ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (203)
  • Mutation  (203)
  • American Association for the Advancement of Science (AAAS)  (203)
  • American Geophysical Union
  • American Meteorological Society
  • American Physical Society (APS)
  • Springer Nature
  • 2000-2004
  • 1995-1999  (195)
  • 1985-1989
  • 1980-1984  (8)
  • 1960-1964
  • 1955-1959
  • 1935-1939
  • 1930-1934
  • 2012
  • 2011
  • 1999  (112)
  • 1995  (83)
  • 1982  (8)
  • Natural Sciences in General  (203)
  • Geosciences
Collection
  • Articles  (203)
Publisher
  • American Association for the Advancement of Science (AAAS)  (203)
  • American Geophysical Union
  • American Meteorological Society
  • American Physical Society (APS)
  • Springer Nature
  • +
Years
  • 2000-2004
  • 1995-1999  (195)
  • 1985-1989
  • 1980-1984  (8)
  • 1960-1964
  • +
Year
Topic
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-05
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, E -- New York, N.Y. -- Science. 1998 Dec 11;282(5396):1972-4.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9874643" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/cytology/*genetics/physiology ; Cell Lineage ; Chromosome Mapping ; DNA, Helminth/chemistry/genetics ; Evolution, Molecular ; Gene Expression Regulation ; *Genes, Helminth ; Genetic Techniques ; *Genome ; Humans ; Mutation ; *Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-05-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Landick, R -- New York, N.Y. -- Science. 1999 Apr 23;284(5414):598-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA. landick@macc.wisc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10328742" target="_blank"〉PubMed〈/a〉
    Keywords: Base Pairing ; Binding Sites ; DNA/chemistry/*metabolism ; DNA-Directed RNA Polymerases/genetics/*metabolism ; Escherichia coli/enzymology/genetics ; Gene Expression Regulation ; Humans ; Models, Genetic ; Mutation ; Nucleic Acid Conformation ; Oligodeoxyribonucleotides, Antisense/chemistry/metabolism ; RNA, Messenger/chemistry/*metabolism ; *Terminator Regions, Genetic ; *Transcription, Genetic ; Viral Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-05-21
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hagmann, M -- New York, N.Y. -- Science. 1999 Apr 30;284(5415):723, 725.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10336390" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; Breast Neoplasms/*genetics/pathology ; *Disease Models, Animal ; Female ; *Genes, BRCA1 ; Genes, p53 ; Humans ; Mammary Glands, Animal/pathology ; Mammary Neoplasms, Animal/*genetics/pathology ; Mice ; Mice, Knockout ; Mice, Transgenic ; Mutation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-11-05
    Description: The Brca1 (breast cancer gene 1) tumor suppressor protein is phosphorylated in response to DNA damage. Results from this study indicate that the checkpoint protein kinase ATM (mutated in ataxia telangiectasia) was required for phosphorylation of Brca1 in response to ionizing radiation. ATM resides in a complex with Brca1 and phosphorylated Brca1 in vivo and in vitro in a region that contains clusters of serine-glutamine residues. Phosphorylation of this domain appears to be functionally important because a mutated Brca1 protein lacking two phosphorylation sites failed to rescue the radiation hypersensitivity of a Brca1-deficient cell line. Thus, phosphorylation of Brca1 by the checkpoint kinase ATM may be critical for proper responses to DNA double-strand breaks and may provide a molecular explanation for the role of ATM in breast cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cortez, D -- Wang, Y -- Qin, J -- Elledge, S J -- GM44664/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Nov 5;286(5442):1162-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Verna and Mars McLean Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10550055" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Ataxia Telangiectasia/genetics ; Ataxia Telangiectasia Mutated Proteins ; BRCA1 Protein/*metabolism ; Breast Neoplasms/genetics ; Cell Cycle Proteins ; Cell Line ; *DNA Damage ; *DNA Repair ; DNA, Complementary ; DNA-Binding Proteins ; Female ; Gamma Rays ; Genes, BRCA1 ; Genetic Predisposition to Disease ; HeLa Cells ; Heterozygote ; Humans ; Molecular Sequence Data ; Mutation ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Tumor Suppressor Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-05-21
    Description: Ran, a small guanosine triphosphatase, is suggested to have additional functions beyond its well-characterized role in nuclear trafficking. Guanosine triphosphate-bound Ran, but not guanosine diphosphate-bound Ran, stimulated polymerization of astral microtubules from centrosomes assembled on Xenopus sperm. Moreover, a Ran allele with a mutation in the effector domain (RanL43E) induced the formation of microtubule asters and spindle assembly, in the absence of sperm nuclei, in a gammaTuRC (gamma-tubulin ring complex)- and XMAP215 (Xenopus microtubule associated protein)-dependent manner. Therefore, Ran could be a key signaling molecule regulating microtubule polymerization during mitosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilde, A -- Zheng, Y -- GM56312-01/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 May 21;284(5418):1359-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Carnegie Institution of Washington, Department of Embryology, Baltimore, MD 21210, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10334991" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Extracts ; Cell Nucleus/metabolism ; Centrosome/physiology ; Dimethyl Sulfoxide/pharmacology ; Dyneins/physiology ; GTP Phosphohydrolases/genetics/*metabolism ; Guanosine Diphosphate/metabolism ; Guanosine Triphosphate/*metabolism ; Male ; Microtubule-Associated Proteins/metabolism ; Microtubules/*metabolism/ultrastructure ; Mutation ; Nuclear Proteins/analysis/genetics/*metabolism/pharmacology ; Ovum ; Recombinant Fusion Proteins/metabolism/pharmacology ; Sperm Head/physiology ; Spindle Apparatus/chemistry/*metabolism/ultrastructure ; Tubulin/analysis/metabolism ; Xenopus ; *Xenopus Proteins ; ran GTP-Binding Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1999-12-22
    Description: The SGS1 gene of the yeast Saccharomyces cerevisiae encodes a DNA helicase with homology to the human Bloom's syndrome gene BLM and the Werner's syndrome gene WRN. The SRS2 gene of yeast also encodes a DNA helicase. Simultaneous deletion of SGS1 and SRS2 is lethal in yeast. Here, using a conditional mutation of SGS1, it is shown that DNA replication and RNA polymerase I transcription are drastically inhibited in the srs2Delta sgs1-ts strain at the restrictive temperature. Thus, SGS1 and SRS2 function in DNA replication and RNA polymerase I transcription. These functions may contribute to the various defects observed in Werner's and Bloom's syndromes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, S K -- Johnson, R E -- Yu, S L -- Prakash, L -- Prakash, S -- CA80882/CA/NCI NIH HHS/ -- GM19261/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1999 Dec 17;286(5448):2339-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, 6.104 Medical Research Building, 11th and Mechanic Streets, Galveston, TX 77555-1061, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10600744" target="_blank"〉PubMed〈/a〉
    Keywords: Bloom Syndrome/genetics ; Codon ; DNA Helicases/genetics/*physiology ; *DNA Replication ; DNA, Fungal/biosynthesis ; Fungal Proteins/genetics/*physiology ; Gene Deletion ; Genes, Fungal ; Humans ; Mutation ; RNA Polymerase I/metabolism ; RNA Polymerase II/metabolism ; RNA Polymerase III/metabolism ; RNA, Fungal/biosynthesis ; RNA, Messenger/biosynthesis/genetics ; RNA, Ribosomal/biosynthesis ; RNA, Transfer, Amino Acid-Specific/biosynthesis ; RecQ Helicases ; Saccharomyces cerevisiae/*genetics/metabolism ; *Saccharomyces cerevisiae Proteins ; *Transcription, Genetic ; Werner Syndrome/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1999-10-16
    Description: Dense genetic maps of human, mouse, and rat genomes that are based on coding genes and on microsatellite and single-nucleotide polymorphism markers have been complemented by precise gene homolog alignment with moderate-resolution maps of livestock, companion animals, and additional mammal species. Comparative genetic assessment expands the utility of these maps in gene discovery, in functional genomics, and in tracking the evolutionary forces that sculpted the genome organization of modern mammalian species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Brien, S J -- Menotti-Raymond, M -- Murphy, W J -- Nash, W G -- Wienberg, J -- Stanyon, R -- Copeland, N G -- Jenkins, N A -- Womack, J E -- Marshall Graves, J A -- New York, N.Y. -- Science. 1999 Oct 15;286(5439):458-62, 479-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD 21702-1201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10521336" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Domestic/genetics ; Base Sequence ; *Chromosome Mapping ; *Evolution, Molecular ; Genetic Markers ; *Genome ; *Genome, Human ; Humans ; Mammals/*genetics ; Mutation ; *Phylogeny ; Rodentia/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1999-08-28
    Description: Class II transactivator (CIITA) is a global transcriptional coactivator of human leukocyte antigen-D (HLA-D) genes. CIITA contains motifs similar to guanosine triphosphate (GTP)-binding proteins. This report shows that CIITA binds GTP, and mutations in these motifs decrease its GTP-binding and transactivation activity. Substitution of these motifs with analogous sequences from Ras restores CIITA function. CIITA exhibits little GTPase activity, yet mutations in CIITA that confer GTPase activity reduce transcriptional activity. GTP binding by CIITA correlates with nuclear import. Thus, unlike other GTP-binding proteins, CIITA is involved in transcriptional activation that uses GTP binding to facilitate its own nuclear import.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Harton, J A -- Cressman, D E -- Chin, K C -- Der, C J -- Ting, J P -- AI29564/AI/NIAID NIH HHS/ -- AI41751/AI/NIAID NIH HHS/ -- AI45580/AI/NIAID NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1999 Aug 27;285(5432):1402-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10464099" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Animals ; Binding Sites ; COS Cells ; Cell Line ; Cell Nucleus/*metabolism ; GTP-Binding Proteins/chemistry/genetics/*metabolism ; *Genes, MHC Class II ; Guanosine Triphosphate/*metabolism ; HLA-DR Antigens/genetics ; Humans ; Mutation ; *Nuclear Proteins ; Promoter Regions, Genetic ; Temperature ; Trans-Activators/chemistry/genetics/*metabolism ; Transcription Factors/metabolism ; *Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-07-31
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wong, V -- Goodenough, D A -- New York, N.Y. -- Science. 1999 Jul 2;285(5424):62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10428705" target="_blank"〉PubMed〈/a〉
    Keywords: Calcium Channels/metabolism ; Cell Membrane/metabolism/ultrastructure ; Claudins ; Cloning, Molecular ; Humans ; Ion Channels ; Ion Transport ; Kidney Diseases/genetics/*metabolism ; Kidney Tubules/*metabolism/ultrastructure ; Lipid Bilayers/metabolism ; Magnesium/blood/*metabolism ; Magnesium Deficiency/genetics/*metabolism ; Membrane Proteins/genetics/*physiology ; Mutation ; Tight Junctions/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1999-04-09
    Description: Imprinted genes display parent-of-origin-dependent monoallelic expression that apparently regulates complex mammalian traits, including growth and behavior. The Peg3 gene is expressed in embryos and the adult brain from the paternal allele only. A mutation in the Peg3 gene resulted in growth retardation, as well as a striking impairment of maternal behavior that frequently resulted in death of the offspring. This result may be partly due to defective neuronal connectivity, as well as reduced oxytocin neurons in the hypothalamus, because mutant mothers were deficient in milk ejection. This study provides further insights on the evolution of epigenetic regulation of imprinted gene dosage in modulating mammalian growth and behavior.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, L -- Keverne, E B -- Aparicio, S A -- Ishino, F -- Barton, S C -- Surani, M A -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 1999 Apr 9;284(5412):330-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome CRC Institute of Cancer and Developmental Biology, and Physiological Laboratory, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10195900" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Animals, Newborn ; Brain/metabolism ; Crosses, Genetic ; Female ; Gene Expression ; Gene Targeting ; *Genomic Imprinting ; *Growth ; Hypothalamus/cytology/metabolism ; Kruppel-Like Transcription Factors ; Lactation ; Male ; *Maternal Behavior ; Mice ; Mutation ; Neural Pathways ; Neurons/metabolism ; Oxytocin/metabolism ; Phenotype ; *Protein Kinases ; Proteins/genetics/*physiology ; *Transcription Factors ; *Weight Gain
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...