ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Protein Conformation  (36)
  • American Association for the Advancement of Science (AAAS)  (36)
  • Annual Reviews
  • 1985-1989  (36)
  • 1980-1984
  • 1960-1964
  • 1989  (36)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (36)
  • Annual Reviews
Years
  • 1985-1989  (36)
  • 1980-1984
  • 1960-1964
Year
  • 1
    Publication Date: 1989-01-13
    Description: The chemical synthesis of biologically active peptides and polypeptides can be achieved by using a convergent strategy of condensing protected peptide segments to form the desired molecule. An oxime support increases the ease with which intermediate protected peptides can be synthesized and makes this approach useful for the synthesis of peptides in which secondary structural elements have been redesigned. The extension of these methods to large peptides and proteins, for which folding of secondary structures into functional tertiary structures is critical, is discussed. Models of apolipoproteins, the homeo domain from the developmental protein encoded by the Antennapedia gene of Drosophila, a part of the Cro repressor, and the enzyme ribonuclease T1 and a structural analog have been synthesized with this method.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaiser, E T -- Mihara, H -- Laforet, G A -- Kelly, J W -- Walters, L -- Findeis, M A -- Sasaki, T -- DK07825/DK/NIDDK NIH HHS/ -- GM12054/GM/NIGMS NIH HHS/ -- HL-186577/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1989 Jan 13;243(4888):187-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Bioorganic Chemistry and Biochemistry, Rockefeller University, New York, NY 10021.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2492114" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Apolipoprotein A-I ; Apolipoproteins A/chemical synthesis ; Humans ; Indicators and Reagents ; Lipoproteins, HDL/chemical synthesis ; Peptides/*chemical synthesis ; Protein Conformation ; Proteins/*chemical synthesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1989-06-30
    Description: Complementary DNA's that encode an adenylyl cyclase were isolated from a bovine brain library. Most of the deduced amino acid sequence of 1134 residues is divisible into two alternating sets of hydrophobic and hydrophilic domains. Each of the two large hydrophobic domains appears to contain six transmembrane spans. Each of the two large hydrophilic domains contains a sequence that is homologous to a single cytoplasmic domain of several guanylyl cyclases; these sequences may represent nucleotide binding sites. An unexpected topographical resemblance between adenylyl cyclase and various plasma membrane channels and transporters was observed. This structural complexity suggests possible, unappreciated functions for this important enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krupinski, J -- Coussen, F -- Bakalyar, H A -- Tang, W J -- Feinstein, P G -- Orth, K -- Slaughter, C -- Reed, R R -- Gilman, A G -- CA16519/CA/NCI NIH HHS/ -- GM12230/GM/NIGMS NIH HHS/ -- GM34497/GM/NIGMS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1989 Jun 30;244(4912):1558-64.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas 75235.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2472670" target="_blank"〉PubMed〈/a〉
    Keywords: *Adenylyl Cyclases/genetics/isolation & purification ; Amino Acid Sequence ; Animals ; Base Sequence ; Brain/enzymology ; *Carrier Proteins ; Cattle ; Cell Line ; Cloning, Molecular ; DNA/genetics ; Electrophoresis, Polyacrylamide Gel ; *Ion Channels ; Membrane Proteins ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Protein Conformation ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-31
    Description: C/EBP is a rat liver nuclear protein capable of sequence-specific interaction with DNA. The DNA sequences to which C/EBP binds in vitro have been implicated in the control of messenger RNA synthesis. It has therefore been predicted that C/EBP will play a role in regulating gene expression in mammalian cells. The region of the C/EBP polypeptide required for direct interaction with DNA has been identified and shown to bear amino acid sequence relatedness with the product of the myc, fos, and jun proto-oncogenes. The arrangement of these related amino acid sequences led to the prediction of a new structural motif, termed the "leucine zipper," that plays a role in facilitating sequence-specific interaction between protein and DNA. Experimental tests now provide support for the leucine zipper hypothesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Landschulz, W H -- Johnson, P F -- McKnight, S L -- New York, N.Y. -- Science. 1989 Mar 31;243(4899):1681-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2494700" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; CCAAT-Enhancer-Binding Proteins ; Cross-Linking Reagents ; DNA/*metabolism ; Glutaral ; Leucine ; Liver/*analysis ; Macromolecular Substances ; Molecular Weight ; Mutation ; Nuclear Proteins/genetics/*metabolism ; Protein Conformation ; Rats ; Repetitive Sequences, Nucleic Acid ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1989-08-11
    Description: The three-dimensional solution structure of a zinc finger nucleic acid binding motif has been determined by nuclear magnetic resonance (NMR) spectroscopy. Spectra of a synthetic peptide corresponding to a single zinc finger from the Xenopus protein Xfin yielded distance and dihedral angle constraints that were used to generate structures from distance geometry and restrained molecular dynamics calculations. The zinc finger is an independently folded domain with a compact globular structure in which the zinc atom is bound by two cysteine and two histidine ligands. The polypeptide backbone fold consists of a well-defined helix, starting as alpha and ending as 3(10) helix, packed against two beta strands that are arranged in a hairpin structure. A high density of basic and polar amino acid side chains on the exposed face of the helix are probably involved in DNA binding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, M S -- Gippert, G P -- Soman, K V -- Case, D A -- Wright, P E -- GM 36643/GM/NIGMS NIH HHS/ -- GM38794/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Aug 11;245(4918):635-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2503871" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cysteine/metabolism ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; Histidine/metabolism ; Hydrogen Bonding ; Magnetic Resonance Spectroscopy ; Metalloproteins/*metabolism ; Molecular Sequence Data ; Molecular Structure ; Protein Conformation ; Solutions ; Thermodynamics ; Xenopus ; Zinc/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-11-17
    Description: Rana esculenta tropomyosin assembles in vivo into a coiled-coil alpha helix from two different subunits, alpha and beta, which are present in about equal concentrations. Although the native composition is alpha beta, a mixture of equal amounts of alpha alpha and beta beta is produced by refolding dissociated alpha and beta at low temperature in vitro. Refolding kinetics showed that alpha alpha formed first and was relatively stable with regard to chain exchange below approximately 20 degrees C. Equilibration of the homodimer mixture at 30 degrees and 34 degrees C for long times, however, resulted in the formation of the native alpha beta molecule by chain exchange. Biosynthesis of alpha beta from separate alpha and beta genes is, therefore, favored thermodynamically over the formation of homodimers, and biological factors need not be invoked to explain the preferred native alpha beta composition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lehrer, S S -- Qian, Y D -- Hvidt, S -- HL22461/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1989 Nov 17;246(4932):926-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Muscle Research, Boston Biomedical Research Institute, MA 02114.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2814515" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Kinetics ; Macromolecular Substances ; Muscle, Smooth/metabolism ; Muscles/metabolism ; Myocardium/metabolism ; Protein Conformation ; Protein Denaturation ; Protein Processing, Post-Translational ; Rana esculenta ; Thermodynamics ; Tropomyosin/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1989-08-11
    Description: The products of the nuclear oncogenes fos and jun are known to form heterodimers that bind to DNA and modulate transcription. Both proteins contain a leucine zipper that is important for heterodimer formation. Peptides corresponding to these leucine zippers were synthesized. When mixed, these peptides preferentially form heterodimers over homodimers by at least 1000-fold. Both homodimers and the heterodimer are parallel alpha helices. The leucine zipper regions from Fos and Jun therefore correspond to autonomous helical dimerization sites that are likely to be short coiled coils, and these regions are sufficient to determine the specificity of interaction between Fos and Jun. The Fos leucine zipper forms a relatively unstable homodimer. Instability of homodimers provides a thermodynamic driving force for preferential heterodimer formation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Shea, E K -- Rutkowski, R -- Stafford, W F 3rd -- Kim, P S -- RR05711/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1989 Aug 11;245(4918):646-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2503872" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Circular Dichroism ; *DNA-Binding Proteins ; Disulfides ; *Leucine ; Macromolecular Substances ; Molecular Sequence Data ; Peptide Fragments/chemical synthesis ; Protein Conformation ; *Proto-Oncogene Proteins ; Proto-Oncogene Proteins c-fos ; Proto-Oncogene Proteins c-jun ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1989-01-06
    Description: The temperature dependences of the reduction potentials (E degrees') of wild-type human myoglobin (Mb) and three site-directed mutants have been measured by the use of thin-layer spectroelectrochemistry. Residue Val68, which is in van der Waals contact with the heme in Mb, has been replaced by Glu, Asp, and Asn. The changes in E degrees' and the standard entropy (delta S degrees') and enthalpy (delta H degrees') of reduction in the mutant proteins were determined relative to values for wild type; the change in E degrees' at 25 degrees C was about -200 millivolts for the Glu and Asp mutants, and about -80 millivolts for the Asn mutant. At pH 7.0, reduction of Fe(III) to Fe(II) in the Glu and Asp mutants is accompanied by uptake of a proton by the protein. These studies demonstrate that Mb can tolerate substitution of a buried hydrophobic group by potentially charged and polar residues and that such amino acid replacements can lead to substantial changes in the redox thermodynamics of the protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Varadarajan, R -- Zewert, T E -- Gray, H B -- Boxer, S G -- DK 19038/DK/NIDDK NIH HHS/ -- GM 27738/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Jan 6;243(4887):69-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2563171" target="_blank"〉PubMed〈/a〉
    Keywords: Asparagine ; Aspartic Acid ; Glutamates ; Glutamic Acid ; Heme/metabolism ; Humans ; Mutation ; Myoglobin/*metabolism ; Oxidation-Reduction ; Protein Conformation ; Recombinant Proteins/*metabolism ; Thermodynamics ; Valine
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-07-21
    Description: In the Table of Contents of the 24 March 1989 issue, the title of the report "Histamine is an intracellular messenger mediating platelet aggregation" by S. P. Saxena et al. appearing on page 1596 was incorrectly printed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tong, L -- Milburn, M V -- de Vos, A M -- Kim, S H -- New York, N.Y. -- Science. 1989 Jul 21;245(4915):244.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2665078" target="_blank"〉PubMed〈/a〉
    Keywords: Humans ; Molecular Structure ; Protein Conformation ; *Proto-Oncogene Proteins ; Proto-Oncogene Proteins p21(ras)
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1989-01-06
    Description: The high affinity of the noncovalent interaction between biotin and streptavidin forms the basis for many diagnostic assays that require the formation of an irreversible and specific linkage between biological macromolecules. Comparison of the refined crystal structures of apo and a streptavidin:biotin complex shows that the high affinity results from several factors. These factors include the formation of multiple hydrogen bonds and van der Waals interactions between biotin and the protein, together with the ordering of surface polypeptide loops that bury the biotin in the protein interior. Structural alterations at the biotin binding site produce quaternary changes in the streptavidin tetramer. These changes apparently propagate through cooperative deformations in the twisted beta sheets that link tetramer subunits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weber, P C -- Ohlendorf, D H -- Wendoloski, J J -- Salemme, F R -- New York, N.Y. -- Science. 1989 Jan 6;243(4887):85-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Central Research & Development Department, E. I. du Pont de Neumours and Company, Inc., Wilmington, DE 19880-0228.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2911722" target="_blank"〉PubMed〈/a〉
    Keywords: Bacterial Proteins/*metabolism ; Binding Sites ; Biotin/*metabolism ; Macromolecular Substances ; Models, Molecular ; Protein Conformation ; Streptavidin ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1989-07-28
    Description: Two members of the hsp70 family, termed hsc70 and BiP, have been implicated in promoting protein folding and assembly processes in the cytoplasm and the lumen of the endoplasmic reticulum, respectively. Short hydrophilic (8 to 25 residues) synthetic peptides have now been tested as possible mimics of polypeptide chain substrates to help define an enzymatic basis for these activities. Both BiP and hsc70 have specific peptide binding sites. Peptide binding elicits hydrolysis of adenosine triphosphate, with the subsequent release of bound peptide.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flynn, G C -- Chappell, T G -- Rothman, J E -- GM-25662/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Jul 28;245(4916):385-90.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, Lewis Thomas Laboratory, Princeton University, NJ 08544.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2756425" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Sequence ; Animals ; Carrier Proteins/*metabolism ; Cattle ; Endoplasmic Reticulum/metabolism ; Heat-Shock Proteins/*metabolism ; Hydrolysis ; Microsomes, Liver/metabolism ; *Molecular Chaperones ; Molecular Sequence Data ; Peptides/*metabolism ; Protein Binding ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-01-06
    Description: Plasminogen activator therapy for acute myocardial infarction has become standard medical practice. Bleeding complications, however, limit the utility of the currently available agents. This article reviews how the tools of molecular biology and protein engineering are being used to develop safer and more effective plasminogen activators.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Haber, E -- Quertermous, T -- Matsueda, G R -- Runge, M S -- HL-19259/HL/NHLBI NIH HHS/ -- HL-28015/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1989 Jan 6;243(4887):51-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiac Unit, Massachusetts General Hospital, Boston 02114.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2492113" target="_blank"〉PubMed〈/a〉
    Keywords: Humans ; Myocardial Infarction/*drug therapy ; Plasminogen Activators/*therapeutic use ; Protein Conformation ; Recombinant Proteins/therapeutic use ; Streptokinase/therapeutic use ; Tissue Plasminogen Activator/therapeutic use ; Urokinase-Type Plasminogen Activator/therapeutic use
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-01-27
    Description: Recently, a hypothetical structure called a leucine zipper was proposed that defines a new class of DNA binding proteins. The common feature of these proteins is a region spanning approximately 30 amino acids that contains a periodic repeat of leucines every seven residues. A peptide corresponding to the leucine zipper region of the yeast transcriptional activator GCN4 was synthesized and characterized. This peptide associates in the micromolar concentration range to form a very stable dimer of alpha helices with a parallel orientation. Although some features of the leucine zipper model are supported by our experimental data, the peptide has the characteristics of a coiled coil.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Shea, E K -- Rutkowski, R -- Kim, P S -- New York, N.Y. -- Science. 1989 Jan 27;243(4890):538-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Cambridge, MA 02142.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2911757" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chromatography, High Pressure Liquid ; Circular Dichroism ; DNA/metabolism ; *DNA-Binding Proteins ; Disulfides ; *Fungal Proteins ; *Leucine ; Macromolecular Substances ; Molecular Sequence Data ; Peptide Fragments ; Protein Conformation ; *Protein Kinases ; Repetitive Sequences, Nucleic Acid ; *Saccharomyces cerevisiae Proteins ; *Transcription Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-08-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marx, J L -- New York, N.Y. -- Science. 1989 Aug 11;245(4918):598.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2669127" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Endopeptidases ; HIV/*enzymology ; HIV Protease ; Molecular Structure ; *Protease Inhibitors ; Protein Conformation ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-03
    Description: Passage of proteins across membranes during export from their site of synthesis to their final destination is mediated by leader peptides that paradoxically exhibit a unity of function in spite of a diversity of sequence. These leader peptides act in at least two stages of the export process: at entry into the pathway and subsequently during translocation across the membrane. How selectivity is imposed on the system in the absence of a consensus among the sequences of leader peptides is the main issue discussed here.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Randall, L L -- Hardy, S J -- GM29798/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Mar 3;243(4895):1156-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biochemistry/Biophysics Program, Washington State University, Pullman 99164.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2646712" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Biological Transport ; Cell Membrane/*metabolism ; Escherichia coli/metabolism ; *Models, Biological ; Protein Conformation ; Protein Precursors/metabolism ; Protein Sorting Signals/*physiology ; Proteins/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-08-04
    Description: Membrane-exposed residues are more hydrophobic than buried interior residues in the transmembrane regions of the photosynthetic reaction center from Rhodobacter sphaeroides. This hydrophobic organization is opposite to that of water-soluble proteins. The relative polarities of interior and surface residues of membrane and water soluble proteins are not simply reversed, however. The hydrophobicities of interior residues of both membrane and water-soluble proteins are comparable, whereas the bilayer-exposed residues of membrane proteins are more hydrophobic than the interior residues, and the aqueous-exposed residues of water-soluble proteins are more hydrophilic than the interior residues. A method of sequence analysis is described, based on the periodicity of residue replacement in homologous sequences, that extends conclusions derived from the known atomic structure of the reaction center to the more extensive database of putative transmembrane helical sequences.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rees, D C -- DeAntonio, L -- Eisenberg, D -- GM31299/GM/NIGMS NIH HHS/ -- GM39558/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Aug 4;245(4917):510-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2667138" target="_blank"〉PubMed〈/a〉
    Keywords: *Bacterial Proteins ; Cell Membrane/analysis ; Chemistry, Physical ; Fourier Analysis ; *Membrane Proteins ; Photosynthetic Reaction Center Complex Proteins ; Physicochemical Phenomena ; Protein Conformation ; Rhodobacter sphaeroides/*ultrastructure ; Solubility ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1989-09-08
    Description: Complementary DNAs for the beta subunit of the dihydropyridine-sensitive calcium channel of rabbit skeletal muscle were isolated on the basis of peptide sequences derived from the purified protein. The deduced primary structure is without homology to other known protein sequences and is consistent with the beta subunit being a peripheral membrane protein associated with the cytoplasmic aspect of the sarcolemma. The protein contains sites that might be expected to be preferentially phosphorylated by protein kinase C and guanosine 3',5'-monophosphate-dependent protein kinase. A messenger RNA for this protein appears to be expressed in brain.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruth, P -- Rohrkasten, A -- Biel, M -- Bosse, E -- Regulla, S -- Meyer, H E -- Flockerzi, V -- Hofmann, F -- New York, N.Y. -- Science. 1989 Sep 8;245(4922):1115-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut fur Physiologische Chemie, Medizinische Fakultat, Homburg/Saar, Federal Republic of Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2549640" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Calcium Channel Blockers/*metabolism/pharmacology ; Calcium Channels/drug effects/*metabolism ; Dihydropyridines/*metabolism/pharmacology ; Molecular Sequence Data ; Muscles/*analysis ; Phosphorylation ; Protein Conformation ; RNA, Messenger/isolation & purification ; Rabbits ; Receptors, Nicotinic/drug effects/*isolation & purification/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-11-17
    Description: The proposal that the absorption maximum of the visual pigments is governed by interaction of the 11-cis-retinal chromophore with charged carboxylic acid side chains in the membrane-embedded regions of the proteins has been tested by mutating five Asp and Glu residues thought to be buried in rhodopsin. Changing Glu113 to Gln causes a dramatic shift in the absorption maximum from 500 nanometers to 380 nanometers, a decrease in the pKa (acidity constant) of the protonated Schiff base of the chromophore to about 6, and a greatly increased reactivity with hydroxylamine. Thus Glu113 appears to be the counterion to the protonated Schiff base. Wavelength modulation in visual pigments apparently is not governed by electrostatic interaction with carboxylate residues, other than the counterion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhukovsky, E A -- Oprian, D D -- 5T32 GM07596-11/GM/NIGMS NIH HHS/ -- EY07965/EY/NEI NIH HHS/ -- R01 EY007965/EY/NEI NIH HHS/ -- S07 RR07044/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1989 Nov 17;246(4932):928-30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, Brandeis University, Waltham, MA 02254.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2573154" target="_blank"〉PubMed〈/a〉
    Keywords: *Aspartic Acid ; Glutamates ; Glutamic Acid ; Hydrogen-Ion Concentration ; Hydroxylamine ; Hydroxylamines/pharmacology ; Models, Molecular ; Mutation ; Protein Conformation ; Retinal Pigments/*metabolism ; Retinaldehyde/*metabolism ; Retinoids/*metabolism ; Rhodopsin/genetics/*metabolism ; Schiff Bases ; Spectrophotometry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 1989-11-17
    Description: The zona pellucida surrounding mouse oocytes is an extracellular matrix composed of three sulfated glycoproteins, ZP1, ZP2, and ZP3. It has been demonstrated that a monoclonal antibody to ZP3 injected into female mice inhibits fertilization by binding to the zona pellucida and blocking sperm penetration. A complementary DNA encoding ZP3 was randomly cleaved and 200- to 1000-base pair fragments were cloned into the expression vector lambda gt11. This epitope library was screened with the aforementioned contraceptive antibody, and the positive clones were used to map the seven-amino acid epitope recognized by the antibody. Female mice were immunized with a synthetic peptide containing this B cell epitope coupled to a carrier protein to provide helper T cell epitopes. The resultant circulating antibodies to ZP3 bound to the zona pellucida of immunized animals and produced long-lasting contraception. The lack of ovarian histopathology or cellular cytotoxicity among the immunized animals may be because of the absence of zona pellucida T cell epitopes in this vaccine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Millar, S E -- Chamow, S M -- Baur, A W -- Oliver, C -- Robey, F -- Dean, J -- New York, N.Y. -- Science. 1989 Nov 17;246(4932):935-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2479101" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens/immunology ; Base Sequence ; Cloning, Molecular ; *Contraception ; *Contraception, Immunologic ; DNA/genetics ; *Egg Proteins ; Epitopes/analysis ; Female ; Glycoproteins/genetics/*immunology ; Male ; *Membrane Glycoproteins ; Mice ; Molecular Sequence Data ; Ovum/*physiology ; Protein Conformation ; RNA, Messenger/genetics ; *Receptors, Cell Surface ; *Vaccination ; Zona Pellucida/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 1989-12-01
    Description: The structure of a complex between a peptide inhibitor with the sequence N-acetyl-Thr-Ile-Nle-psi[CH2-NH]-Nle-Gln-Arg.amide (Nle, norleucine) with chemically synthesized HIV-1 (human immunodeficiency virus 1) protease was determined at 2.3 A resolution (R factor of 0.176). Despite the symmetric nature of the unliganded enzyme, the asymmetric inhibitor lies in a single orientation and makes extensive interactions at the interface between the two subunits of the homodimeric protein. Compared with the unliganded enzyme, the protein molecule underwent substantial changes, particularly in an extended region corresponding to the "flaps" (residues 35 to 57 in each chain), where backbone movements as large as 7 A are observed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Miller, M -- Schneider, J -- Sathyanarayana, B K -- Toth, M V -- Marshall, G R -- Clawson, L -- Selk, L -- Kent, S B -- Wlodawer, A -- A-127302/PHS HHS/ -- N01-C0-74101/PHS HHS/ -- SM-24483/SM/CMHS SAMHSA HHS/ -- New York, N.Y. -- Science. 1989 Dec 1;246(4934):1149-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NCI-Frederick Cancer Research Facility, BRI-Basic Research Program, MD 21701.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2686029" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Chemistry, Physical ; Crystallization ; Endopeptidases/*metabolism ; Gene Products, gag/metabolism ; HIV Protease ; HIV-1/*enzymology ; Hydrogen Bonding ; Molecular Sequence Data ; Molecular Structure ; Oligopeptides/*metabolism ; Physicochemical Phenomena ; Protease Inhibitors/*metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 1989-08-04
    Description: The crystal structure of glycogen phosphorylase a complexed with its substrates, orthophosphate and maltopentaose, has been determined and refined at a resolution of 2.8 angstroms. With oligosaccaride bound at the glycogen storage site, the phosphate ion binds at the catalytic site and causes the regulatory and catalytic domains to separate with the loss of stabilizing interactions between them. Homotropic cooperativity between the active sites of the allosteric dimer results from rearrangements in isologous contacts between symmetry-related helices in the subunit interface. The conformational changes in the core of the interface are correlated with those observed on covalent activation by phosphorylation at Ser14 (phosphorylase b----a).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goldsmith, E J -- Sprang, S R -- Hamlin, R -- Xuong, N H -- Fletterick, R J -- DK31507-05/DK/NIDDK NIH HHS/ -- GM00085-05/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Aug 4;245(4917):528-32.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2756432" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Site ; Amino Acid Sequence ; Binding Sites ; Catalysis ; Crystallization ; Crystallography ; Enzyme Activation ; Glucosephosphates/metabolism ; Glycogen/metabolism ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Structure ; Oligosaccharides ; Phosphates/metabolism ; Phosphorylase a/*metabolism ; Phosphorylases/*metabolism ; Protein Conformation ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-02-03
    Description: The dynamic character of phospholipid aggregates limits conventional structural studies to the determination of average molecular features. In order to develop more detailed descriptions of phospholipid structure for comparison with experiment, the molecular dynamics of a hydrated lysophosphatidylethanolamine (LPE) micelle, incorporating 85 LPE and 1591 water molecules, have been simulated. Comparison of the initial and equilibrated micelles shows substantial differences both in LPE hydrocarbon chain conformation and polar head-group-solvent interactions. Although these changes produce only subtle effects on the averaged structural properties of the system, the alterations in hydrocarbon chain packing and head-group solvation appear to mimic a polymorphic pretransition from a spherical toward a cylindrical micelle structure.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wendoloski, J J -- Kimatian, S J -- Schutt, C E -- Salemme, F R -- New York, N.Y. -- Science. 1989 Feb 3;243(4891):636-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉E. I. du Pont de Nemours & Company, Central Research and Development Department, Wilmington, DE 19880.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2916118" target="_blank"〉PubMed〈/a〉
    Keywords: *Colloids ; *Computer Simulation ; Crystallization ; Fatty Acids ; Glycerol ; Hydrogen Bonding ; Lipid Bilayers ; *Lysophospholipids ; *Micelles ; Molecular Structure ; Protein Conformation ; Solutions ; Solvents
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 1989-03-10
    Description: The x-ray crystal structure of recombinant human renin has been determined. Molecular dynamics techniques that included crystallographic data as a restraint were used to improve an initial model based on porcine pepsinogen. The present agreement factor for data from 8.0 to 2.5 angstroms (A) is 0.236. Some of the surface loops are poorly determined, and these disordered regions border a 30 A wide solvent channel. Comparison of renin with other aspartyl proteinases shows that, although the structural cores and active sites are highly conserved, surface residues, some of which are critical for specificity, vary greatly (up to 10A). Knowledge of the actual structure, as opposed to the use of models based on related enzymes, should facilitate the design of renin inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sielecki, A R -- Hayakawa, K -- Fujinaga, M -- Murphy, M E -- Fraser, M -- Muir, A K -- Carilli, C T -- Lewicki, J A -- Baxter, J D -- James, M N -- New York, N.Y. -- Science. 1989 Mar 10;243(4896):1346-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Alberta, Edmonton, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2493678" target="_blank"〉PubMed〈/a〉
    Keywords: Aspartic Acid Endopeptidases ; Cardiovascular Agents/pharmacology ; Endopeptidases/metabolism ; Humans ; Models, Molecular ; Pepsin A/metabolism ; Protein Conformation ; *Recombinant Proteins/metabolism ; *Renin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 1989-05-19
    Description: The gramicidin A transmembrane channel is believed to consist of two head-to-head beta helices. Computer-generated models were used to formulate the structure of new single-chain channel molecules based on the gramicidin motif. The chemical synthesis of two tartaric acid-gramicidin A hybrids and single-channel analyses of their conducting properties are reported. These studies illustrate the rational design and synthesis of long-lived channels with tunable conductance properties and provide support for current molecular models of the natural (dimeric) gramicidin channel.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stankovic, C J -- Heinemann, S H -- Delfino, J M -- Sigworth, F J -- Schreiber, S L -- NS-21501/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1989 May 19;244(4906):813-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2471263" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Computer Simulation ; Electric Conductivity ; Gramicidin/*metabolism ; Ion Channels/*metabolism ; Macromolecular Substances ; Molecular Sequence Data ; Molecular Structure ; Protein Conformation ; Protein Multimerization ; Tartrates/*metabolism ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 1989-03-31
    Description: The protein products of the fos and jun proto-oncogenes form a heterodimeric complex that participates in a stable high affinity interaction with DNA elements containing AP-1 binding sites. The effects of deletions and point mutations in Fos and Jun on protein complex formation and DNA binding have been examined. The data suggest that Fos and Jun dimerize via a parallel interaction of helical domains containing a heptad repeat of leucine residues (the leucine zipper). Dimerization is required for DNA binding and results in the appropriate juxtaposition of basic amino acid regions from Fos and Jun, both of which are required for association with DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gentz, R -- Rauscher, F J 3rd -- Abate, C -- Curran, T -- New York, N.Y. -- Science. 1989 Mar 31;243(4899):1695-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Roche Institute of Molecular Biology, Nutley, NJ 07110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2494702" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cross-Linking Reagents ; DNA/*metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Glutaral ; Immunosorbent Techniques ; *Leucine ; Macromolecular Substances ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Proto-Oncogene Proteins/genetics/*metabolism ; Proto-Oncogene Proteins c-fos ; Proto-Oncogene Proteins c-jun ; Rats ; Repetitive Sequences, Nucleic Acid ; Structure-Activity Relationship ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-11-17
    Description: C/EBP is a sequence-specific DNA binding protein that regulates gene expression in certain mammalian cells. The region of the C/EBP polypeptide required for specific recognition of DNA is related in amino acid sequence to other regulatory proteins, including the Fos and Jun transforming proteins. It has been proposed that these proteins bind DNA via a bipartite structural motif, consisting of a dimerization interface termed the "leucine zipper" and a DNA contact surface termed the "basic region." An evaluation of the properties of conserved amino acids within the basic region of 11 deduced protein sequences, coupled with the observation that they are located at an invariant distance from the leucine zipper, has led to the formulation of a "scissors-grip" model for DNA binding. The architectural features of this model are well suited for interaction with directly abutted, dyadsymmetric DNA sequences. Data supportive of the model were obtained with chemical probes of protein: DNA complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vinson, C R -- Sigler, P B -- McKnight, S L -- New York, N.Y. -- Science. 1989 Nov 17;246(4932):911-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Research Laboratories, Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2683088" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; *Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides ; Protein Conformation ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 1989-02-17
    Description: The human immunodeficiency virus (HIV-1) encodes a protease that is essential for viral replication and is a member of the aspartic protease family. The recently determined three-dimensional structure of the related protease from Rous sarcoma virus has been used to model the smaller HIV-1 dimer. The active site has been analyzed by comparison to the structure of the aspartic protease, rhizopuspepsin, complexed with a peptide inhibitor. The HIV-1 protease is predicted to interact with seven residues of the protein substrate. This information can be used to design protease inhibitors and possible antiviral drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weber, I T -- Miller, M -- Jaskolski, M -- Leis, J -- Skalka, A M -- Wlodawer, A -- CA-06927/CA/NCI NIH HHS/ -- CA38046/CA/NCI NIH HHS/ -- N01-CO-74101/CO/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1989 Feb 17;243(4893):928-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Crystallography Laboratory, NCI-Frederick Cancer Research Facility, MD 21701.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2537531" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Avian Sarcoma Viruses/enzymology ; Binding Sites ; HIV-1/*enzymology ; Hydrogen Bonding ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Peptide Hydrolases/*metabolism ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-04-21
    Description: Sodium channels from diverse excitable membranes are very similar in their structure, yet surprisingly heterogeneous in their behavior. The processes that govern the opening and closing of sodium channels have appeared difficult to describe in terms of a single, unifying molecular scheme. Now cardiac sodium channels have been analyzed by high-resolution single-channel recordings over a broad range of potentials. Channels exhibited both complex and simple gating patterns at different voltages. Such behavioral diversity can be explained by the balance between two molecular transitions whereby channels can exit the open state.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yue, D T -- Lawrence, J H -- Marban, E -- HL01874/HL/NHLBI NIH HHS/ -- HL36957/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 1989 Apr 21;244(4902):349-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2540529" target="_blank"〉PubMed〈/a〉
    Keywords: Electric Conductivity ; Heart/*physiology ; Membrane Potentials ; Neurons/physiology ; Probability ; Protein Conformation ; Sodium Channels/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 1989-08-11
    Description: The rational design of drugs that can inhibit the action of viral proteases depends on obtaining accurate structures of these enzymes. The crystal structure of chemically synthesized HIV-1 protease has been determined at 2.8 angstrom resolution (R factor of 0.184) with the use of a model based on the Rous sarcoma virus protease structure. In this enzymatically active protein, the cysteines were replaced by alpha-amino-n-butyric acid, a nongenetically coded amino acid. This structure, in which all 99 amino acids were located, differs in several important details from that reported previously by others. The interface between the identical subunits forming the active protease dimer is composed of four well-ordered beta strands from both the amino and carboxyl termini and residues 86 to 94 have a helical conformation. The observed arrangement of the dimer interface suggests possible designs for dimerization inhibitors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wlodawer, A -- Miller, M -- Jaskolski, M -- Sathyanarayana, B K -- Baldwin, E -- Weber, I T -- Selk, L M -- Clawson, L -- Schneider, J -- Kent, S B -- N01-CO-74101/CO/NCI NIH HHS/ -- New York, N.Y. -- Science. 1989 Aug 11;245(4918):616-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Crystallography Laboratory, NCI-Frederick Cancer Research Facility, MD 21701.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2548279" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Aspartic Acid Endopeptidases ; Avian Sarcoma Viruses/enzymology ; Binding Sites ; Crystallization ; *Endopeptidases/chemical synthesis ; HIV Protease ; HIV-1/*enzymology ; Hydrogen Bonding ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Molecular Structure ; Protein Conformation ; Solutions ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 1989-07-14
    Description: Nearly 20 percent of the packaged RNA in bean-pod mottle virus (BPMV) binds to the capsid interior in a symmetric fashion and is clearly visible in the electron density map. The RNA displaying icosahedral symmetry is single-stranded with well-defined polarity and stereochemical properties. Interactions with protein are dominated by nonbonding forces with few specific contacts. The tertiary and quaternary structures of the BPMV capsid proteins are similar to those observed in animal picornaviruses, supporting the close relation between plant comoviruses and animal picornaviruses established by previous biological studies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Z G -- Stauffacher, C -- Li, Y -- Schmidt, T -- Bomu, W -- Kamer, G -- Shanks, M -- Lomonossoff, G -- Johnson, J E -- AI18764/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1989 Jul 14;245(4914):154-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2749253" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Capsid/*metabolism/ultrastructure ; Crystallography ; Electron Probe Microanalysis ; Electrophoresis, Polyacrylamide Gel ; Macromolecular Substances ; Molecular Sequence Data ; Mosaic Viruses/*analysis/genetics/ultrastructure ; Plant Viruses/*analysis/genetics/ultrastructure ; Protein Conformation ; RNA, Viral/*metabolism/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-02-10
    Description: As the originator of the oxygen in our atmosphere, the photosynthetic water-splitting enzyme of chloroplasts is vital for aerobic life on the earth. It has a manganese cluster at its active site, but it is poorly understood at the molecular level. Polarized synchrotron radiation was used to examine the x-ray absorption of manganese in oriented chloroplasts. The manganese site, in the "resting" (S1) state, is an asymmetric cluster, which probably contains four manganese atoms, with interatomic separations of 2.7 and 3.3 angstroms; the vector formed by the 3.3-angstrom manganese pair is oriented perpendicular to the membrane plane. Comparisons with model compounds suggest that the cluster contains bridging oxide or hydroxide ligands connecting the manganese atoms, perhaps with carboxylate bridges connecting the 3.3-angstrom manganese pair.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉George, G N -- Prince, R C -- Cramer, S P -- New York, N.Y. -- Science. 1989 Feb 10;243(4892):789-91.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉EXXON Research and Engineering Company, Annandale, NJ 08801.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2916124" target="_blank"〉PubMed〈/a〉
    Keywords: Chloroplasts/*ultrastructure ; *Manganese ; Particle Accelerators ; *Photosynthesis ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-02-03
    Description: The question of how the amino acid sequence of a protein specifies its three-dimensional structure remains to be answered. Proteins are so large and complex that it is difficult to discern the features in their sequences that contribute to their structural stability and function. One approach to this problem is de novo design of model proteins, much simpler than their natural counterparts, yet containing sufficient information in their sequences to specify a given function (for example, folding in aqueous solution, folding in membranes, or formation of ion channels). Designed proteins provide simple model systems for understanding protein structure and function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DeGrado, W F -- Wasserman, Z R -- Lear, J D -- New York, N.Y. -- Science. 1989 Feb 3;243(4891):622-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉E. I. du Pont de Nemours & Company, Central Research and Development Department, Wilmington, DE 19898.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2464850" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Ion Channels ; Macromolecular Substances ; Models, Molecular ; Protein Conformation ; *Proteins ; Solubility ; Structure-Activity Relationship ; Tropomyosin ; Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-03-31
    Description: Uncoated recA-DNA complexes were imaged with the scanning tunneling microscope (STM). The images, which reveal the right-handed helical structure of the complexes with subunits clearly resolved, are comparable in quality to STM images of metal-coated specimens. Possible conduction mechanisms that allow STM imaging of biological macromolecules are discussed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Amrein, M -- Durr, R -- Stasiak, A -- Gross, H -- Travaglini, G -- New York, N.Y. -- Science. 1989 Mar 31;243(4899):1708-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Cell Biology, Swiss Federal Institute of Technology, Zurich, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2928803" target="_blank"〉PubMed〈/a〉
    Keywords: Acetates ; Acetic Acid ; Adsorption ; Aluminum Silicates ; DNA/*metabolism ; Electrochemistry ; Macromolecular Substances ; Magnesium ; Magnesium Chloride ; *Microscopy, Electron ; Molecular Structure ; Protein Conformation ; Rec A Recombinases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-02-17
    Description: Mutant flies in which the gene coding for the Shaker potassium channel is deleted still have potassium currents similar to those coded by the Shaker gene. This suggests the presence of a family of Shaker-like genes in Drosophila. By using a Shaker complementary DNA probe and low-stringency hybridization, three additional family members have now been isolated, Shab, Shaw, and Shal. The Shaker family genes are not clustered in the genome. The deduced proteins of Shab, Shaw, and Shal have high homology to the Shaker protein; the sequence identity of the integral membrane portions is greater than 50 percent. These genes are organized similarly to Shaker in that only a single homology domain containing six presumed membrane-spanning segments common to all voltage-gated ion channels is coded by each messenger RNA. Thus, potassium channel diversity could result from an extended gene family, as well as from alternate splicing of the Shaker primary transcript.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Butler, A -- Wei, A G -- Baker, K -- Salkoff, L -- 1 RO1 NS24785-01/NS/NINDS NIH HHS/ -- GMO 7200/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Feb 17;243(4893):943-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2493160" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Blotting, Northern ; Carrier Proteins/*genetics ; Drosophila Proteins ; Drosophila melanogaster/*genetics ; *Genes ; Molecular Sequence Data ; *Multigene Family ; Potassium Channels/*physiology ; Protein Conformation ; RNA, Messenger/genetics ; Shab Potassium Channels
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 1989-06-09
    Description: The three-dimensional structure of human serum albumin has been solved at 6.0 angstrom (A) resolution by the method of multiple isomorphous replacement. Crystals were grown from solutions of polyethylene glycol in the infrequently observed space group P42(1)2 (unit cell constants a = b = 186.5 +/- 0.5 A and c = 81.0 +/- 0.5 A) and diffracted x-rays to lattice d-spacings of less than 2.9 A. The electron density maps are of high quality and revealed the structure as a predominantly alpha-helical globin protein in which the course of the polypeptide can be traced. The binding loci of several organic compounds have been determined.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Carter, D C -- He, X M -- Munson, S H -- Twigg, P D -- Gernert, K M -- Broom, M B -- Miller, T Y -- New York, N.Y. -- Science. 1989 Jun 9;244(4909):1195-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Aeronautics and Space Administration, Space Sciences Laboratory, Marshall Space Flight Center, AL 35812.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2727704" target="_blank"〉PubMed〈/a〉
    Keywords: Humans ; *Models, Molecular ; Polyethylene Glycols ; Protein Conformation ; *Serum Albumin ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 1989-03-10
    Description: A strategy, termed homolog-scanning mutagenesis, was used to identify the epitopes on human growth hormone (hGH) for binding to its cloned liver receptor and eight different monoclonal antibodies (Mab's). Segments of sequences (7 to 30 residues long) that were derived from homologous hormones known not to bind to the hGH receptor or Mab's, were systematically substituted throughout the hGH gene to produce a set of 17 chimeric hormones. Each Mab or receptor was categorized by a particular subset of mutant hormones was categorized by a particular subset of mutant hormones that disrupted binding. Each subset of the disruptive mutations mapped within close proximity on a three-dimensional model of hGH, even though the residues changed within each subset were usually distant in the primary sequence. The mapping analysis correctly predicted those Mab's which could or could not block binding of the receptor to hGH and further suggested (along with other data) that the folding of these chimeric hormones is like that of HGH. By this analysis, three discontinuous polypeptide determinants in hGH--the loop between residues 54 and 74, the central portion of helix 4 to the carboxyl terminus, and to a lesser extent the amino-terminal region of helix 1--modulate binding to the liver receptor. Homolog-scanning mutagenesis should be of general use in identifying sequences that cause functional variation among homologous proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cunningham, B C -- Jhurani, P -- Ng, P -- Wells, J A -- New York, N.Y. -- Science. 1989 Mar 10;243(4896):1330-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomolecular Chemistry, Genentech, Inc., South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2466339" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies, Monoclonal ; Chimera ; Cloning, Molecular ; Epitopes/*analysis ; Genes ; Growth Hormone/*genetics/immunology/metabolism ; Humans ; Liver/metabolism ; Molecular Sequence Data ; *Mutation ; Protein Conformation ; Receptors, Somatotropin/*genetics/metabolism ; Sequence Homology, Nucleic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 1989-06-02
    Description: A strategy, called alanine-scanning mutagenesis, was used to identify specific side chains in human growth hormone (hGH) that strongly modulate binding to the hGH receptor cloned from human liver. Single alanine mutations (62 in total) were introduced at every residue contained within the three discontinuous segments of hGH (residues 2 to 19, 54 to 74, and 167 to 191) that have been implicated in receptor recognition. The alanine scan revealed a cluster of a dozen large side chains that when mutated to alanine each showed more than a four times lower binding affinity to the hGH receptor. Many of these residues that promote binding to the hGH receptor are altered in homologs of hGH (such as placental lactogens and prolactins) that do not bind tightly to the hGH receptor. The overall folding of these mutant proteins was indistinguishable from that of the wild-type hGH, as determined by strong cross-reactivities with seven different conformationally sensitive monoclonal antibodies. The alanine scan also identified at least one side chain, Glu174, that hindered binding because when it was mutated to alanine the receptor affinity increased by more than a factor of four.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cunningham, B C -- Wells, J A -- New York, N.Y. -- Science. 1989 Jun 2;244(4908):1081-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomolecular Chemistry, Genentech, South San Francisco, CA 94080.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2471267" target="_blank"〉PubMed〈/a〉
    Keywords: *Alanine ; Amino Acid Sequence ; Antibodies, Monoclonal ; Disulfides ; Epitopes/immunology ; Growth Hormone/genetics/immunology/*metabolism ; Humans ; Hydrogen Bonding ; Molecular Sequence Data ; Molecular Structure ; *Mutation ; Placental Lactogen ; Prolactin ; Protein Conformation ; Receptors, Somatotropin/*metabolism ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...