ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (77)
  • Protein Conformation  (51)
  • American Association for the Advancement of Science (AAAS)  (125)
  • Nature Publishing Group
  • 2000-2004
  • 1995-1999  (125)
  • 1995  (125)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (125)
  • Nature Publishing Group
Years
  • 2000-2004
  • 1995-1999  (125)
Year
  • 1
    Publication Date: 1995-04-28
    Description: DCoH, the dimerization cofactor of hepatocyte nuclear factor-1, stimulates gene expression by associating with specific DNA binding proteins and also catalyzes the dehydration of the biopterin cofactor of phenylalanine hydroxylase. The x-ray crystal structure determined at 3 angstrom resolution reveals that DCoH forms a tetramer containing two saddle-shaped grooves that comprise likely macromolecule binding sites. Two equivalent enzyme active sites flank each saddle, suggesting that there is a spatial connection between the catalytic and binding activities. Structural similarities between the DCoH fold and nucleic acid-binding proteins argue that the saddle motif has evolved to bind diverse ligands or that DCoH unexpectedly may bind nucleic acids.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Endrizzi, J A -- Cronk, J D -- Wang, W -- Crabtree, G R -- Alber, T -- New York, N.Y. -- Science. 1995 Apr 28;268(5210):556-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley 94720-3206, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7725101" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; Gene Expression Regulation ; Hydro-Lyases/*chemistry/metabolism ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Rats ; Recombinant Fusion Proteins/chemistry/metabolism ; Transcription Factors/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1995-07-14
    Description: CD1 molecules are distantly related to the major histocompatibility complex (MHC) class I proteins. They are of unknown function. Screening random peptide phage display libraries with soluble empty mouse CD1 (mCD1) identified a peptide binding motif. It consists of three anchor positions occupied by aromatic or bulky hydrophobic amino acids. Equilibrium binding studies demonstrated that mCD1 binds peptides containing the appropriate motif with relatively high affinity. However, in contrast to classical MHC class I molecules, strong binding to mCD1 required relatively long peptides. Peptide-specific, mCD1-restricted T cell responses can be raised, which suggests that the findings are of immunological significance.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Castano, A R -- Tangri, S -- Miller, J E -- Holcombe, H R -- Jackson, M R -- Huse, W D -- Kronenberg, M -- Peterson, P A -- New York, N.Y. -- Science. 1995 Jul 14;269(5221):223-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7542403" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; *Antigen Presentation ; Antigens, CD/chemistry/*immunology/metabolism ; Antigens, CD1 ; Cell Line ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Peptides/chemistry/*immunology/metabolism ; T-Lymphocytes, Cytotoxic/*immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1995-09-01
    Description: Eukaryotic chromosomes are capped with repetitive telomere sequences that protect the ends from damage and rearrangements. Telomere repeats are synthesized by telomerase, a ribonucleic acid (RNA)-protein complex. Here, the cloning of the RNA component of human telomerase, termed hTR, is described. The template region of hTR encompasses 11 nucleotides (5'-CUAACCCUAAC) complementary to the human telomere sequence (TTAGGG)n. Germline tissues and tumor cell lines expressed more hTR than normal somatic cells and tissues, which have no detectable telomerase activity. Human cell lines that expressed hTR mutated in the template region generated the predicted mutant telomerase activity. HeLa cells transfected with an antisense hTR lost telomeric DNA and began to die after 23 to 26 doublings. Thus, human telomerase is a critical enzyme for the long-term proliferation of immortal tumor cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, J -- Funk, W D -- Wang, S S -- Weinrich, S L -- Avilion, A A -- Chiu, C P -- Adams, R R -- Chang, E -- Allsopp, R C -- Yu, J -- AG09383/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1995 Sep 1;269(5228):1236-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Geron Corporation, Menlo Park, CA 94025, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7544491" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Death ; *Cell Division ; Cell Line ; Cloning, Molecular ; DNA Nucleotidylexotransferase/antagonists & ; inhibitors/chemistry/genetics/*metabolism ; HeLa Cells ; Humans ; Molecular Sequence Data ; Oligonucleotides, Antisense/pharmacology ; Polymerase Chain Reaction ; RNA/chemistry/genetics/*metabolism ; Templates, Genetic ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1995-11-03
    Description: The human beta-globin locus control region (LCR) controls the transcription, chromatin structure, and replication timing of the entire locus. DNA replication was found to initiate in a transcription-independent manner within a region located 50 kilobases downstream of the LCR in human, mouse, and chicken cells containing the entire human beta-globin locus. However, DNA replication did not initiate within a deletion mutant locus lacking the sequences that encompass the LCR. This mutant locus replicated in the 3' to 5' direction. Thus, interactions between distantly separated sequences can be required for replication initiation, and factors mediating this interaction appear to be conserved in evolution.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Aladjem, M I -- Groudine, M -- Brody, L L -- Dieken, E S -- Fournier, R E -- Wahl, G M -- Epner, E M -- New York, N.Y. -- Science. 1995 Nov 3;270(5237):815-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Gene Expression Laboratory, Salk Institute, San Diego, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7481774" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Biological Evolution ; Cell Line ; Chickens ; *DNA Replication ; Globins/*genetics ; Humans ; Hybrid Cells ; Mice ; Molecular Sequence Data ; *Regulatory Sequences, Nucleic Acid ; Sequence Deletion ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1995-03-10
    Description: The crystal structure of the tungsten-containing aldehyde ferredoxin oxidoreductase (AOR) from Pyrococcus furiosus, a hyperthermophilic archaeon (formerly archaebacterium) that grows optimally at 100 degrees C, has been determined at 2.3 angstrom resolution by means of multiple isomorphous replacement and multiple crystal form averaging. AOR consists of two identical subunits, each containing an Fe4S4 cluster and a molybdopterin-based tungsten cofactor that is analogous to the molybdenum cofactor found in a large class of oxotransferases. Whereas the general features of the tungsten coordination in this cofactor were consistent with a previously proposed structure, each AOR subunit unexpectedly contained two molybdopterin molecules that coordinate a tungsten by a total of four sulfur ligands, and the pterin system was modified by an intramolecular cyclization that generated a three-ringed structure. In comparison to other proteins, the hyperthermophilic enzyme AOR has a relatively small solvent-exposed surface area, and a relatively large number of both ion pairs and buried atoms. These properties may contribute to the extreme thermostability of this enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chan, M K -- Mukund, S -- Kletzin, A -- Adams, M W -- Rees, D C -- 1F32 GM15006/GM/NIGMS NIH HHS/ -- GM50775/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1995 Mar 10;267(5203):1463-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Chemistry and Chemical Engineering, Pasadena, CA 91125.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7878465" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde Oxidoreductases/*chemistry/metabolism ; Amino Acid Sequence ; Archaea/*enzymology ; Binding Sites ; *Coenzymes ; Computer Graphics ; Crystallography, X-Ray ; Enzyme Stability ; Ferrous Compounds ; Metalloproteins/analysis/chemistry ; Models, Molecular ; Molecular Sequence Data ; Organometallic Compounds/analysis/*chemistry ; Oxidation-Reduction ; Protein Conformation ; Protein Structure, Secondary ; Pteridines/analysis/chemistry ; Pterins/analysis/*chemistry ; Surface Properties ; Temperature ; Tungsten/analysis/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1995-05-19
    Description: The three-dimensional structure of the complex formed by two plasma proteins, transthyretin and retinol-binding protein, was determined from x-ray diffraction data to a nominal resolution of 3.1 angstroms. One tetramer of transthyretin was bound to two molecules of retinol-binding protein. The two retinol-binding protein molecules established molecular interactions with the same transthyretin dimer, and each also made contacts with one of the other two monomers. Thus, the other two potential binding sites in a transthyretin tetramer were blocked. The amino acid residues of the retinol-binding protein that were involved in the contacts were close to the retinol-binding site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Monaco, H L -- Rizzi, M -- Coda, A -- New York, N.Y. -- Science. 1995 May 19;268(5213):1039-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, University of Pavia, Italy.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7754382" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Biopolymers ; Chickens ; Crystallography, X-Ray ; Humans ; Models, Molecular ; Molecular Sequence Data ; Prealbumin/*chemistry ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Retinol-Binding Proteins/*chemistry ; Retinol-Binding Proteins, Plasma ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1995-03-31
    Description: Members of the interleukin-6 family of cytokines bind to and activate receptors that contain a common subunit, gp130. This leads to the activation of Stat3 and Stat1, two cytoplasmic signal transducers and activators of transcription (STATs), by tyrosine phosphorylation. Serine phosphorylation of Stat3 was constitutive and was enhanced by signaling through gp130. In cells of lymphoid and neuronal origins, inhibition of serine phosphorylation prevented the formation of complexes of DNA with Stat3-Stat3 but not with Stat3-Stat1 or Stat1-Stat1 dimers. In vitro serine dephosphorylation of Stat3 also inhibited DNA binding of Stat3-Stat3. The requirement of serine phosphorylation for Stat3-Stat3.DNA complex formation was inversely correlated with the affinity of Stat3-Stat3 for the binding site. Thus, serine phosphorylation appears to enhance or to be required for the formation of stable Stat3-Stat3.DNA complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, X -- Blenis, J -- Li, H C -- Schindler, C -- Chen-Kiang, S -- CA46595/CA/NCI NIH HHS/ -- HL 21006/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1995 Mar 31;267(5206):1990-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7701321" target="_blank"〉PubMed〈/a〉
    Keywords: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine ; Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Cell Nucleus/metabolism ; Ciliary Neurotrophic Factor ; Cytoplasm/metabolism ; DNA/metabolism ; DNA-Binding Proteins/*metabolism ; Humans ; Interleukin-6/metabolism/*pharmacology ; Isoquinolines/pharmacology ; Mice ; Molecular Sequence Data ; Nerve Tissue Proteins/pharmacology ; Phosphorylation ; Piperazines/pharmacology ; *Promoter Regions, Genetic ; STAT1 Transcription Factor ; STAT3 Transcription Factor ; Serine/*metabolism ; Signal Transduction ; Threonine/metabolism ; Trans-Activators/*metabolism ; Tumor Cells, Cultured ; Tyrosine/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1995-12-15
    Description: The crystal structure of the V alpha domain of a T cell antigen receptor (TCR) was determined at a resolution of 2.2 angstroms. This structure represents an immunoglobulin topology set different from those previously described. A switch in a polypeptide strand from one beta sheet to the other enables a pair of V alpha homodimers to pack together to form a tetramer, such that the homodimers are parallel to each other and all hypervariable loops face in one direction. On the basis of the observed mode of V alpha association, a model of an (alpha beta)2 TCR tetramer can be positioned relative to the major histocompatibility complex class II (alpha beta)2 tetramer with the third hypervariable loop of V alpha over the amino-terminal portion of the antigenic peptide and the corresponding loop of V beta over its carboxyl-terminal residues. TCR dimerization that is mediated by the alpha chain may contribute to the coupling of antigen recognition to signal transduction during T cell activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fields, B A -- Ober, B -- Malchiodi, E L -- Lebedeva, M I -- Braden, B C -- Ysern, X -- Kim, J K -- Shao, X -- Ward, E S -- Mariuzza, R A -- AI31592/AI/NIAID NIH HHS/ -- GM52801/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1995 Dec 15;270(5243):1821-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8525376" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallography, X-Ray ; Humans ; Mice ; Models, Molecular ; Protein Conformation ; Protein Folding ; Receptors, Antigen, T-Cell, alpha-beta/*chemistry/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1995-11-17
    Description: The crystal structure of the aldehyde oxido-reductase (Mop) from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas has been determined at 2.25 A resolution by multiple isomorphous replacement and refined. The protein, a homodimer of 907 amino acid residues subunits, is a member of the xanthine oxidase family. The protein contains a molybdopterin cofactor (Mo-co) and two different [2Fe-2S] centers. It is folded into four domains of which the first two bind the iron sulfur centers and the last two are involved in Mo-co binding. Mo-co is a molybdenum molybdopterin cytosine dinucleotide. Molybdopterin forms a tricyclic system with the pterin bicycle annealed to a pyran ring. The molybdopterin dinucleotide is deeply buried in the protein. The cis-dithiolene group of the pyran ring binds the molybdenum, which is coordinated by three more (oxygen) ligands.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Romao, M J -- Archer, M -- Moura, I -- Moura, J J -- LeGall, J -- Engh, R -- Schneider, M -- Hof, P -- Huber, R -- New York, N.Y. -- Science. 1995 Nov 17;270(5239):1170-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Instituto de Tecnologia Quimica e Biologica, Oeiras, Portugal.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7502041" target="_blank"〉PubMed〈/a〉
    Keywords: Aldehyde Oxidoreductases/*chemistry/metabolism ; Amino Acid Sequence ; Animals ; Coenzymes/chemistry/metabolism ; Crystallization ; Crystallography, X-Ray ; Cytosine Nucleotides/chemistry/metabolism ; Desulfovibrio/*enzymology ; Drosophila melanogaster/enzymology ; Electron Transport ; Hydrogen Bonding ; Iron/chemistry ; Ligands ; Metalloproteins/chemistry/metabolism ; Molecular Sequence Data ; Molybdenum/chemistry/metabolism ; Oxidation-Reduction ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Pteridines/chemistry/metabolism ; Pterins/chemistry/metabolism ; Xanthine ; Xanthine Oxidase/*chemistry ; Xanthines/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1995-06-09
    Description: Kidney bean purple acid phosphatase (KBPAP) is an Fe(III)-Zn(II) metalloenzyme resembling the mammalian Fe(III)-Fe(II) purple acid phosphatases. The structure of the homodimeric 111-kilodalton KBPAP was determined at a resolution of 2.9 angstroms. The enzyme contains two domains in each subunit. The active site is located in the carboxyl-terminal domain at the carboxy end of two sandwiched beta alpha beta alpha beta motifs. The two metal ions are 3.1 angstroms apart and bridged monodentately by Asp164. The iron is further coordinated by Tyr167, His325, and Asp135, and the zinc by His286, His323, and Asn201. The active-site structure is consistent with previous proposals regarding the mechanism of phosphate ester hydrolysis involving nucleophilic attack on the phosphate group by an Fe(III)-coordinated hydroxide ion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strater, N -- Klabunde, T -- Tucker, P -- Witzel, H -- Krebs, B -- New York, N.Y. -- Science. 1995 Jun 9;268(5216):1489-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Anorganisch-Chemisches Institut, Universitat Munster, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7770774" target="_blank"〉PubMed〈/a〉
    Keywords: Acid Phosphatase/*chemistry/metabolism ; Binding Sites ; Computer Graphics ; Crystallography, X-Ray ; Fabaceae/enzymology ; Ferric Compounds/chemistry/metabolism ; Glycoproteins/*chemistry/metabolism ; Ligands ; Models, Molecular ; Plants, Medicinal ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Zinc/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...