ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (228)
  • Molecular Sequence Data  (211)
  • Binding Sites  (48)
  • American Association for the Advancement of Science (AAAS)  (228)
  • American Chemical Society (ACS)
  • Elsevier
  • Wiley
  • 2020-2024
  • 2015-2019
  • 1990-1994  (228)
  • 1980-1984
  • 1975-1979
  • 1935-1939
  • 1991  (228)
  • Natural Sciences in General  (228)
  • Chemistry and Pharmacology  (228)
  • Law
Collection
  • Articles  (228)
Publisher
  • American Association for the Advancement of Science (AAAS)  (228)
  • American Chemical Society (ACS)
  • Elsevier
  • Wiley
Years
  • 2020-2024
  • 2015-2019
  • 1990-1994  (228)
  • 1980-1984
  • 1975-1979
  • +
Year
Topic
  • 1
    Publication Date: 1991-09-13
    Description: Three-dimensional (3-D) structural models of RNA are essential for understanding of the cellular roles played by RNA. Such models have been obtained by a technique based on a constraint satisfaction algorithm that allows for the facile incorporation of secondary and other structural information. The program generates 3-D structures of RNA with atomic-level resolution that can be refined by numerical techniques such as energy minimization. The precision of this technique was evaluated by comparing predicted transfer RNA loop and RNA pseudoknot structures with known or consensus structures. The root-mean-square deviation (2.0 to 3.0 angstroms before minimization) between predicted and control structures reveal this system to be an effective method in modeling RNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Major, F -- Turcotte, M -- Gautheret, D -- Lapalme, G -- Fillion, E -- Cedergren, R -- New York, N.Y. -- Science. 1991 Sep 13;253(5025):1255-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departement d'Informatique et de Recherche Operationnelle, Universite de Montreal, Quebec, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1716375" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Anticodon/chemistry ; Base Sequence ; *Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA/*chemistry ; RNA, Transfer/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-03-29
    Description: Derivatives of the sunY self-splicing intron efficiently catalyzed the synthesis of complementary strand RNA by template-directed assembly of oligonucleotides. These ribozymes were separated into three short RNA fragments that formed active catalytic complexes. One of the multisubunit sunY derivatives catalyzed the synthesis of a strand of RNA complementary to one of its own subunits. These results suggest that prebiotically synthesized oligonucleotides might have been able to assemble into a complex capable of self-replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doudna, J A -- Couture, S -- Szostak, J W -- New York, N.Y. -- Science. 1991 Mar 29;251(5001):1605-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Massachusetts General Hospital, Boston 02114.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1707185" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Composition ; Base Sequence ; *Introns ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligoribonucleotides/metabolism ; RNA/*biosynthesis/genetics ; RNA Splicing ; RNA, Catalytic/*metabolism ; Templates, Genetic ; Tetrahymena/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-04-19
    Description: For self-splicing of Tetrahymena ribosomal RNA precursor, guanosine binding is required for 5' splice-site cleavage and exon ligation. Whether these two reactions use the same or different guanosine-binding sites has been debated. A double mutation in a previously identified guanosine-binding site within the intron resulted in preference for adenosine (or adenosine triphosphate) as the substrate for cleavage at the 5' splice site. However, splicing was blocked in the exon ligation step. Blockage was reversed by a change from guanine to adenine at the 3' splice site. These results indicate that a single determinant specifies nucleoside binding for both steps of splicing. Furthermore, it suggests that RNA could form an active site specific for adenosine triphosphate.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Been, M D -- Perrotta, A T -- GM-40689/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Apr 19;252(5004):434-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Duke University Medical Center, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2017681" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine/*metabolism ; Adenosine Triphosphate/pharmacology ; Animals ; Base Sequence ; Binding Sites ; Exons ; Guanosine/metabolism ; *Introns ; Magnesium/pharmacology ; Molecular Sequence Data ; Molecular Structure ; Mutagenesis ; RNA Precursors/chemistry/genetics ; *RNA Splicing ; RNA, Catalytic/metabolism ; Tetrahymena/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1991-05-31
    Description: An in vivo selection system for isolating targets of DNA binding proteins in yeast was developed and used to identify the DNA binding site for the NGFI-B protein, a member of the steroid-thyroid hormone receptor superfamily. The feasibility of the technique was verified by selecting DNA fragments that contained binding sites for GCN4, a well-characterized yeast transcriptional activator. The DNA binding domain of NGFI-B, expressed as part of a LexA-NGFI-B-GAL4 chimeric activator, was then used to isolate a rat genomic DNA fragment that contained an NGFI-B binding site. The NGFI-B response element (NBRE) is similar to but functionally distinct from elements recognized by the estrogen and thyroid hormone receptors and the hormone receptor-like proteins COUP-TF, CF1, and H-2RIIBP. Cotransfection experiments in mammalian cells demonstrated that NGFI-B can activate transcription from the NBRE with or without its putative ligand binding domain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, T E -- Fahrner, T J -- Johnston, M -- Milbrandt, J -- NS01018/NS/NINDS NIH HHS/ -- P01 CA49712/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1991 May 31;252(5010):1296-300.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1925541" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Proteins/metabolism ; Base Sequence ; Binding Sites ; Cloning, Molecular ; DNA, Fungal/*metabolism ; DNA-Binding Proteins/genetics/*metabolism/pharmacology ; Fungal Proteins/metabolism ; Molecular Sequence Data ; Nuclear Receptor Subfamily 4, Group A, Member 1 ; Plasmids ; *Protein Kinases ; Rats ; Receptors, Cytoplasmic and Nuclear ; Receptors, Steroid ; Repressor Proteins ; Saccharomyces cerevisiae/*genetics ; *Saccharomyces cerevisiae Proteins ; *Serine Endopeptidases ; Transcription Factors/genetics/*metabolism/pharmacology ; Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1991-12-20
    Description: Rap1A is a low molecular weight guanosine triphosphate (GTP)-binding protein in human neutrophil membranes whose cellular function is unknown. Rap1A was found to form stoichiometric complexes with the cytochrome b558 component of the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system. The (guanosine-5'-O-(3-thiotriphosphate) (GTP-gamma-S)-bound form of Rap1A bound more tightly to cytochrome b558 than did the guanosine diphosphate-bound form. No complex formation was observed between cytochrome b558 and H-Ras-GTP-gamma-S or Rap1A-GTP-gamma-S that had been heat-inactivated, nor between Rap1A-GTP-gamma-S and hydrophobic proteins serving as controls. Complex formation between Rap1A-GTP-gamma-S and cytochrome b558 was inhibited by phosphorylation of Rap1A with cyclic adenosine monophosphate (cAMP)-dependent protein kinase. These observations suggest that Rap1A may participate in the structure or regulation of the NADPH oxidase system and that this function of the Rap1A protein may be altered by phosphorylation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bokoch, G M -- Quilliam, L A -- Bohl, B P -- Jesaitis, A J -- Quinn, M T -- 5RO126711/PHS HHS/ -- GM39434/GM/NIGMS NIH HHS/ -- GM44428/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1991 Dec 20;254(5039):1794-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1763330" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Chromatography, Gel ; Cytochrome b Group/isolation & purification/*metabolism ; GTP-Binding Proteins/antagonists & inhibitors/isolation & ; purification/*metabolism ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism ; Humans ; Kinetics ; Macromolecular Substances ; NADH, NADPH Oxidoreductases/*metabolism ; NADPH Oxidase ; Neutrophils/enzymology ; Phosphorylation ; Protein Binding ; Protein Kinase C/metabolism ; Proto-Oncogene Proteins/metabolism ; Recombinant Proteins/antagonists & inhibitors/isolation & purification/metabolism ; rap GTP-Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1991-12-30
    Description: Two de novo insertions of truncated L1 elements into the factor VIII gene on the X chromosome have been identified that produced hemophilia A. A full-length L1 element that is the likely progenitor of one of these insertions was isolated by its sequence identity to the factor VIII insertion. This L1 element contains two open-reading frames and is one of at least four alleles of a locus on chromosome 22 that has been occupied by an L1 element for at least 6 million years.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dombroski, B A -- Mathias, S L -- Nanthakumar, E -- Scott, A F -- Kazazian, H H Jr -- New York, N.Y. -- Science. 1991 Dec 20;254(5039):1805-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1662412" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Base Sequence ; Chromosomes, Human, Pair 22 ; *DNA Transposable Elements ; Factor VIII/*genetics ; Genome, Human ; Hemophilia A/*genetics ; Humans ; Molecular Sequence Data ; Open Reading Frames ; Restriction Mapping ; Sequence Homology, Nucleic Acid ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-03-22
    Description: A cellular DNA binding protein, LBP-1, sequentially interacts in a concentration-dependent manner with two sites that surround the transcriptional initiation site of the human immunodeficiency virus type 1 (HIV-1) promoter. Although sequences in the downstream site (site I) were found to enhance transcription, purified LBP-1 specifically repressed transcription in vitro by binding to the upstream site (site II), which overlaps the TATA element. The binding of human TATA binding factor (TFIID) to the promoter before LBP-1 blocked repression, suggesting that repression resulted from an inhibition of TFIID binding to the TATA element. Furthermore, mutations that eliminated binding to site II both prevented repression in vitro and increased HIV-1 transcription in stably transformed cells. These findings suggest that a cellular factor regulates HIV-1 transcription in a manner that is characteristic of bacterial repressors and that this factor could be important in HIV-1 latency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kato, H -- Horikoshi, M -- Roeder, R G -- AI27397/AI/NIAID NIH HHS/ -- CA42567/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1991 Mar 22;251(5000):1476-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Biochemistry and Molecular Biology, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2006421" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; DNA-Binding Proteins/genetics ; *Gene Expression Regulation, Viral ; HIV-1/*genetics ; Molecular Sequence Data ; Promoter Regions, Genetic ; Repressor Proteins/*genetics ; Transcription Factor TFIID ; Transcription Factors/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1991-11-08
    Description: Voltage-gated sodium channels are responsible for generation of action potentials in excitable cells. Activation of protein kinase C slows inactivation of sodium channels and reduces peak sodium currents. Phosphorylation of a single residue, serine 1506, that is located in the conserved intracellular loop between domains III and IV and is involved in inactivation of the sodium channel, is required for both modulatory effects. Mutant sodium channels lacking this phosphorylation site have normal functional properties in unstimulated cells but do not respond to activation of protein kinase C. Phosphorylation of this conserved site in sodium channel alpha subunits may regulate electrical activity in a wide range of excitable cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉West, J W -- Numann, R -- Murphy, B J -- Scheuer, T -- Catterall, W A -- GM07270/GM/NIGMS NIH HHS/ -- NS15751/NS/NINDS NIH HHS/ -- NS25704/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1991 Nov 8;254(5033):866-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Washington, Seattle 98195.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1658937" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Membrane/physiology ; Cells, Cultured ; Membrane Potentials ; Models, Structural ; Molecular Sequence Data ; Phosphorylation ; Protein Conformation ; Protein Kinase C/*metabolism ; Sodium Channels/metabolism/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1991-05-03
    Description: Although bladder cancers are very common, little is known about their molecular pathogenesis. In this study, invasive bladder cancers were evaluated for the presence of gene mutations in the p53 suppressor gene. Of 18 tumors evaluated, 11 (61 percent) were found to have genetic alterations of p53. The alterations included ten point mutations resulting in single amino acid substitutions, and one 24-base pair deletion. In all but one case, the mutations were associated with chromosome 17p allelic deletions, leaving the cells with only mutant forms of the p53 gene products. Through the use of the polymerase chain reaction and oligomer-specific hybridization, p53 mutations were identified in 1 to 7 percent of the cells within the urine sediment of each of three patients tested. The p53 mutations are the first genetic alterations demonstrated to occur in a high proportion of primary invasive bladder cancers. Detection of such mutations ex vivo has clinical implications for monitoring individuals whose tumor cells are shed extracorporeally.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sidransky, D -- Von Eschenbach, A -- Tsai, Y C -- Jones, P -- Summerhayes, I -- Marshall, F -- Paul, M -- Green, P -- Hamilton, S R -- Frost, P -- CA09071/CA/NCI NIH HHS/ -- CA43460/CA/NCI NIH HHS/ -- CA49758/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1991 May 3;252(5006):706-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncology, Johns Hopkins University, Baltimore, MD 21231.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2024123" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Base Sequence ; Chromosome Deletion ; Chromosomes, Human, Pair 17 ; *Genes, p53 ; Humans ; Molecular Sequence Data ; *Mutation ; Nucleic Acid Hybridization ; Oligonucleotide Probes ; Polymerase Chain Reaction ; Urinary Bladder Neoplasms/*genetics/urine ; Urine/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1991-02-01
    Description: Rhodopsin and the visual pigments are a distinct group within the family of G-protein-linked receptors in that they have a covalently bound ligand, the 11-cis-retinal chromophore, whereas all of the other receptors bind their agonists through noncovalent interactions. The retinal chromophore in rhodopsin is bound by means of a protonated Schiff base linkage to the epsilon-amino group of Lys-296. Two rhodopsin mutants have been constructed, K296G and K296A, in which the covalent linkage to the chromophore is removed. Both mutants form a pigment with an absorption spectrum close to that of the wild type when reconstituted with the Schiff base of an n-alkylamine and 11-cis-retinal. In addition, the pigment formed from K296G and the n-propylamine Schiff base of 11-cis-retinal was found to activate transducin in a light-dependent manner, with 30 to 40% of the specific activity measured for the wild-type protein. It appears that the covalent bond is not essential for binding of the chromophore or for catalytic activation of transducin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhukovsky, E A -- Robinson, P R -- Oprian, D D -- 5T32 GM07596-11/GM/NIGMS NIH HHS/ -- EY07965/EY/NEI NIH HHS/ -- R01 EY007965/EY/NEI NIH HHS/ -- S07 RR07044/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1991 Feb 1;251(4993):558-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate Department of Biochemistry, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1990431" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Guanosine 5'-O-(3-Thiotriphosphate)/metabolism ; Kinetics ; Mutagenesis, Site-Directed ; Protein Binding ; Retinaldehyde/*metabolism ; Rhodopsin/genetics/*metabolism/radiation effects ; Schiff Bases ; Spectrophotometry ; Transducin/*metabolism/radiation effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...