    Description: Global estimation of wind speeds near the sea-surface can be obtained using normalized radar cross sections sigma(o) from satellite-borne single-frequency altimeters. Indeed recent validation studies of Geosat altimeter-derived wind speeds show that several often cited semiempirical algorithms yield linear trends between wind-speeds from altimeter data and wind speeds from (a) ships of opportunity (Etcheto 1992), (b) buoys (Carter 1992), and (c) atmospheric models (Guillaume 1992). Although the linear trends are striking, there is considerable scatter since the range of standard deviations is from 1.5 to 3 m/s. In fact, the scatter of some particular measurements about the regressions is striking because they depart from the 'standard' by as much as +/- 5 m/s, which is large - even for full gale winds of 20 m/s. These anomalies can cause serious problems for gas exchange, heat, and aerosol estimates. They can also induce considerable errors in wind-driven oceanic circulation models and sea-surface wave models. This paper explores the possibility of improving the accuracy of wind speed estimation using dual-frequency altimeters.
    Keywords: Meteorology and Climatology
    Type: Laboratory for Hydrospheric Processes Research Publications; 117-118
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-23
    Description: The TOPEX/POSEIDON mission offers the first opportunity to observe rain cells over the ocean by a dual-frequency radar altimeter (TOPEX) and simultaneously observe their natural radiative properties by a three-frequency radiometer (TOPEX microwave radiometer (TMR)). This work is a feasibility study aimed at understanding the capability and potential of the active/passive TOPEX/TMR system for oceanic rainfall detection. On the basis of past experiences in rain flagging, a joint TOPEX/TMR rain probability index is proposed. This index integrates several advantages of the two sensors and provides a more reliable rain estimate than the radiometer alone. One year's TOPEX/TMR data are used to test the performance of the index. The resulting rain frequency statistics show quantitative agreement with those obtained from the Comprehensive Ocean-Atmosphere Data Set (COADS) in the Intertropical Convergence Zone (ITCZ), while qualitative agreement is found for other regions of the world ocean. A recent finding that the latitudinal frequency of precipitation over the Southern Ocean increases steadily toward the Antarctic continent is confirmed by our result. Annual and seasonal precipitation maps are derived from the index. Notable features revealed include an overall similarity in rainfall pattern from the Pacific, the Atlantic, and the Indian Oceans and a general phase reversal between the two hemispheres, as well as a number of regional anomalies in terms of rain intensity. Comparisons with simultaneous Global Precipitation Climatology Project (GPCP) multisatellite precipitation rate and COADS rain climatology suggest that systematic differences also exist. One example is that the maximum rainfall in the ITCZ of the Indian Ocean appears to be more intensive and concentrated in our result compared to that of the GPCP. Another example is that the annual precipitation produced by TOPEX/TMR is constantly higher than those from GPCP and COADS in the extratropical regions of the northern hemisphere, especially in the northwest Pacific Ocean. Analyses of the seasonal variations of prominent rainy and dry zones in the tropics and subtropics show various behaviors such as systematic migration, expansion and contraction, merging and breakup, and pure intensity variations. The seasonality of regional features is largely influenced by local atmospheric events such as monsoon, storm, or snow activities. The results of this study suggest that TOPEX and its follow-on may serve as a complementary sensor to the special sensor microwave/imager in observing global oceanic precipitation.
    Keywords: Meteorology and Climatology
    Type: Laboratory for Hydrospheric Processes Research Processes; 25-26
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-23
    Description: We examined nine satellite rainfall algorithms and compared the rain fields produced from these algorithms for the period of August 1987 to December 1988. Preliminary results show algorithms which use the same satellite sensor data tend to be similar, suggesting the importance of sampling. Oceanic global mean rainfall ranges from 2.7 to 3.6 mm/d. The variability in zonal mean rain rate is about 1.5-2 mm/d for these algorithms.
    Keywords: Meteorology and Climatology
    Type: Laboratory for Hydrospheric Processes Research Publications; 123-124
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-23
    Description: In the Project for Intercomparison of Land-Surface Parameterization Schemes phase 2a experiment, meteorological data for the year 1987 from Cabauw, the Netherlands, were used as inputs to 23 land-surface flux schemes designed for use in climate and weather models. Schemes were evaluated by comparing their outputs with long-term measurements of surface sensible heat fluxes into the atmosphere and the ground, and of upward longwave radiation and total net radiative fluxes, and also comparing them with latent heat fluxes derived from a surface energy balance. Tuning of schemes by use of the observed flux data was not permitted. On an annual basis, the predicted surface radiative temperature exhibits a range of 2 K across schemes, consistent with the range of about 10 W/m in predicted surface net radiation. Most modeled values of monthly net radiation differ from the observations by less than the estimated maximum monthly observational error (+/- 10 W/sq m). However, modeled radiative surface temperature appears to have a systematic positive bias in most schemes; this might be explained by an error in assumed emissivity and by models' neglect of canopy thermal heterogeneity. Annual means of sensible and latent heat fluxes, into which net radiation is partitioned, have ranges across schemes of 30 W/sq m and 25 W/sq m, respectively. Annual totals of evapotranspiration and runoff, into which the precipitation is partitioned, both have ranges of 315 mm. These ranges in annual heat and water fluxes were approximately halved upon exclusion of the three schemes that have no stomatal resistance under non-water-stressed conditions. Many schemes tend to underestimate latent heat flux and overestimate sensible heat flux in summer, with a reverse tendency in winter. For six schemes, root-mean-square deviations of predictions from monthly observations are less than the estimated upper bounds on observation errors (5 W/m for sensible beat flux and 10 W/m for latent heat flux). Actual runoff at the site is believed to be dominated by vertical drainage to ground water, but several schemes produced significant amounts of runoff as overland flow or interflow. There is a range across schemes of 184 mm (40% of total pore volume) in the simulated annual mean root-zone soil moisture. Unfortunately, no measurements of soil moisture were available for model evaluation. A theoretical analysis suggested that differences in boundary conditions used in various schemes are not sufficient to explain the large variance in soil moisture. However, many of the extreme values of soil moisture could be explained in terms of the particulars of experimental setup or excessive evapotranspiration.
    Keywords: Meteorology and Climatology
    Type: Laboratory for Hydrospheric Processes Research Publications; 27-28
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-23
    Description: From September 15 to 25, 1996, NASA's scatterometer (NSCAT) monitored the evolution of twin typhoons, Violet and Tom, as they moved north from the western tropical Pacific, acquiring features of mid-latitude storms. The typhoons developed frontal structures, increased asymmetry, and dry air was introduced into their cores. Violet hit Japan, causing death and destruction (Figure 1), and Tom merged with a mid-latitude trough and evolved into a large extratropical storm with gale-force winds (Figure 2). We understand relatively little about the extratropical transition of tropical cyclones because of the complex thermodynamics involved [e.g., Sinclair, 1993], but we do know that the mid-latitude storms resulting from tropical cyclones usually generate strong winds and heavy precipitation. Since the transition usually occurs over the ocean, few measurements have been made. The transition is a fascinating science problem, but it also has important economic consequences. The transition occurs over the busiest trans-ocean shipping lanes, and when the resulting storms hit land, they usually devastate populated areas. NSCAT was successfully launched into a near-polar, sun-synchronous orbit on the Japanese Advanced Earth Observing Satellite (ADEOS) in August 1996 from Tanegashima Space Center in Japan. NSCAT's six antennas send microwave pulses at a frequency of 14 GHz to the Earth's surface and measure the backscatter. The antennas scan two 600-km bands of the ocean, which are separated by a 330-km data gap. From NSCAT observations, surface wind vectors can be derived at 25-km spatial resolution, covering 77% of the ice-free ocean in one day and 97% of the ocean in two days, under both clear and cloudy conditions.
    Keywords: Meteorology and Climatology
    Type: EOS, Transactions (ISSN 0096-3941); Volume 78; No. 23; 237, 240
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The interaction between the main passage flow through a high pressure turbine and the secondary flows due to leakage through the wheelspace rim seals is reviewed. Various experimental and analytical studies of these interactions are outlined and a numerical investigation of the interaction between the main passage flow and a wheelspace cavity seal flow is described. The numerical investigation uses a structured grid method to study the overall interaction between the turbine stage components and the wheelspace seal flow, and an unstructured grid method to resolve the detailed flow features within the geometrically complex cavity seal. The numerical results agree with various observations from experimental studies under similar flow conditions. As the flow rate through the rim cavity seal is increased, the ingestion of fluid from the main passage flow into the rim seal area decreases rapidly. A small amount of main flow gas is ingested into the rim seal area, even at high seal flow rates.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Secondary and tip-clearance flows in axial turbines; VKI-LS-1997-01
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-08-24
    Description: Cartesian methods for computational fluid dynamics are considered to offer an accurate and robust approach for the simulation of aerodynamic flows around geometrically complex bodies. A part of the ongoing research in this domain is reviewed with the aim of providing insight into the fundamental challenges faced by the practitioners of this approach, and a guide to further research. The integration schemes used in Cartesian solvers are similar to those used in other approaches. The emphasis is on the geometric algorithms, surface modeling and boundary conditions required to design a successful Cartesian mesh scheme.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: The 28th Computational Fluid Dynamics; Volume 1; VKI-LS-1997-02-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-08-31
    Description: Current passive-microwave rain-retrieval methods are largely based on databases built off-line using cloud models. The vertical distribution of hydrometeors within the cloud has a large impact on upwelling brightness temperatures ([31,[5]). Thus, a forward radiative transfer model can predict off-line the radiance associated with different rain scenarios. To estimate the rain from measured brightness temperatures, one simply looks for the rain scenario whose associated radiances are closest to the measurements. To understand the uncertainties in this process, we first study the dependence of the simulated brightness temperatures on different hydrometeor size distribution (DSD) models. We then analyze the marginal and joint distributions of the radiances observed by the Tropical Rainfall Measuring Mission satellite and of those in the databases used in the TRMM rain retrievals. We finally calculate the covariances of the rain profiles and brightness temperatures in the TRMM passive-microwave database and derive a simple parametric model for the conditional uncertainty, given measured radiances. These results are used to characterize the uncertainty inherent in the passive-microwave retrieval.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-06-07
    Description: In the past forty years much progress has been made in computational methods applied to the solution of problems in spacecraft hypervelocity flow and heat transfer. Although the basic thermochemical and physical modeling techniques have changed little in this time, several orders of magnitude increase in the speed of numerically solving the Navier-Stokes and associated energy equations have been achieved. The extent to which this computational power can be applied to the design of spacecraft heat shields is dependent on the proper coupling of the external flow equations to the boundary conditions and governing equations representing the thermal protection system in-depth conduction, pyrolysis and surface ablation phenomena. A discussion of the techniques used to do this in past problems as well as the current state-of-art is provided. Specific examples, including past missions such as Galileo, together with the more recent case studies of ESA/Rosetta Sample Comet Return, Mars Pathfinder and X-33 will be discussed. Modeling assumptions, design approach and computational methods and results are presented.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Proceedings of the Eighth Annual Thermal and Fluids Analysis Workshop: Spacecraft Analysis and Design; S2.1-S2.19; NASA-CP-3359
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-06-07
    Description: A loosely coupled two-phase vacuum water plume model has been developed. This model consists of a source flow model to describe the expansion of water vapor, and the Lagrangian equations of motion for particle trajectories. Gas/Particle interaction is modeled through the drag force induced by the relative velocities. Particles are assumed traveling along streamlines. The equations of motion are integrated to obtain particle velocity along the streamline. This model has been used to predict the mass flux in a 5 meter radius hemispherical domain resulting from the burst of a water jet of 1.5 mm in diameter, mass flow rate of 24.2 g/s, and stagnation pressure of 21.0 psia, which is the nominal Orbiter water dump condition. The result is compared with an empirical water plume model deduced from a video image of the STS-29 water dump. To further improve the model, work has begun to numerically simulate the bubble formation and bursting present in a liquid stream injected into a vacuum. The technique of smoothed particle hydrodynamics was used to formulate this simulation. A status and results of the on-going effort are presented and compared to results from the literature.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Proceedings of the Eighth Annual Thermal and Fluids Analysis Workshop: Spacecraft Analysis and Design; 4.1-4.9; NASA-CP-3359
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-08-29
    Description: A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from in Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing, and arrival time of lightning radio emissions and solutions for the plane (i.e.. no Earth curvature) are provided that implement all of these measurements. The accuracy of the retrieval method is tested using computer-simulated data sets and the relative influence of bearing and arrival time data on the outcome of the final solution is formally demonstrated. The algorithm is sufficiently accurate to validate NASA's Optical Transient Detector (OTD) and Lightning Imaging System (LIS). We also introduce a quadratic planar solution that is useful when only three arrival time measurements are available. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in source location. Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. For arbitrary noncollinear network geometries and in the absence of measurement errors, it is shown that the two quadratic roots are equivalent (no source location ambiguity) on the outer sensor baselines. The accuracy of the quadratic planar method is tested with computer-generated data sets and the results are generally better than those obtained from the three station linear planar method when bearing errors are about 2 degrees.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-08-23
    Description: Radiometric measurements were made by a millimeter-wave imaging radiometer (MIR) at the frequencies of 89, 150, 183.3 +/- 1, 183.3 +/- 3, 183.3 +/- 7, and 220 GHz aboard the NASA ER-2 aircraft at an altitude of about 20 km over two rainstorms: one in the western Pacific Ocean on 19 January 1993 and another in southern Florida on 5 October 1993. These measurements were complemented by nearly simultaneous observations by other sensors aboard the same aircraft and another aircraft flying along the same path. Analysis of data from these measurements, aided by radiative transfer and radar reflectivity calculations of hydrometeor profiles, which arc generated by a general cloud ensemble model, demonstrates the utility of these frequencies for studying the structure of frozen hydrometeors associated with storms. Particular emphasis is placed on the three water vapor channels near 183.3 GHz. Results show that the radiometric signatures measured by these channels over the storm-associated scattering media bear a certain resemblance to those previously observed over a clear and fairly dry atmosphere with a cold ocean background. Both of these atmospheric conditions are characterized by a small amount of water vapor above a cold background. Radiative transfer calculations were made at these water vapor channels for a number of relative humidity profiles characterizing dry atmospheres over an ocean surface. The results are compared with the measurements to infer some characteristics of the environment near the scattering media. Furthermore, radiometric signatures from these channels display unique features for towering deep convective cells that could be used to identify the presence of such cells in storms.
    Keywords: Meteorology and Climatology
    Type: Laboratory for Hydrospheric Processes Research Publications; 167-168
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-08-23
    Description: Rain affects wind retrievals from scatterometric measurements of the sea surface. To depict the additional roughness caused by rain on a wind driven surface, we use a ring-wave spectral model. This enables us to analyse the rain effect on K(u) band scatterometric observations from two laboratory experiments. Calculations based on the small perturbation method provide good simulation of scattering measurements for the rain-only case, whereas for combined wind and rain cases, the boundary perturbation method is appropriate.
    Keywords: Meteorology and Climatology
    Type: Laboratory for Hydrospheric Processes Research Publications; 131-132
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-08-23
    Description: The return from the ocean surface has a number of uses for airborne meteorological radar. The normalized surface cross section has been used for radar system calibration, estimation of surface winds, and in algorithms for estimating the path-integrated attenuation in rain. However, meteorological radars are normally optimized for observation of distributed targets that fill the resolution volume, and so a point target such as the surface can be poorly sampled, particularly at near-nadir look angles. Sampling the nadir surface return at an insufficient rate results in a negative bias of the estimated cross section. This error is found to be as large as 4 dB using observations from a high-altitude airborne radar. An algorithm for mitigating the error is developed that is based upon the shape of the surface echo and uses the returned signal at the three range gates nearest the peak surface echo.
    Keywords: Meteorology and Climatology
    Type: Laboratory for Hydrospheric Processes Research Publications; 121-122
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-08-23
    Description: In this paper, we summarize our initial findings from K(a)- and K(u)-band scatterometers which include: a scaling law for backscattered power as a function of rain rate; a linear superposition model for light rains and low wind speeds; evidence of the importance of scattering from rain-generated ring-waves; and progress towards development of a scattering model for computing normalized radar cross sections from wind and rain roughened water surfaces.
    Keywords: Meteorology and Climatology
    Type: Laboratory for Hydrospheric Processes Research Publications; 119-120
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-08-23
    Description: As part of the International Symposium on Assimilation of Observation in Meteorology and Oceanography, a panel discussion was held on the evening of 15 March 1995. The purpose of this panel discussion was focus on what the next major areas of research in data assimilation should be. The panelists had five minutes each for short presentations (Kalman filters, representers, etc.) and this was followed by an open discussion. This preprocessing will require a good understanding of the fine-scale phenomena. Least square methods such as Kalman filters and variational schemes are inefficient estimators of non-Gaussian field such as chemical traces. Regardless of the modeling technique employed (Lagrangian methods seem best), a least squares assimilation scheme will smear fine structure. The estimator of maximum likelihood must be sought, by examination of tracer probability distributions.
    Keywords: Meteorology and Climatology
    Type: Laboratory for Hydrospheric Processes Research Publications; 43-44
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-08-23
    Description: Three subjects related to atmospheric water vapor profiling using the 183.3 GHz absorption line are discussed in this paper. First, data acquired by an airborne millimeter-wave imaging radiometer (MIR) over ocean surface in the western Pacific are used to estimate three-dimensional (3-D) distribution of atmospheric water vapor. The instrument's radiometric measurements with mixed vertical and horizontal polarizations require modifications to the retrieval algorithm used in the past. It is demonstrated that, after the modifications, the new algorithm can provide adequate retrieval of water vapor profiles, even though the measured data are of mixed polarizations. Next, the retrieved profiles, in terms of water vapor mixing ratio rho (g/kg), are compared with those measured in near concurrence by dropsondes from a research aircraft in the western Pacific and by a ground-based Raman lidar at Wallops Island, Virginia. The ratio of the standard deviation to the mean rho is found to be 0.12 at 0.25 km altitude and gradually degraded to 0.67 at the highest altitude of the retrieval of 10.25 km. Finally, the effect of the "initial guess" relative humidity profile on the final retrieved product is analyzed with respect to the condition for the convergent retrieval. It is found that the effect is minimal if the initial profile is not unrealistically different from the true one. If the initial profile is very different from the true one, the final retrieved product could be subject to a substantial error. Tightening of the convergent condition in the retrieval helped reduce magnitude of the error, but not remove it totally. It is concluded that an initial profile based on climatology is likely to provide most reliable retrieval results.
    Keywords: Meteorology and Climatology
    Type: Laboratory for Hydrospheric Processes Research Publications (ISSN 0196-2892); 163-164
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-08-23
    Description: The need to understand the complementarity of the radar and radiometer is important not only to the Tropical Rain Measuring Mission (TRMM) program but to a growing number of multi-instrumented airborne experiment that combine single or dual-frequency radars with multichannel radiometers. The method of analysis used in this study begins with the derivation of dual-wavelength radar equations for the estimation of a two-parameter drop size distribution (DSD). Defining a "storm model" as the set of parameters that characterize snow density, cloud water, water vapor, and features of the melting layer, then to each storm model there will usually correspond a set of range-profiled drop size distributions that are approximate solutions of the radar equations. To test these solutions, a radiative transfer model is used to compute the brightness temperatures for the radiometric frequencies of interest. A storm model or class of storm models is considered optimum if it provides the best reproduction of the radar and radiometer measurements. Tests of the method are made for stratiform rain using simulated storm models as well as measured airborne data. Preliminary results show that the best correspondence between the measured and estimated radar profiles usually can be obtained by using a moderate snow density (0.1-0.2 g/cu cm), the Maxwell-Garnett mixing formula for partially melted hydrometeors (water matrix with snow inclusions), and low to moderate values of the integrated cloud liquid water (less than 1 kg/sq m). The storm-model parameters that yield the best reproductions of the measured radar reflectivity factors also provide brightness temperatures at 10 GHz that agree well with the measurements. On the other hand, the correspondence between the measured and modeled values usually worsens in going to the higher frequency channels at 19 and 34 GHz. In searching for possible reasons for the discrepancies, It is found that changes in the DSD parameter Mu, the radar constants, or the path-integrated attenuation can affect the high frequency channels significantly. In particular, parameters that cause only modest increases in the median mass diameter of the snow, and which have a minor effect on the radar returns or the low frequency brightness temperature, can produce a strong cooling of the 34 GHz brightness temperature.
    Keywords: Meteorology and Climatology
    Type: Laboratory for Hydrospheric Processes Research Publications; 145-146
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-08-23
    Description: Aircraft altimeter and in situ measurements are used to examine relationships between altimeter backscatter and the magnitude of near-surface wind and friction velocities. Comparison of altimeter radar cross section with wind speed is made through the modified Chelton-Wentz algorithm. Improved agreement is found after correcting 10-m winds for both surface current and atmospheric stability. An altimeter friction velocity algorithm is derived based on the wind speed model and an open-ocean drag coefficient. Close agreement between altimeter- and in situ-derived friction velocities is found. For this dataset, quality of the altimeter inversion to surface friction velocity is comparable to that for adjusted winds and clearly better than the inversion to true 10-m wind speed.
    Keywords: Meteorology and Climatology
    Type: Laboratory for Hydrospheric Processes Research Publications; 159-160
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-08-23
    Description: We present results that demonstrate the effects of Rayleigh scattering on the 9 retrieval of cloud optical thickness at a visible wavelength (0.66 Am). The sensor-measured radiance at a visible wavelength (0.66 Am) is usually used to infer remotely the cloud optical thickness from aircraft or satellite instruments. For example, we find that without removing Rayleigh scattering effects, errors in the retrieved cloud optical thickness for a thin water cloud layer (T = 2.0) range from 15 to 60%, depending on solar zenith angle and viewing geometry. For an optically thick cloud (T = 10), on the other hand, errors can range from 10 to 60% for large solar zenith angles (0-60 deg) because of enhanced Rayleigh scattering. It is therefore particularly important to correct for Rayleigh scattering contributions to the reflected signal from a cloud layer both (1) for the case of thin clouds and (2) for large solar zenith angles and all clouds. On the basis of the single scattering approximation, we propose an iterative method for effectively removing Rayleigh scattering contributions from the measured radiance signal in cloud optical thickness retrievals. The proposed correction algorithm works very well and can easily be incorporated into any cloud retrieval algorithm. The Rayleigh correction method is applicable to cloud at any pressure, providing that the cloud top pressure is known to within +/- 100 bPa. With the Rayleigh correction the errors in retrieved cloud optical thickness are usually reduced to within 3%. In cases of both thin cloud layers and thick ,clouds with large solar zenith angles, the errors are usually reduced by a factor of about 2 to over 10. The Rayleigh correction algorithm has been tested with simulations for realistic cloud optical and microphysical properties with different solar and viewing geometries. We apply the Rayleigh correction algorithm to the cloud optical thickness retrievals from experimental data obtained during the Atlantic Stratocumulus Transition Experiment (ASTEX) conducted near the Azores in June 1992 and compare these results to corresponding retrievals obtained using 0.88 Am. These results provide an example of the Rayleigh scattering effects on thin clouds and further test the Rayleigh correction scheme. Using a nonabsorbing near-infrared wavelength lambda (0.88 Am) in retrieving cloud optical thickness is only applicable over oceans, however, since most land surfaces are highly reflective at 0.88 Am. Hence successful global retrievals of cloud optical thickness should remove Rayleigh scattering effects when using reflectance measurements at 0.66 Am.
    Keywords: Meteorology and Climatology
    Type: Laboratory for Hydrospheric Processes Research Publications; 169-170
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-23
    Description: We propose a novel approach to directly invert large-scale anomalous annual net air-sea heat flux from the Topex/Poseidon altimetry data in the North Atlantic. The major advantage of this new approach over the conventional bulk formula approach is that it does not need those climate parameters used in the conventional bulk formula calculation in estimating the large-scale anomalous annual net air-sea heat flux. Comparison with expendable bathythermograph data demonstrates that it is a feasible approach.
    Keywords: Meteorology and Climatology
    Type: Laboratory for Hydrospheric Processes Research Publications; 71-72
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-08-23
    Description: Potential evaporation (E(0)) has been found to be useful in many practical applications and in research for setting a reference level for actual evaporation. All previous estimates of regional or global E(0) are based upon empirical formulae using climatologic meteorologic measurements at isolated stations (i.e., point data). However, the Penman-Monteith equation provides a physically based approach for computing E(0), and by comparing 20 different methods of estimating E(0), Jensen et al. (1990) showed that the Penman-Monteith equation provides the most accurate estimate of monthly E(0) from well-watered grass or alfalfa. In the present study, monthly total E(0) for 24 months (January 1987 to December 1988) was calculated from the Penman-Monteith equation, with prescribed albedo of 0.23 and surface resistance of 70 s/m, which are considered to be representative of actively growing well-watered grass covering the ground. These calculations have been done using spatially representative data derived from satellite observations and data assimilation results. Satellite observations were used to obtain solar radiation, fractional cloud cover, air temperature, and vapor pressure, while four-dimensional data assimilation results were used to calculate the aerodynamic resistance. Meteorologic data derived from satellite observations were compared with the surface measurements to provide a measure of accuracy. The accuracy of the calculated E(0) values was assessed by comparing with lysimeter observations for evaporation from well-watered grass at 35 widely distributed locations, while recognizing that the period of present calculations was not concurrent with the lysimeter measurements and the spatial scales of these measurements and calculations are vastly different. These comparisons suggest that the error in the calculated E(0) values may not be exceeded, on average, 20% for any month or location, but are more likely to be about 15%. These uncertainties are difficult to quantify for mountainous areas or locations close to extensive water bodies. The difference between the calculated and observed E(0) is about 5% when all month and locations were considered. Errors are expected to be less than 15% for averages of E(0) over large areas or several months. Further comparisons with lysimeter observations could provide a better appraisal of the calculated values. Global pattern of E(0) was presented, together with zonal average values.
    Keywords: Meteorology and Climatology
    Type: Laboratory for Hydrospheric Processes Research Publications; 29-30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-08-23
    Description: The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.
    Keywords: Meteorology and Climatology
    Type: Laboratory for Hydrospheric Processes Research Publications; 35-36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-08-23
    Description: The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) has shown that different land surface models (LSMS) driven by the same meteorological forcing can produce markedly different surface energy and water budgets, even when certain critical aspects of the LSMs (vegetation cover, albedo, turbulent drag coefficient, and snow cover) are carefully controlled. To help explain these differences, the authors devised a monthly water balance model that successfully reproduces the annual and seasonal water balances of the different PILPS schemes. Analysis of this model leads to the identification of two quantities that characterize an LSM's formulation of soil water balance dynamics: (1) the efficiency of the soil's evaporation sink integrated over the active soil moisture range, and (2) the fraction of this range over which runoff is generated. Regardless of the LSM's complexity, the combination of these two derived parameters with rates of interception loss, potential evaporation, and precipitation provides a reasonable estimate for the LSM's simulated annual water balance. The two derived parameters shed light on how evaporation and runoff formulations interact in an LSM, and the analysis as a whole underscores the need for compatibility in these formulations.
    Keywords: Meteorology and Climatology
    Type: Laboratory of Hydrospheric Processes Research Publications; 45-46
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: As part of its Earth Observation and Climate Monitoring Program NASA will within the next few years place a number of technologically very advanced instruments into Earth orbit. Some of these instruments represent major upgrades for instruments currently in orbit, while others will generate data previously unavailable.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-06-28
    Description: A distributed algorithm for a high-order-accurate finite-difference approach to the direct numerical simulation (DNS) of transition and turbulence in compressible flows is described. This work has two major objectives. The first objective is to demonstrate that parallel and distributed-memory machines can be successfully and efficiently used to solve computationally intensive and input/output intensive algorithms of the DNS class. The second objective is to show that the computational complexity involved in solving the tridiagonal systems inherent in the DNS algorithm can be reduced by algorithm innovations that obviate the need to use a parallelized tridiagonal solver.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-TP-3686 , NAS 1.60:3686 , L-17638
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-06-28
    Description: The behavior of velocity fluctuations subjected to rapid rotation is examined. The rapid rotation considered is any arbitrary combination of two basic forms of rotation, reference frame rotation and mean flow rotation. It is recognized that the two types of rotating flows differ in the manner in which the fluctuating fields are advected. The first category is comprised of flows in rotating systems of which synoptic scale geophysical flows are a good example. In this class of flows the fluctuating velocity field advects and rotates with the mean flow. In the rapid rotation limit, the Taylor-Proudman theorem describes the behavior of this class of fluctuations. Velocity fluctuations that are advected without rotation by the mean flow constitute the second category which includes vortical flows of aerodynamic interest. The Taylor-Proudman theorem is not pertinent to I his class flows and a new result appropriate to this second category of fluctuations is derived. The present development demonstrates that the fluctuating velocity fields are rendered two-dimensional and horizontally non-divergent in the limit of any large combination of reference frame rotation and mean-flow rotation. The concommitant 'geostrophic' balance of the momentum equation is, however, dependent upon the form of rapid rotation. It is also demonstrated that the evolution equations of a two-dimensional fluctuating velocity fields are frame-indifferent with any imposed mean-flow rotation. The analyses and results of this paper highlight many fundamental aspects of rotating flows and have important consequences for their turbulence closures in inertial and non-inertial frames.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-97-206244 , NAS 1.26:206244 , ICASE-97-58
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-06-28
    Description: A free-floating droplet in microgravity is ideal for scientific observation since it is free of confounding factors such as wetting and nonsymmetrical heat transfer introduced by contact with surfaces. However, the technology to reliably deploy in microgravity has not yet been developed. In some recent fluid deployment experiments, droplets are either shaken off the dispenser or the dispenser is quickly retracted from the droplet. These solutions impart random residual motion to deployed droplet, which can be undesirable for certain investigations. In the present study, two new types of droplet injectors were built and tested. Testing of the droplet injectors consisted of neutral buoyancy tank tests, 5-sec drop tower tests at the NASA Lewis Zero Gravity Facility, and DC-9 tests. One type, the concentric injector, worked well in the neutral buoyancy tank but did not do well in low-gravity. However, it appeared that it makes a fine apparatus for constructing bubbles in low-gravity conditions. The other type, the T-injector, showed the most promise for future development. In both neutral buoyancy and DC-9 tests, water droplets were formed and deployed with some control and repeatability, although in low-gravity the residual velocities were higher than desirable. Based on our observations, further refinements are suggested for future development work.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-TM-107460 , NAS 1.15:107460 , E-10746
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-06-28
    Description: The methodology used in determining empirical rain-rate distributions for Southern New Mexico in the vicinity of White Sands APT site is discussed. The hardware and the software developed to extract rain rate from the rain accumulation data collected at White Sands APT site are described. The accuracy of Crane's Global Model for rain rate predictions is analyzed.
    Keywords: Meteorology and Climatology
    Type: NASA/CR-97-112578 , NAS 1.26:112578 , NMSU-ECE-97-015
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-06-28
    Description: The term renormalization and renormalization group are explained by reference to various physical systems. The extension of renormalization group to turbulence is then discussed; first as a comprehensive review and second concentrating on the technical details of a few selected approaches. We conclude with a discussion of the relevance and application of renormalization group to turbulence modelling.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-201718 , NAS 1.26:201718 , ICASE-97-36
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-06-28
    Description: This report describes finite difference computer calculations for the Space Shuttle Launch Pad which predict lightning induced electric currents and electric and magnetic fields caused by a lightning strike to the Lightning Protection System caternary wire. Description of possible lightning threats to Shuttle Payload components together with specifications for protection of these components, result from the calculation of lightning induced electric and magnetic fields inside and outside the during a lightning event. These fields also induce currents and voltages on cables and circuits which may be connected to, or a part of, shuttle payload components. These currents and voltages are also calculated. These threat levels are intended as a guide for designers of payload equipment to specify any shielding and/or lightning protection mitigation which may be required for payload components which are in the process of preparation or being transferred into the Shuttle Orbiter.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-205186 , NAS 1.26:205186 , EMA-97-010
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-06-28
    Description: We proposed a novel characterization of errors for numerical weather predictions. In its simplest form we decompose the error into a part attributable to phase errors and a remainder. The phase error is represented in the same fashion as a velocity field and is required to vary slowly and smoothly with position. A general distortion representation allows for the displacement and amplification or bias correction of forecast anomalies. Characterizing and decomposing forecast error in this way has two important applications, which we term the assessment application and the objective analysis application. For the assessment application, our approach results in new objective measures of forecast skill which are more in line with subjective measures of forecast skill and which are useful in validating models and diagnosing their shortcomings. With regard to the objective analysis application, meteorological analysis schemes balance forecast error and observational error to obtain an optimal analysis. Presently, representations of the error covariance matrix used to measure the forecast error are severely limited. For the objective analysis application our approach will improve analyses by providing a more realistic measure of the forecast error. We expect, a priori, that our approach should greatly improve the utility of remotely sensed data which have relatively high horizontal resolution, but which are indirectly related to the conventional atmospheric variables. In this project, we are initially focusing on the assessment application, restricted to a realistic but univariate 2-dimensional situation. Specifically, we study the forecast errors of the sea level pressure (SLP) and 500 hPa geopotential height fields for forecasts of the short and medium range. Since the forecasts are generated by the GEOS (Goddard Earth Observing System) data assimilation system with and without ERS 1 scatterometer data, these preliminary studies serve several purposes. They (1) provide a testbed for the use of the distortion representation of forecast errors, (2) act as one means of validating the GEOS data assimilation system and (3) help to describe the impact of the ERS 1 scatterometer data.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-205132 , NAS 1.26:205132 , P-559
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-06-28
    Description: This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-202333 , NAS 1.26:202333 , E-10689
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-06-28
    Description: Turbulent wall-bounded complex flows are commonly encountered in engineering practice and are of considerable interest in a variety of industrial applications. The presence of a wall significantly affects turbulence characteristics. In addition to the wall effects, turbulent wall-bounded flows become more complicated by the presence of additional body forces (e.g. centrifugal force and Coriolis force) and complex geometry. Most near-wall Reynolds stress models are developed from a high-Reynolds-number model which assumes turbulence is homogenous (or quasi-homogenous). Near-wall modifications are proposed to include wall effects in near-wall regions. In this process, wall normals are introduced. Good predictions could be obtained by Reynolds stress models with wall normals. However, ambiguity arises when the models are applied in flows with multiple walls. Many models have been proposed to model turbulent flows. Among them, Reynolds stress models, in which turbulent stresses are obtained by solving the Reynolds stress transport equations, have been proved to be the most successful ones. To apply the Reynolds stress models to wall-bounded flows, near-wall corrections accounting for the wall effects are needed, and the resulting models are called near-wall Reynolds stress models. In most of the existing near-wall models, the near-wall corrections invoke wall normals. These wall-dependent near-wall models are difficult to implement for turbulent flows with complex geometry and may give inaccurate predictions due to the ambiguity of wall normals at corners connecting multiple walls. The objective of this study is to develop a more general and flexible near-wall Reynolds stress model without using any wall-dependent variable for wall-bounded turbulent flows. With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on Speziale et al.'s high-Reynolds-stress model with wall-independent near-wall corrections. Moreover, only one damping function is used for flows with a wide range of Reynolds numbers to ensure that the near-wall modifications diminish away from the walls.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-205051 , NAS 1.26:205051
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-06-28
    Description: Despite significant achievements in computational fluid dynamics, there still remain many fluid flow phenomena not well understood. For example, the prediction of temperature distributions is inaccurate when temperature gradients are high, particularly in shock wave turbulent boundary layer interactions close to the wall. Complexities of fluid flow phenomena include transition to turbulence, relaminarization separated flows, transition between viscous and inviscid incompressible and compressible flows, among others, in all speed regimes. The purpose of this paper is to introduce a new approach, called the Flowfield-Dependent Mixed Explicit-Implicit (FDMEI) method, in an attempt to resolve these difficult issues in Computational Fluid Dynamics (CFD). In this process, a total of six implicitness parameters characteristic of the current flowfield are introduced. They are calculated from the current flowfield or changes of Mach numbers, Reynolds numbers, Peclet numbers, and Damkoehler numbers (if reacting) at each nodal point and time step. This implies that every nodal point or element is provided with different or unique numerical scheme according to their current flowfield situations, whether compressible, incompressible, viscous, inviscid, laminar, turbulent, reacting, or nonreacting. In this procedure, discontinuities or fluctuations of an variables between adjacent nodal points are determined accurately. If these implicitness parameters are fixed to certain numbers instead of being calculated from the flowfield information, then practically all currently available schemes of finite differences or finite elements arise as special cases. Some benchmark problems to be presented in this paper will show the validity, accuracy, and efficiency of the proposed methodology.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-205035 , NAS 1.26:205035 , UAH-5-30226
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-06-28
    Description: Three equilibrium-air numerical solutions are presented for the Reentry-F flight-test vehicle at Mach 20, 80,000 Ft. conditions, including turbulent flow predictions. The three solutions are from a thin-layer Navier-Stokes code, coupled thin-layer and parabolized Navier-Stokes codes, and an approximate viscous shock-layer code. Boundary-layer and shock-layer profiles are presented and compared between the three solutions, revealing close agreement between the three solution methods. Notable exceptions to the close agreement, with 7-10 percent discrepancies, occur in the density profiles at the boundary-layer edge, in the boundary-layer velocity profiles, and in the shock-layer profiles in regions influenced by the nose bluntness.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-TM-112856 , NAS 1.15:112856
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-06-28
    Description: In this paper, we examine the effectiveness of absorbing layers as non-reflecting computational boundaries for the Euler equations. The absorbing-layer equations are simply obtained by splitting the governing equations in the coordinate directions and introducing absorption coefficients in each split equation. This methodology is similar to that used by Berenger for the numerical solutions of Maxwell's equations. Specifically, we apply this methodology to three physical problems shock-vortex interactions, a plane free shear flow and an axisymmetric jet- with emphasis on acoustic wave propagation. Our numerical results indicate that the use of absorbing layers effectively minimizes numerical reflection in all three problems considered.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-201689 , NAS 1.26:201689 , ICASE 97-25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-06-28
    Description: The objective of this investigation is experimental and computational study of three dimensional viscous flow field in the nozzle passage of an axial flow turbine stage. The nozzle passage flow field has been measured using a two sensor hot-wire probe at various axial and radial stations. In addition, two component LDV measurements at one axial station (x/c(sum m) = 0.56) were performed to measure the velocity field. Static pressure measurements and flow visualization, using a fluorescent oil technique, were also performed to obtain the location of transition and the endwall limiting streamlines. A three dimensional boundary layer code, with a simple intermittency transition model, was used to predict the viscous layers along the blade and endwall surfaces. The boundary layers on the blade surface were found to be very thin and mostly laminar, except on the suction surface downstream of 70% axial chord. Strong radial pressure gradient, especially close to the suction surface, induces strong cross flow components in the trailing edge regions of the blade. On the end-walls the boundary layers were much thicker, especially near the suction corner of the casing surface, caused by secondary flow. The secondary flow region near the suction-casing surface corner indicates the presence of the passage vortex detached from the blade surface. The corner vortex is found to be very weak. The presence of a closely spaced rotor downstream (20% of the nozzle vane chord) introduces unsteadiness in the blade passage. The measured instantaneous velocity signal was filtered using FFT square window to remove the periodic unsteadiness introduced by the downstream rotor and fans. The filtering decreased the free stream turbulence level from 2.1% to 0.9% but had no influence on the computed turbulence length scale. The computation of the three dimensional boundary layers is found to be accurate on the nozzle passage blade surfaces, away from the end-walls and the secondary flow region. On the nozzle passage endwall surfaces the presence of strong pressure gradients and secondary flow limit the validity of the boundary layer code.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-4779 , NAS 1.26:4779 , E-10772
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-06-28
    Description: The interaction between a shock wave (attached to a wedge) and small amplitude, three-dimensional disturbances of a uniform, supersonic, freestream flow are investigated. The paper extends the two-dimensional study of Duck et al, through the use of vector potentials, which render the problem tractable by the same techniques as in the two-dimensional case, in particular by expansion of the solution by means of a Fourier-Bessel series, in appropriately chosen coordinates. Results are presented for specific classes of freestream disturbances, and the study shows conclusively that the shock is stable to all classes of disturbances (i.e. time periodic perturbations to the shock do not grow downstream), provided the flow downstream of the shock is supersonic (loosely corresponding to the weak shock solution). This is shown from our numerical results and also by asymptotic analysis of the Fourier-Bessel series, valid far downstream of the shock.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-201698 , NAS 1.26:201698 , ICASE-97-26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-06-28
    Description: Measurements were made in a large scale single stage turbine facility. Within the nozzle passage measurements were made using a five hole probe, a two-component Laser Doppler Velocimeter (LDV), and a single sensor hot wire probe. These measurements showed weak secondary flows at midchord, and two secondary flow loss cores at the nozzle exit. The casing vortex loss core was the larger of the two. At the exit radial inward flow was found over the entire passage, and was more pronounced in the wake. Nozzle wake decay was found to be more rapid than for an isolated vane row due to the rotor's presence. The midspan rotor flow field was measured using a two-component LDV. Measurements were made from upstream of the rotor to a chord behind the rotor. The distortion of the nozzle wake as it passed through the rotor blade row was determined. The unsteadiness in the rotor flow field was determined. The decay of the rotor wake was also characterized.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-4778 , NAS 1.26:4778 , E-10771
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-06-28
    Description: Three-dimensional, incompressible turbulent jets with rectangular and elliptical cross-sections are simulated with a finite-difference numerical method. The full Navier- Stokes equations are solved at low Reynolds numbers, whereas at high Reynolds numbers filtered forms of the equations are solved along with a sub-grid scale model to approximate the effects of the unresolved scales. A 2-N storage, third-order Runge-Kutta scheme is used for temporary discretization and a fourth-order compact scheme is used for spatial discretization. Although such methods are widely used in the simulation of compressible flows, the lack of an evolution equation for pressure or density presents particular difficulty in incompressible flows. The pressure-velocity coupling must be established indirectly. It is achieved, in this study, through a Poisson equation which is solved by a compact scheme of the same order of accuracy. The numerical formulation is validated and the dispersion and dissipation errors are documented by the solution of a wide range of benchmark problems. Three-dimensional computations are performed for different inlet conditions which model the naturally developing and forced jets. The experimentally observed phenomenon of axis-switching is captured in the numerical simulation, and it is confirmed through flow visualization that this is based on self-induction of the vorticity field. Statistical quantities such as mean velocity, mean pressure, two-point velocity spatial correlations and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stress equations are presented to aid in the turbulence modeling of complex jets. Simulations of circular jets are used to quantify the effect of the non-uniform curvature of the non-circular jets.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-203976 , NAS 1.26:203976 , ICAM-97-101
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-06-28
    Description: The flow characteristics in the base region of a two-dimensional supersonic compression ramp are investigated. A stream-wise oriented air jet, M = 1.75, is injected through a thin horizontal slot into a supersonic air main flow, M = 2.3, at the end of a two-dimensional compression ramp. The velocity profile and basic characteristics of the flow in the base region immediately following the ramp are determined. Visualization of the flowfield for qualitative observations is accomplished via Dark Central Ground Interferometry (DCGI). Two-dimensional velocity profiles are obtained using Laser Doppler Velocimetry (LDV). The study is the initial phase of a four-year investigation of base flow mixing. The current study is to provide more details of the flowfield.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-204063 , NAS 1.26:204063
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-06-28
    Description: The Earth Radiation Budget Experiment (ERBE) is a multisatellite system designed to measure the Earth's radiation budget. The ERBE data processing system consists of several software packages or sub-systems, each designed to perform a particular task. The primary task of the Inversion Subsystem is to reduce satellite altitude radiances to fluxes at the top of the Earth's atmosphere. To accomplish this, angular distribution models (ADM's) are required. These ADM's are a function of viewing and solar geometry and of the scene type as determined by the ERBE scene identification algorithm which is a part of the Inversion Subsystem. The Inversion Subsystem utilizes 12 scene types which are determined by the ERBE scene identification algorithm. The scene type is found by combining the most probable cloud cover, which is determined statistically by the scene identification algorithm, with the underlying geographic scene type. This Contractor Report describes how the geographic scene type is determined on a monthly basis.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-4773 , NAS 1.26:4773
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-06-28
    Description: The current compute environment that most researchers are using for the calculation of 3D unsteady Computational Fluid Dynamic (CFD) results is a super-computer class machine. The Massively Parallel Processors (MPP's) such as the 160 node IBM SP2 at NAS and clusters of workstations acting as a single MPP (like NAS's SGI Power-Challenge array and the J90 cluster) provide the required computation bandwidth for CFD calculations of transient problems. If we follow the traditional computational analysis steps for CFD (and we wish to construct an interactive visualizer) we need to be aware of the following: (1) Disk space requirements. A single snap-shot must contain at least the values (primitive variables) stored at the appropriate locations within the mesh. For most simple 3D Euler solvers that means 5 floating point words. Navier-Stokes solutions with turbulence models may contain 7 state-variables. (2) Disk speed vs. Computational speeds. The time required to read the complete solution of a saved time frame from disk is now longer than the compute time for a set number of iterations from an explicit solver. Depending, on the hardware and solver an iteration of an implicit code may also take less time than reading the solution from disk. If one examines the performance improvements in the last decade or two, it is easy to see that depending on disk performance (vs. CPU improvement) may not be the best method for enhancing interactivity. (3) Cluster and Parallel Machine I/O problems. Disk access time is much worse within current parallel machines and cluster of workstations that are acting in concert to solve a single problem. In this case we are not trying to read the volume of data, but are running the solver and the solver outputs the solution. These traditional network interfaces must be used for the file system. (4) Numerics of particle traces. Most visualization tools can work upon a single snap shot of the data but some visualization tools for transient problems require dealing with time.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-203964 , NAS 1.26:203964
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2018-06-05
    Description: Because ozone provides a shield against harmful ultraviolet radiation, determines the temperature profile in the stratosphere, plays important roles in tropospheric chemistry and climate, and is a health risk near the surface, changes in natural ozone layers at different altitudes and their global impact are being intensively researched. Global ozone coverage is currently provided by passive optical and microwave satellite sensors that cannot deliver high spatial resolution measurements and have particular limitations in the troposphere. Vertical profiling DIfferential Absorption Lidars (DIAL) have shown excellent range-resolved capabilities, but these systems have been large, inefficient, and have required continuous technical attention for long term operations. Recently, successful, autonomous DIAL measurements have been performed from a high-altitude aircraft (LASE - Lidar Atmospheric Sensing Experiment), and a space-qualified aerosol lidar system (LITE - Laser In-space Technology Experiment) has performed well on Shuttle. Based on the above successes, NASA and the Canadian Space Agency are jointly studying the feasibility of developing ORACLE (Ozone Research with Advanced Cooperative Lidar Experiments), an autonomously operated, compact DIAL instrument to be placed in orbit using a Pegasus class launch vehicle.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-05
    Description: The TVS on Doppler radar indicates a midtropospheric vortex of Rossby number Ro 1000 that develops in a supercell storm shortly before a tornado descends. This paper shows how the PIO model, which was first described at the 1991 AGU Spring Meeting, could produce a TVS.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-05
    Description: 1. NEW PERSPECTIVES ON CLOUD-RADIATIVE FORCING. When the Earth Radiation Budget Experiment (ERBE) produced the first measurements of cloud-radiative forcing, the climate community interpreted the results from a context in which the atmosphere was a single column, strongly coupled to the Earth's surface. 2. NEW PERSPECTIVES ON CLOUD-RADIATION OBSERVATIONS. The climate community is also on the verge of adding a new dimension to its observational capability. In classic thinking about atmospheric circulation and climate, surface pressure was a readily available quantity. As meteorology developed, it was possible to develop quantitative predictions of future weather by bringing together a network of surface pressure observations and then of profiles of temperature and humidity obtained from balloons. 3. ON COMBINING OBSERVATIONS AND THE - ORY. With this new capability, it is natural to seek recognizable features in the observations we make of the Earth. There are techniques we can use to group the remotely sensed data in the individual footprints into objects that we can track. We will present one such image-processing application to radiation budget data, showing how we can interpret the radiation budget data in terms of cloud systems that are organized into systematic patterns of behavior - an ecosystem-like view of cloud behavior.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Our research efforts addressed theoretical work in radiative transfer which focused the following five major items: (1) Development of three dimensional radiative transfer methods; (2) Improvement to and maintenance of radiative transfer codes; (3) Creating new data-sets to define absorption by atmos.gases; (4) Model tests and validations with data from field experiments; and (5) Model application to study climatic impact of, aerosol/clouds.
    Keywords: Meteorology and Climatology
    Type: NASA/CR-97-205837 , NAS 1.26:205837
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-06-28
    Description: A code has been developed to automatically simplify full chemical mechanisms. The method employed is based on the Intrinsic Low Dimensional Manifold (ILDM) method of Maas and Pope. The ILDM method is a dynamical systems approach to the simplification of large chemical kinetic mechanisms. By identifying low-dimensional attracting manifolds, the method allows complex full mechanisms to be parameterized by just a few variables; in effect, generating reduced chemical mechanisms by an automatic procedure. These resulting mechanisms however, still retain all the species used in the full mechanism. Full and skeletal mechanisms for various fuels are simplified to a two dimensional manifold, and the resulting mechanisms are found to compare well with the full mechanisms, and show significant improvement over global one step mechanisms, such as those by Westbrook and Dryer. In addition, by using an ILDM reaction mechanism in a CID code, a considerable improvement in turn-around time can be achieved.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-204138 , NAS 1.26:204138 , ICOMP-97-07 , CMOTT-97-02 , AIAA Paper 97-3115 , E-10855
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-06-28
    Description: The Applied Meteorology Unit (AMU) conducted a year-long evaluation of NCEP's 29-km mesoscale Eta (meso-eta) weather prediction model in order to identify added value to forecast operations in support of the United States space program. The evaluation was stratified over warm and cool seasons and considered both objective and subjective verification methodologies. Objective verification results generally indicate that meso-eta model point forecasts at selected stations exhibit minimal error growth in terms of RMS errors and are reasonably unbiased. Conversely, results from the subjective verification demonstrate that model forecasts of developing weather events such as thunderstorms, sea breezes, and cold fronts, are not always as accurate as implied by the seasonal error statistics. Sea-breeze case studies reveal that the model generates a dynamically-consistent thermally direct circulation over the Florida peninsula, although at a larger scale than observed. Thunderstorm verification reveals that the meso-eta model is capable of predicting areas of organized convection, particularly during the late afternoon hours but is not capable of forecasting individual thunderstorms. Verification of cold fronts during the cool season reveals that the model is capable of forecasting a majority of cold frontal passages through east central Florida to within +1-h of observed frontal passage.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-205409 , NAS 1.26:205409 , Rept-97-003
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The viscous driven-cavity problem is solved using a stream-function and vorticity formulation for the incompressible Navier-Stokes equations. This report provides the user's manual and FORTRAN code for the set of governing equations presented in NASA TM-110262.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-TM-112874 , NAS 1.26:112874
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-06-28
    Description: This report documents the results of the Applied Meteorology Unit's (AMU) investigation of inconsistencies between pilot reported cloud top heights and weather radar indicated echo top heights (assumed to be cloud tops) as identified by the 45 Weather Squadron (45WS). The objective for this study is to document and understand the differences in echo top characteristics as displayed on both the WSR-88D and WSR-74C radars and cloud top heights reported by the contract weather aircraft in support of space launch operations at Cape Canaveral Air Station (CCAS), Florida. These inconsistencies are of operational concern since various Launch Commit Criteria (LCC) and Flight Rules (FR) in part describe safe and unsafe conditions as a function of cloud thickness. Some background radar information was presented. Scan strategies for the WSR-74C and WSR-88D were reviewed along with a description of normal radar beam propagation influenced by the Effective Earth Radius Model. Atmospheric conditions prior to and leading up to both launch operations were detailed. Through the analysis of rawinsonde and radar data, atmospheric refraction or bending of the radar beam was identified as the cause of the discrepancies between reported cloud top heights by the contract weather aircraft and those as identified by both radars. The atmospheric refraction caused the radar beam to be further bent toward the Earth than normal. This radar beam bending causes the radar target to be displayed erroneously, with higher cloud top heights and a very blocky or skewed appearance.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-204381 , NAS 1.26:204381
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-06-28
    Description: Researchers are developing the technology of 'Ballistic Particle Manufacturing' (BPM) in which individual drops are precisely layered onto a substrate, and the drops are deposited so as to prevent splatting. These individual drops will ultimately be combined to form a net-shape, three-dimensional object. Our understanding of controlled drop deposition as applied to BPM is far from complete. Process parameters include the size and temperature of the liquid metal drop, its impact velocity and trajectory, and the condition and temperature of the substrate. Quantitative knowledge of the fluid mechanics and heat transfer of drop deposition and solidification are necessary to fully optimize the manufacturing process and to control the material microstructure of the final part. The object of this study is to examine the dynamics of liquid metal drops as they impinge upon a solid surface and solidify under conditions consistent with BPM (i.e. conditions which produce non-splatting drops). A program of both numerical simulations and experiments will be conducted. Questions this study will address include the following: How do the deformation and solidification of the drop depend on the properties of the fluid drop and the solid substrate? How does the presence of previously deposited drops affect the impingement and solidification process? How does the impingement of the new drop affect already deposited material? How does the cooling rate and solidification of the drops influence the material microstructure?
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-205294 , NAS 1.26:205294
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The current study expands the application of computational fluid dynamics to three-dimensional multi-element high-lift systems by investigating the flow dynamics created by a slat edge. Flow is computed over a three-element high-lift configuration using an incompressible Navier-Stokes solver with structured, overset grids processed assuming full turbulence with the one-equation Baldwin-Barth turbulence model. The geometry consists of an unswept wing, which spans the wind tunnel test section, a single element half-span Fowler flap, and a three-quarter span slat. Results are presented for the wing configured for landing with a chord based Reynolds number of 3.7 million. Results for the three-quarter span slat case are compared to the full-span slat and two-dimensional investigations.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-204349 , NAS 1.26:204349
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-06-28
    Description: This document is a manual describing how to use the Volume Grid Manipulation (VGM) software. The code is specifically designed to alter or manipulate existing surface and volume structured grids to improve grid quality through the reduction of grid line skewness, removal of negative volumes, and adaption of surface and volume grids to flow field gradients. The software uses a command language to perform all manipulations thereby offering the capability of executing multiple manipulations on a single grid during an execution of the code. The command language can be input to the VGM code by a UNIX style redirected file, or interactively while the code is executing. The manual consists of 14 sections. The first is an introduction to grid manipulation; where it is most applicable and where the strengths of such software can be utilized. The next two sections describe the memory management and the manipulation command language. The following 8 sections describe simple and complex manipulations that can be used in conjunction with one another to smooth, adapt, and reuse existing grids for various computations. These are accompanied by a tutorial section that describes how to use the commands and manipulations to solve actual grid generation problems. The last two sections are a command reference guide and trouble shooting sections to aid in the use of the code as well as describe problems associated with generated scripts for manipulation control.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-4772 , NAS 1.26:4772
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-06-28
    Description: Flight tests were conducted in the fall of 1995 off the coast of Wallops Island, Virginia in order to determine characteristics of wake vortices at flight altitudes. A NASA Wallops Flight Facility C130 aircraft equipped with smoke generators produced visible wakes at altitudes ranging from 775 to 2225 m in a variety of atmospheric conditions, orientations (head wind, cross wind), and airspeeds. Meteorological and aircraft parameters were collected continuously from a Langley Research Center OV-10A aircraft as it flew alongside and through the wake vortices at varying distances behind the C130. Meteorological data were also obtained from special balloon observations made at Wallops. Differential GPS capabilities were on each aircraft from which accurate altitude profiles were obtained. Vortices were observed to rise at distances beyond a mile behind the C130. The maximum altitude was 150 m above the C130 in a near neutral atmosphere with significant turbulence. This occurred from large vertical oscillations in the wakes. There were several cases when vortices did not descend after a very short initial period and remained near generation altitude in a variety of moderately stable atmospheres and wind shears.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-4767 , NAS 1.26:4767
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-06-28
    Description: Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations(DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those, of a spatially evolving jet, a temporal jet problem was solved, using periodicity ill the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible application to active noise suppression. In addition, the data generated can be used to compute various turbulence quantities such as mean velocities, turbulent stresses, etc. which will aid in turbulence modeling. This report will be presented in two chapters. The first chapter describes some work on the linear stability of a supersonic round jet and the implications of this for the jet noise problem. The second chapter is an extensive discussion of numerical work using the spectral method which we use to solve the compressible Navier-Stokes equations to study turbulent jet flows. The method uses Fourier expansions in the azimuthal and streamwise direction and a 1-D B-spline basis representation in the radial direction. The B-spline basis is locally supported and this ensures block diagonal matrix equations which can be solved in O(N) steps. This is a modification of a boundary layer code developed by Robert Moser. A very accurate highly resolved Direct Numerical Simulation (DNS) of a turbulent jet flow is produced.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-204496 , NAS 1.26:204496
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-06-28
    Description: Jet noise is a major concern in the design of commercial aircraft. Studies by various researchers suggest that aerodynamic noise is a major contributor to jet noise. Some of these studies indicate that most of the aerodynamic jet noise due to turbulent mixing occurs when there is a rapid variation in turbulent structure, i.e. rapidly growing or decaying vortices. The objective of this research was to simulate a compressible round jet to study the non-linear evolution of vortices and the resulting acoustic radiations. In particular, to understand the effect of turbulence structure on the noise. An ideal technique to study this problem is Direct Numerical Simulations (DNS), because it provides precise control on the initial and boundary conditions that lead to the turbulent structures studied. It also provides complete 3-dimensional time dependent data. Since the dynamics of a temporally evolving jet are not greatly different from those of a spatially evolving jet, a temporal jet problem was solved, using periodicity in the direction of the jet axis. This enables the application of Fourier spectral methods in the streamwise direction. Physically this means that turbulent structures in the jet are repeated in successive downstream cells instead of being gradually modified downstream into a jet plume. The DNS jet simulation helps us understand the various turbulent scales and mechanisms of turbulence generation in the evolution of a compressible round jet. These accurate flow solutions will be used in future research to estimate near-field acoustic radiation by computing the total outward flux across a surface and determine how it is related to the evolution of the turbulent solutions. Furthermore, these simulations allow us to investigate the sensitivity of acoustic radiations to inlet/boundary conditions, with possible appli(,a- tion to active noise suppression. In addition, the data generated can be used to compute, various turbulence quantities such as mean velocities, turbulent stresses, etc. which will aid in turbulence modeling. This report will be presented in two chapters. The first chapter describes some work on the linear stability of a supersonic round jet and the implications of this for the jet noise problem. The second chapter is an extensive discussion of numerical work using the spectral method which we use to solve the compressible Navier-Stokes equations to study turbulent jet flows. The method uses Fourier expansions in the azimuthal and streamwise direction and a 1-D B-spline basis representation in the radial direction. The B-spline basis is locally supported and this ensures block diagonal matrix equations which can be solved in O(N) steps. This is a modification of a boundary layer code developed by Robert Moser. A very accurate highly resolved DNS of a turbulent jet flow is produced.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-203838 , NAS 1.26:203838
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-06-28
    Description: A numerical method for the convective heat transfer problem is developed for low speed flow at mild temperatures. A simplified energy equation is added to the incompressible Navier-Stokes formulation by using Boussinesq approximation to account for the buoyancy force. A pseudocompressibility method is used to solve the resulting set of equations for steady-state solutions in conjunction with an approximate factorization scheme. A Neumann-type pressure boundary condition is devised to account for the interaction between pressure and temperature terms, especially near a heated or cooled solid boundary. It is shown that the present method is capable of predicting the temperature field in an incompressible flow.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-TM-110444 , NAS 1.15:110444 , A-976254
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-06-28
    Description: Boundary element algorithms for the solution of steady-state and transient heat conduction are presented. The algorithms are designed for efficient coupling with computational fluid dynamic discretizations and feature piecewise linear elements with offset nodal points. The steady-state algorithm employs the fundamental solution approach; the integration kernels are computed analytically based on linear shape functions, linear elements, and variably offset nodal points. The analytic expressions for both singular and nonsingular integrands are presented. The transient algorithm employs the transient fundamental solution; the temporal integration is performed analytically and the nonsingular spatial integration is performed numerically using Gaussian quadrature. A series solution to the integration is derived for the instance of a singular integrand. The boundary-only character of the algorithm is maintained by integrating the influence coefficients from initial time. Numerical results are compared to analytical solutions to verify the current boundary element algorithms. The steady-state and transient algorithms are numerically shown to be second-order accurate in space and time, respectively.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-TM-110427 , NAS 1.15:110427 , A-975389
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-06-28
    Description: A numerical method based on b-spline polynomials was developed to study incompressible flows in cylindrical geometries. A b-spline method has the advantages of possessing spectral accuracy and the flexibility of standard finite element methods. Using this method it was possible to ensure regularity of the solution near the origin, i.e. smoothness and boundedness. Because b-splines have compact support, it is also possible to remove b-splines near the center to alleviate the constraint placed on the time step by an overly fine grid. Using the natural periodicity in the azimuthal direction and approximating the streamwise direction as periodic, so-called time evolving flow, greatly reduced the cost and complexity of the computations. A direct numerical simulation of pipe flow was carried out using the method described above at a Reynolds number of 5600 based on diameter and bulk velocity. General knowledge of pipe flow and the availability of experimental measurements make pipe flow the ideal test case with which to validate the numerical method. Results indicated that high flatness levels of the radial component of velocity in the near wall region are physical; regions of high radial velocity were detected and appear to be related to high speed streaks in the boundary layer. Budgets of Reynolds stress transport equations showed close similarity with those of channel flow. However contrary to channel flow, the log layer of pipe flow is not homogeneous for the present Reynolds number. A topological method based on a classification of the invariants of the velocity gradient tensor was used. Plotting iso-surfaces of the discriminant of the invariants proved to be a good method for identifying vortical eddies in the flow field.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-TM-110436 , NAS 1.15:110436 , A-975743
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-06-28
    Description: There are two fundamental goals of this research project. The first and primary goal is to develop a prognostic system which could satisfy the operational weather prediction requirements of the meteorological subsystem within the Aircraft Vortex Spacing System (AVOSS). The secondary goal is to perform indepth diagnostic analyses of the meteorological conditions affecting the Memphis field experiment held during August 1995. These two goals are interdependent because a thorough understanding of the atmospheric dynamical processes which produced the unique meteorology during the Memphis deployment will help us design a prognostic system for the planetary boundary layer (PBL) which could be utilized to support the meteorological subsystem within AVOSS. The secondary goal occupied much of the first year of the research project. This involved extensive data acquisition and indepth analyses of a spectrum of atmospheric observational data sets. Concerning the primary goal, the first part of the four-stage prognostic system in support of AVOSS entitled: Terminal Area PBL Prediction System (TAPPS) was also formulated and tested in a research environment during 1996. We describe this system, and the three stages which are planned to follow. This first part of a software system designed to meet the primary goal of this research project is relatively inexpensive to implement and run operationally.
    Keywords: Meteorology and Climatology
    Type: NASA-CR-203456 , NAS 1.26:203456
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-06-28
    Description: A number of wavelet-based techniques for the analysis of experimental data are developed and illustrated. A multiscale analysis based on the Mexican hat wavelet is demonstrated as a tool for acquiring physical and quantitative information not obtainable by standard signal analysis methods. Experimental data for the analysis came from simultaneous hot-wire velocity traces in a bypass transition of the boundary layer on a heated flat plate. A pair of traces (two components of velocity) at one location was excerpted. A number of ensemble and conditional statistics related to dominant time scales for energy and momentum transport were calculated. The analysis revealed a lack of energy-dominant time scales inside turbulent spots but identified transport-dominant scales inside spots that account for the largest part of the Reynolds stress. Momentum transport was much more intermittent than were energetic fluctuations. This work is the first step in a continuing study of the spatial evolution of these scale-related statistics, the goal being to apply the multiscale analysis results to improve the modeling of transitional and turbulent industrial flows.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-TP-3555 , NAS 1.60:3555 , E-9675
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-06-28
    Description: Loop heat pipes (LHPs) can transport very large thermal power loads over long distances, through flexible, small diameter tubes against gravitational heads. In order to overcome the evaporator limit of LHPs, which is of about 0.07 MW/sq m, work was carried out to improve the efficiency by threefold to tenfold. The vapor passage geometry for the high heat flux conditions is shown. A bidisperse wick material within the circumferential vapor passages was used. Along with heat flux enhancement, several underlying issues were demonstrated, including the fabrication of bidisperse powder with controlled properties and the fabrication of a device geometry capable of replacing vapor passages with bidisperse powder.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: Space Environmental Control Systems; 371-376; ESA-SP-400-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-06-28
    Description: A multiblock approach is presented for solving two-dimensional incompressible turbulent flows on unstructured grids. The artificial compressibility form of the governing equations is solved by a vertex-centered, finite-volume implicit scheme which uses a backward Euler time discretization. Point Gauss-Seidel relaxations are used to solve the linear system of equations at each time step. This work introduces a multiblock strategy to the solution procedure, which greatly improves the efficiency of the algorithm by significantly reducing the memory requirements while not increasing the CPU time. Results presented in this work shows that the current multiblock algorithm requires 70% less memory than the single block algorithm.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-97-112978 , NAS 1.26:112978 , AIAA Paper 97-1866
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-06-28
    Description: The final report consists of three papers which outline and demonstrate the new method for determining transition onset. The procedure developed under this grant requires specification of the instability mechanism, i.e., Tollmien-Schlichting or crossflow, that leads to transition. The attached papers are entitled: 'An Alternative to the e(sup n) Method for Determining Onset of Transition', 'Transition Model for Swept Wing Flows', and 'A Transition Closure Model for Predicting Transition Onset'.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-97-206182 , NAS 1.26:206182
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-06-28
    Description: Our approach involved validating parameterizations directly against measurements from field programs, and using this validation to tune existing parameterizations and to guide the development of new ones. We have used a single-column model (SCM) to make the link between observations and parameterizations of clouds, including explicit cloud microphysics (e.g., prognostic cloud liquid water used to determine cloud radiative properties). Surface and satellite radiation measurements were used to provide an initial evaluation of the performance of the different parameterizations. The results of this evaluation will then used to develop improved cloud and cloud-radiation schemes, which were tested in GCM experiments.
    Keywords: Meteorology and Climatology
    Type: NASA/CR-97-205956 , NAS 1.26:205956
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-06-28
    Description: The authors review the development of diffuse-interface models of hydrodynamics and their application to a wide variety of interfacial phenomena. The authors discuss the issues involved in formulating diffuse-interface models for single-component and binary fluids. Recent applications and computations using these models are discussed in each case. Further, the authors address issues including sharp-interface analyses that relate these models to the classical free-boundary problem, related computational approaches to describe interfacial phenomena, and related approaches describing fully-miscible fluids.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-97-206424 , NAS 1.26:206424 , PB97-184097 , NISTIR-6018
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-06-28
    Description: Previous work at NASA LeRC has shown that flow distortions in aircraft engine inlet ducts can be significantly reduced by mounting vortex generators, or small wing sections, on the inside surface of the engine inlet. The placement of the vortex generators is an important factor in obtaining the optimal effect over a wide operating envelope. In this regard, the only alternative to a long and expensive test program which would search out this optimal configuration is a good prediction procedure which could narrow the field of search. Such a procedure has been developed in collaboration with NASA LeRC, and results obtained by NASA personnel indicate that it shows considerable promise for predicting the viscous turbulent flow in engine inlet ducts in the presence of vortex generators. The prediction tool is a computer code which numerically solves the reduced Navier-Stokes equations and so is commonly referred to as RNS3D. Obvious deficiencies in RNS3D have been addressed in previous work. Primarily, it is known that the predictions of the mean velocity field of a turbulent boundary layer flow approaching separation are not in good agreement with data. It was suggested that the use of an algebraic mixing-length turbulence model in RNS3D is at least partly to blame for this. Additionally, the current turbulence model includes an assumption of isotropy which will ultimately fail to capture turbulence-driven secondary flow known to exist in noncircular ducts.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-97-206334 , NAS 1.26:206334
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The multiblock reacting Navier-Stokes flow solver RPLUS2D was modified for parallel implementation. Results for non-reacting flow calculations of this code indicate parallelization efficiencies greater than 84% are possible for a typical test problem. Results tend to improve as the size of the problem increases. The convergence rate of the scheme is degraded slightly when additional artificial block boundaries are included for the purpose of parallelization. However, this degradation virtually disappears if the solution is converged near to machine zero. Recommendations are made for further code improvements to increase efficiency, correct bugs in the original version, and study decomposition effectiveness.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-205486 , NAS 1.26:205486
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-06-28
    Description: The results of an asymptotic theory for statistical closures for compressible turbulence are explored and validated with the direct numerical simulation of the isotropic decay and the homogeneous shear. An excellent collapse of the data is seen. The slow portion is found to scale, as predicted by the theory, with the quantity M(sub t)(sup 2) and epsilon(sub s). The rapid portion has an unambiguous scaling with alpha(sup 2)M(sub t)(sup s)epsilon(sub s)[P(sub k)/epsilon - l](Sk/epsilon)(sup 2). Implicit in the scaling is a dependence, as has been noted by others, on the gradient Mach number. A new feature of the effects of compressibility, that of the Kolmogorov scaling coefficient, alpha, is discussed. It is suggested that alpha may contain flow specific physics associated with large scales that might provide further insight into the structural effects of compressibility.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-97-201748 , NAS 1.26:201748 , ICASE-97-53
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-06-28
    Description: Developing an algorithm for diagnosing cloud properties over snow- and ice-covered surfaces using satellite radiances from the Advanced Very High resolution Radiometer (AVHRR) is addressed.
    Keywords: Meteorology and Climatology
    Type: NASA/CR-97-205864 , NAS 1.26:205864
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: This is a user's manual of the CMOTT turbulence module, version 2.0, developed for the NPARC code. The module is written in a self-contained manner so that the user can use any turbulence model in the module without concern as to how it is implemented and solved. Three two-equation turbulence models have been built into the module: Chien, Shih-Lumley and CMOTT models, and all of them have both the low Reynolds number and wall function options. Unlike Chien's model, both the Shih-Lumley and CMOTT models do not involve the dimensionless wall distance y(sup +) in the low Reynolds number approach, an advantage for separated flow calculations. The Van Driest transformation is used so that the wall functions can be applied to both incompressible and compressible flows. The manual gives the details of the turbulence models used and their numerical implementation. It also gives two application examples, one for subsonic and the other for transonic flow, for demonstration. The module can be easily linked to the NPARC code for practical applications.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-204143 , NAS 1.26:204143 , ICOMP-97-10 , CMOTT-97-05 , E-10878
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-06-28
    Description: We present a detailed analysis of a recently proposed perfectly matched layer (PML) method for the absorption of acoustic waves. The split set of equations is shown to be only weakly well-posed, and ill-posed under small low order perturbations. This analysis provides the explanation for the stability problems associated with the split field formulation and illustrates why applying a filter has a stabilizing effect. Utilizing recent results obtained within the context of electromagnetics, we develop strongly well-posed absorbing layers for the linearized Euler equations. The schemes are shown to be perfectly absorbing independent of frequency and angle of incidence of the wave in the case of a non-convecting mean flow. In the general case of a convecting mean flow, a number of techniques is combined to obtain a absorbing layers exhibiting PML-like behavior. The efficacy of the proposed absorbing layers is illustrated though computation of benchmark problems in aero-acoustics.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-97-201744 , NAS 1.26:201744 , ICASE-97-49
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-06-28
    Description: In this paper, we establish the causality between the model coefficients in the standard pressure-strain correlation model and the predicted equilibrium states for homogeneous turbulence. We accomplish this by performing a comprehensive fixed point analysis of the modeled Reynolds stress and dissipation rate equations. The results from this analysis will be very useful for developing improved pressure-strain correlation models to yield observed equilibrium behavior.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-97-201749 , NAS 1.26:201749 , ICASE-97-54
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The effort involved three elements all related to the measurement of rain and clouds using microwaves: (1) Examine recently proposed techniques for measuring rainfall rate and rain water content using data from ground-based radars and the TRMM microwave link in order to develop improved ground validation and radar calibration techniques; (2) Develop dual-polarization, multiple frequency radar techniques for estimating rain water content and cloud water content to interpret the vertical profiles of radar reflectivity factors (Z) measured by the TRMM Precipitation Radar; and (3) Investigate theoretically and experimentally the potential biases in TRMM Z measurements due to spatial inhomogeneities in precipitation. The research succeeded in addressing all of these topics, resulting in several referred publications. addition, the research indicated that the effects of non-Rayleigh statistics resulting from the nature of the precipitation inhomogeneities will probably not result in serious errors for the TRMM radar Measurements, but the TRMM radiometers may be subject to significant bias due to the inhomogeneities.
    Keywords: Meteorology and Climatology
    Type: NASA/CR-97-203879 , NAS 1.26:203879 , RJH-1004-001-Final
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-06-28
    Description: This report details the development of a new two-equation turbulence closure model based on the exact turbulent kinetic energy k and the variance of vorticity, zeta. The model, which is applicable to three dimensional flowfields, employs one set of model constants and does not use damping or wall functions, or geometric factors.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-205549 , NAS 1.26:205549
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-06-28
    Description: We proposed to create a single computational code incorporating methods that can model both rarefied and continuum flow to enable the efficient simulation of flow about space craft and high altitude hypersonic aerospace vehicles. The code was to use a single grid structure that permits a smooth transition between the continuum and rarefied portions of the flow. Developing an appropriate computational boundary between the two regions represented a major challenge. The primary approach chosen involves coupling a four-speed Lattice Boltzmann model for the continuum flow with the DSMC method in the rarefied regime. We also explored the possibility of using a standard finite difference Navier Stokes solver for the continuum flow. With the resulting code we will ultimately investigate three-dimensional plume impingement effects, a subject of critical importance to NASA and related to the work of Drs. Forrest Lumpkin, Steve Fitzgerald and Jay Le Beau at Johnson Space Center. Below is a brief background on the project and a summary of the results as of the end of the grant.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-97-205874 , NAS 1.26:205874
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-06-28
    Description: With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on the SSG high-Reynolds-stress model with wall-independent near-wall corrections. Only one damping function is used for flows with a wide range of Reynolds numbers to ensure that the near-wall modifications diminish away from the walls. The model is able to reproduce complicated flow phenomena induced by complex geometry, such as flow recirculation, reattachment and boundary-layer redevelopment in backward-facing step flow and secondary flow in three-dimensional square duct flow. In simple flows, including fully developed channel/pipe flow, Couette flow and boundary-layer flow, the wall effects are dominant, and the NNWRS model predicts less degree of turbulent anisotropy in the near-wall region compared with a wall-dependent near-wall Reynolds Stress model (NWRS) developed by So and colleagues. The comparison of the predictions given by the two models rectifies the misconception that the overshooting of skin friction coefficient in backward-facing step flow prevalent in those near-wall, models with wall normal is caused by he use of wall normal.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-4785 , NAS 1.26:4785
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-06-28
    Description: Asymptotic regimes of geophysical dynamics are described for different Burger number limits. Rotating Boussinesq equations are analyzed in the asymptotic limit, of strong stratification in the Burger number of order one situation as well as in the asymptotic regime of strong stratification and weak rotation. It is shown that in both regimes horizontally averaged buoyancy variable is an adiabatic invariant for the full Boussinesq system. Spectral phase shift corrections to the buoyancy time scale associated with vertical shearing of this invariant are deduced. Statistical dephasing effects induced by turbulent processes on inertial-gravity waves are evidenced. The 'split' of the energy transfer of the vortical and the wave components is established in the Craya-Herring cyclic basis. As the Burger number increases from zero to infinity, we demonstrate gradual unfreezing of energy cascades for ageostrophic dynamics. The energy spectrum and the anisotropic spectral eddy viscosity are deduced with an explicit dependence on the anisotropic rotation/stratification time scale which depends on the vertical aspect ratio parameter. Intermediate asymptotic regime corresponding to strong stratification and weak rotation is analyzed where the effects of weak rotation are accounted for by an asymptotic expansion with full control (saturation) of vertical shearing. The regularizing effect of weak rotation differs from regularizations based on vertical viscosity. Two scalar prognostic equations for ageostrophic components (divergent velocity potential and geostrophic departure ) are obtained.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-201672 , NAS 1.26:201672 , ICASE-97-18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-06-28
    Description: A versatile and efficient multi-block method is presented for the simulation of both steady and unsteady flow, as well as aerodynamic design optimization of complete aircraft configurations. The compressible Euler and Reynolds Averaged Navier-Stokes (RANS) equations are discretized using a high resolution scheme on body-fitted structured meshes. An efficient multigrid implicit scheme is implemented for time-accurate flow calculations. Optimum aerodynamic shape design is achieved at very low cost using an adjoint formulation. The method is implemented on parallel computing systems using the MPI message passing interface standard to ensure portability. The results demonstrate that, by combining highly efficient algorithms with parallel computing, it is possible to perform detailed steady and unsteady analysis as well as automatic design for complex configurations using the present generation of parallel computers.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-204486 , NAS 1.26:204486 , RIACS-TR-97-04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-06-28
    Description: Three-dimensional turbulent jets with rectangular cross-section are simulated with a finite-difference numerical method. The full Navier-Stokes equations are solved at low Reynolds numbers, whereas at the high Reynolds numbers filtered forms of the equations are solved along with a sub-grid scale model to approximate effects of the unresolved scales. A 2-N storage, third-order Runge-Kutta scheme is used for temporal discretization and a fourth-order compact scheme is used for spatial discretization. Computations are performed for different inlet conditions which represent different types of jet forcing. The phenomenon of axis-switching is observed, and it is confirmed that this is based on self-induction of the vorticity field. Budgets of the mean streamwise velocity show that convection is balanced by gradients of the Reynolds stresses and the pressure.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-201642 , NAS 1.26:201642 , ICASE-97-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-06-28
    Description: A finite difference radiative transfer program was developed to handle most anisotropic scattering and reflectance problems encountered in the Earth's atmospheric system. The model has been used to reproduce the radiance received by both satellite and ground based radiation measuring instruments. It accurately replicates the radiance measured by both narrow and wide field-of-view instruments with either narrow or broadband wavelength ranges located on the surface and at satellite altitudes. The output of the finite difference code is compared to the measurements by surface pyranometers and a spectroradiometer aboard a high flying aircraft. The program output is also compared to ERBE measurements aboard the ERBS and NOAA-9 satellites as well as the visible bands aboard the GOES-6 and GOES-7 satellites and AVHRR bands 1 and 2 of the NOAA-9 and NOAA-1 1 satellites. The model is within 0.2 % of the radiance received by pyranometers, within 0.6 % of the ERBE radiances, and within 3 % of the radiances measured by the visible bands of the GOES and NOAA AVHRR radiometers.
    Keywords: Meteorology and Climatology
    Type: NASA-TM-110283 , NAS 1.15:110283
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-06-28
    Description: A series of experiments were performed to investigate the effects of Mach number variation on the characteristics of the unsteady shock wave/turbulent boundary layer interaction generated by a blunt fin. A single blunt fin hemicylindrical leading edge diameter size was used in all of the experiments which covered the Mach number range from 2.0 to 5.0. The measurements in this investigation included surface flow visualization, static and dynamic pressure measurements, both on centerline and off-centerline of the blunt fin axis. Surface flow visualization and static pressure measurements showed that the spatial extent of the shock wave/turbulent boundary layer interaction increased with increasing Mach number. The maximum static pressure, normalized by the incoming static pressure, measured at the peak location in the separated flow region ahead of the blunt fin was found to increase with increasing Mach number. The mean and standard deviations of the fluctuating pressure signals from the dynamic pressure transducers were found to collapse to self-similar distributions as a function of the distance perpendicular to the separation line. The standard deviation of the pressure signals showed initial peaked distribution, with the maximum standard deviation point corresponding to the location of the separation line at Mach number 3.0 to 5.0. At Mach 2.0 the maximum standard deviation point was found to occur significantly upstream of the separation line. The intermittency distributions of the separation shock wave motion were found to be self-similar profiles for all Mach numbers. The intermittent region length was found to increase with Mach number and decrease with interaction sweepback angle. For Mach numbers 3.0 to 5.0 the separation line was found to correspond to high intermittencies or equivalently to the downstream locus of the separation shock wave motion. The Mach 2.0 tests, however, showed that the intermittent region occurs significantly upstream of the separation line. Power spectral densities measured in the intermittent regions were found to have self-similar frequency distributions when compared as functions of a Strouhal number for all Mach numbers and interaction sweepback angles. The maximum zero-crossing frequencies were found to correspond with the peak frequencies in the power spectra measured in the intermittent region.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-202334 , E-10700 , NAS 1.26:202334
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-06-28
    Description: Coupling of sloshing dynamics within a partially filled rotating dewar of superfluid helium 2 with spacecraft dynamics are investigated in response to the realistic environmental disturbance forces and torques acting on the spacecraft during normal operation. This study investigates: (1) the rotating bubble of superfluid helium 2 reacting to combined environmental disturbances, including gravity gradient, aerodynamic, and magnetic forces and torques; (2) characteristics of slosh reaction forces and torques coupling with spacecraft dynamics; (3) the contribution of slosh dynamics to over-all spacecraft dynamics; and (4) activating of attitude and translation control system. The numerical computation of sloshing dynamics is based on the rotational frame, while the spacecraft dynamics is associated with non-rotational frame. Results show that the contributions of spacecraft dynamics are driven by the environmental disturbances coupling with slosh dynamics. Without considering the effects of environmental disturbances-driven slosh dynamics acting on spacecraft coupling with the spacecraft dynamics may lead to the wrong results for the development of spacecraft system guidance and attitude control techniques.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-CR-203845 , NAS 1.26:203845
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-06-28
    Description: A series of electrically heated tube experiments was performed to investigate the effect of high aspect ratio on curvature heat transfer enhancement in uniformly heated rectangular cooling passages. Three hardware geometries were tested: a baseline straight aspect ratio 10 tube, an aspect ratio 1 (square) tube with a 45 deg. curve, and an aspect ratio 10 tube with a 45 deg. curve. Gaseous nitrogen with the following properties was used as the coolant: ambient inlet temperature, pressures to 8.3 MPa, wall-to-bulk temperature ratios less than two, and Reynolds numbers based on hydraulic diameter ranging from 250,000 to 1,600,000. The measured curvature enhancement factors were compared to values predicted by three previously published models which had been developed for low aspect ratio tubes. The models were shown to be valid for the high aspect ratio tube as well the low aspect ratio tube, indicating that aspect ratio had little impact on the curvature heat transfer enhancement in these tests.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-TM-107426 , NAS 1.15:107426 , E-10672
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...