ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (11,753)
  • Oxford University Press  (11,753)
  • 2010-2014  (10,347)
  • 1980-1984  (1,406)
  • 1975-1979
  • 1950-1954
  • 2014  (10,347)
  • 1980  (1,406)
  • Biology  (11,491)
  • Electrical Engineering, Measurement and Control Technology  (262)
Collection
  • Articles  (11,753)
Years
  • 2010-2014  (10,347)
  • 1980-1984  (1,406)
  • 1975-1979
  • 1950-1954
Year
  • 1
    Publication Date: 2014-12-13
    Description: Admixture mapping has been enormously resourceful in identifying genetic variations linked to phenotypes, adaptation, and diseases. In this study through analysis of copy number variable regions (CNVRs), we report extensive restructuring in the genomes of the recently admixed African-Indian population (OG-W-IP) that inhabits a highly saline environment in Western India. The study included subjects from OG-W-IP (OG), five different Indian and three HapMap populations that were genotyped using Affymetrix version 6.0 arrays. Copy number variations (CNVs) detected using Birdsuite were used to define CNVRs. Population structure with respect to CNVRs was delineated using random forest approach. OG genomes have a surprising excess of CNVs in comparison to other studied populations. Individual ancestry proportions computed using STRUCTURE also reveals a unique genetic component in OGs. Population structure analysis with CNV genotypes indicates OG to be distant from both the African and Indian ancestral populations. Interestingly, it shows genetic proximity with respect to CNVs to only one Indian population IE-W-LP4, which also happens to reside in the same geographical region. We also observe a significant enrichment of molecular processes related to ion binding and receptor activity in genes encompassing OG-specific CNVRs. Our results suggest that retention of CNVRs from ancestral natives and de novo acquisition of CNVRs could accelerate the process of adaptation especially in an extreme environment. Additionally, this population would be enormously useful for dissecting genes and delineating the involvement of CNVs in salt adaptation.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-17
    Description: The advent in high-throughput-sequencing (HTS) technologies has revolutionized conventional biodiversity research by enabling parallel capture of DNA sequences possessing species-level diagnosis. However, polymerase chain reaction (PCR)-based implementation is biased by the efficiency of primer binding across lineages of organisms. A PCR-free HTS approach will alleviate this artefact and significantly improve upon the multi-locus method utilizing full mitogenomes. Here we developed a novel multiplex sequencing and assembly pipeline allowing for simultaneous acquisition of full mitogenomes from pooled animals without DNA enrichment or amplification. By concatenating assemblies from three de novo assemblers, we obtained high-quality mitogenomes for all 49 pooled taxa, with 36 species 〉15 kb and the remaining 〉10 kb, including 20 complete mitogenomes and nearly all protein coding genes (99.6%). The assembly quality was carefully validated with Sanger sequences, reference genomes and conservativeness of protein coding genes across taxa. The new method was effective even for closely related taxa, e.g. three Drosophila spp., demonstrating its broad utility for biodiversity research and mito-phylogenomics. Finally, the in silico simulation showed that by recruiting multiple mito-loci, taxon detection was improved at a fixed sequencing depth. Combined, these results demonstrate the plausibility of a multi-locus mito-metagenomics approach as the next phase of the current single-locus metabarcoding method.
    Keywords: Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-17
    Description: The efficacy and the mutation spectrum of genome editing methods can vary substantially depending on the targeted sequence. A simple, quick assay to accurately characterize and quantify the induced mutations is therefore needed. Here we present TIDE, a method for this purpose that requires only a pair of PCR reactions and two standard capillary sequencing runs. The sequence traces are then analyzed by a specially developed decomposition algorithm that identifies the major induced mutations in the projected editing site and accurately determines their frequency in a cell population. This method is cost-effective and quick, and it provides much more detailed information than current enzyme-based assays. An interactive web tool for automated decomposition of the sequence traces is available. TIDE greatly facilitates the testing and rational design of genome editing strategies.
    Keywords: Targeted gene modification
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-17
    Description: NMR chemical shift predictions based on empirical methods are nowadays indispensable tools during resonance assignment and 3D structure calculation of proteins. However, owing to the very limited statistical data basis, such methods are still in their infancy in the field of nucleic acids, especially when non-canonical structures and nucleic acid complexes are considered. Here, we present an ab initio approach for predicting proton chemical shifts of arbitrary nucleic acid structures based on state-of-the-art fragment-based quantum chemical calculations. We tested our prediction method on a diverse set of nucleic acid structures including double-stranded DNA, hairpins, DNA/protein complexes and chemically-modified DNA. Overall, our quantum chemical calculations yield highly/very accurate predictions with mean absolute deviations of 0.3–0.6 ppm and correlation coefficients ( r 2 ) usually above 0.9. This will allow for identifying misassignments and validating 3D structures. Furthermore, our calculations reveal that chemical shifts of protons involved in hydrogen bonding are predicted significantly less accurately. This is in part caused by insufficient inclusion of solvation effects. However, it also points toward shortcomings of current force fields used for structure determination of nucleic acids. Our quantum chemical calculations could therefore provide input for force field optimization.
    Keywords: Nucleic acid structure, Protein-nucleic acid interaction
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-17
    Description: Bicyclic oxazaphospholidine monomers were used to prepare a series of phosphorothioate (PS)-modified gapmer antisense oligonucleotides (ASOs) with control of the chirality of each of the PS linkages within the 10-base gap. The stereoselectivity was determined to be 98% for each coupling. The objective of this work was to study how PS chirality influences biophysical and biological properties of the ASO including binding affinity ( T m ), nuclease stability, activity in vitro and in vivo , RNase H activation and cleavage patterns (both human and E. coli ) in a gapmer context. Compounds that had nine or more Sp-linkages in the gap were found to be poorly active in vitro , while compounds with uniform Rp-gaps exhibited activity very similar to that of the stereo-random parent ASOs. Conversely, when tested in vivo , the full Rp-gap compound was found to be quickly metabolized resulting in low activity. A total of 31 ASOs were prepared with control of the PS chirally of each linkage within the gap in an attempt to identify favorable Rp/Sp positions. We conclude that a mix of Rp and Sp is required to achieve a balance between good activity and nuclease stability.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-12-17
    Description: In an isogenic cell population, phenotypic heterogeneity among individual cells is common and critical for survival of the population under different environment conditions. DNA modification is an important epigenetic factor that can regulate phenotypic heterogeneity. The single molecule real-time (SMRT) sequencing technology provides a unique platform for detecting a wide range of DNA modifications, including N6-methyladenine (6-mA), N4-methylcytosine (4-mC) and 5-methylcytosine (5-mC). Here we present qDNAmod, a novel bioinformatic tool for genome-wide quantitative profiling of intercellular heterogeneity of DNA modification from SMRT sequencing data. It is capable of estimating proportion of isogenic haploid cells, in which the same loci of the genome are differentially modified. We tested the reliability of qDNAmod with the SMRT sequencing data of Streptococcus pneumoniae strain ST556. qDNAmod detected extensive intercellular heterogeneity of DNA methylation (6-mA) in a clonal population of ST556. Subsequent biochemical analyses revealed that the recognition sequences of two type I restriction–modification (R-M) systems are responsible for the intercellular heterogeneity of DNA methylation initially identified by qDNAmod. qDNAmod thus represents a valuable tool for studying intercellular phenotypic heterogeneity from genome-wide DNA modification.
    Keywords: Nucleic acid modification, Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-17
    Description: Combinatorial transcription factor (TF) binding is essential for cell-type-specific gene regulation. However, much remains to be learned about the mechanisms of TF interactions, including to what extent constrained spacing and orientation of interacting TFs are critical for regulatory element activity. To examine the relative prevalence of the ‘enhanceosome’ versus the ‘TF collective’ model of combinatorial TF binding, a comprehensive analysis of TF binding site sequences in large scale datasets is necessary. We developed a motif-pair discovery pipeline to identify motif co-occurrences with preferential distance(s) between motifs in TF-bound regions. Utilizing a compendium of 289 mouse haematopoietic TF ChIP-seq datasets, we demonstrate that haematopoietic-related motif-pairs commonly occur with highly conserved constrained spacing and orientation between motifs. Furthermore, motif clustering revealed specific associations for both heterotypic and homotypic motif-pairs with particular haematopoietic cell types. We also showed that disrupting the spacing between motif-pairs significantly affects transcriptional activity in a well-known motif-pair—E-box and GATA, and in two previously unknown motif-pairs with constrained spacing—Ets and Homeobox as well as Ets and E-box. In this study, we provide evidence for widespread sequence-specific TF pair interaction with DNA that conforms to the ‘enhanceosome’ model, and furthermore identify associations between specific haematopoietic cell-types and motif-pairs.
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-12-17
    Description: In silico tools have been developed to predict variants that may have an impact on pre-mRNA splicing. The major limitation of the application of these tools to basic research and clinical practice is the difficulty in interpreting the output. Most tools only predict potential splice sites given a DNA sequence without measuring splicing signal changes caused by a variant. Another limitation is the lack of large-scale evaluation studies of these tools. We compared eight in silico tools on 2959 single nucleotide variants within splicing consensus regions (scSNVs) using receiver operating characteristic analysis. The Position Weight Matrix model and MaxEntScan outperformed other methods. Two ensemble learning methods, adaptive boosting and random forests, were used to construct models that take advantage of individual methods. Both models further improved prediction, with outputs of directly interpretable prediction scores. We applied our ensemble scores to scSNVs from the Catalogue of Somatic Mutations in Cancer database. Analysis showed that predicted splice-altering scSNVs are enriched in recurrent scSNVs and known cancer genes. We pre-computed our ensemble scores for all potential scSNVs across the human genome, providing a whole genome level resource for identifying splice-altering scSNVs discovered from large-scale sequencing studies.
    Keywords: RNA characterisation and manipulation, Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-17
    Description: In mammals, RNA interference is primarily a post-transcriptional mechanism. Evidence has accumulated for additional role in transcriptional gene silencing (TGS) but the question for a good paradigm for small interfering antigene RNA (agRNA)-induced chromatin modification remains unanswered. Here, we show that SETDB1, a histone H3-lysine 9 (H3K9)-specific methyltransferase, cooperates with Argonaute-2 (AGO2) and plays an essential role in agRNA-induced TGS. The androgen receptor ( AR ) gene was transcriptionally silenced by agRNA targeted to its promoter, and we show that this repression was mitigated by knockdown of SETDB1 or AGO2 . Chromatin immunoprecipitation demonstrated that agRNA-driven AGO2 was first targeted to the AR promoter, followed by SETDB1. SIN3A and HDAC1/2, the components of the SIN3-HDAC complex, immunoprecipitated with SETDB1, and localized at the agRNA-targeted promoter. Agreeing with the presence of SETDB1, trimethyl-H3K9 was enriched in the AR promoter. Both EZH2 and trimethyl-H3K27 were also present in the targeted locus; accordingly, EZH2 immunoprecipitated with SETDB1. DNA methylation level was not significantly changed, suggesting the absence of de novo methylating activity in agRNA-induced AR promoter. Our results demonstrate that SETDB1, together with AGO2, plays an essential role in TGS through recruiting chromatin remodeler and/or other modifiers, consequently creating a repressive chromatin milieu at the targeted promoter.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-17
    Description: LEF/TCFs direct the final step in Wnt/β-catenin signalling by recruiting β-catenin to genes for activation of transcription. Ancient, non-vertebrate TCFs contain two DNA binding domains, a High Mobility Group box for recognition of the Wnt Response Element (WRE; 5'-CTTTGWWS-3') and the C-clamp domain for recognition of the GC-rich Helper motif (5'-RCCGCC-3'). Two vertebrate TCFs (TCF-1/TCF7 and TCF-4/TCF7L2) use the C-clamp as an alternatively spliced domain to regulate cell-cycle progression, but how the C-clamp influences TCF binding and activity genome-wide is not known. Here, we used a doxycycline inducible system with ChIP-seq to assess how the C-clamp influences human TCF1 binding genome-wide. Metabolic pulse-labeling of nascent RNA with 4'Thiouridine was used with RNA-seq to connect binding to the Wnt transcriptome. We find that the C-clamp enables targeting to a greater number of gene loci for stronger occupancy and transcription regulation. The C-clamp uses Helper sites concurrently with WREs for gene targeting, but it also targets TCF1 to sites that do not have readily identifiable canonical WREs. The coupled ChIP-seq/4'Thiouridine-seq analysis identified new Wnt target genes, including additional regulators of cell proliferation. Thus, C-clamp containing isoforms of TCFs are potent transcriptional regulators with an expanded transcriptome directed by C-clamp-Helper site interactions.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2014-12-17
    Description: Chromatin modifiers and histone modifications are components of a chromatin-signaling network involved in transcription and its regulation. The interactions between chromatin modifiers and histone modifications are often unknown, are based on the analysis of few genes or are studied in vitro . Here, we apply computational methods to recover interactions between chromatin modifiers and histone modifications from genome-wide ChIP-Seq data. These interactions provide a high-confidence backbone of the chromatin-signaling network. Many recovered interactions have literature support; others provide hypotheses about yet unknown interactions. We experimentally verified two of these predicted interactions, leading to a link between H4K20me1 and members of the Polycomb Repressive Complexes 1 and 2. Our results suggest that our computationally derived interactions are likely to lead to novel biological insights required to establish the connectivity of the chromatin-signaling network involved in transcription and its regulation.
    Keywords: Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-12-17
    Description: As the biomedical impact of small RNAs grows, so does the need to understand competing structural alternatives for regions of functional interest. Suboptimal structure analysis provides significantly more RNA base pairing information than a single minimum free energy prediction. Yet computational enhancements like Boltzmann sampling have not been fully adopted by experimentalists since identifying meaningful patterns in this data can be challenging. Profiling is a novel approach to mining RNA suboptimal structure data which makes the power of ensemble-based analysis accessible in a stable and reliable way. Balancing abstraction and specificity, profiling identifies significant combinations of base pairs which dominate low-energy RNA secondary structures. By design, critical similarities and differences are highlighted, yielding crucial information for molecular biologists. The code is freely available via http://gtfold.sourceforge.net/profiling.html .
    Keywords: Nucleic acid structure, Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2014-12-17
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-12-17
    Description: The stress-sensitive restriction-modification (RM) system CglI from Corynebacterium glutamicum and the homologous NgoAVII RM system from Neisseria gonorrhoeae FA1090 are composed of three genes: a DNA methyltransferase (M.CglI and M.NgoAVII), a putative restriction endonuclease (R.CglI and R.NgoAVII, or R-proteins) and a predicted DEAD-family helicase/ATPase (N.CglI and N.NgoAVII or N-proteins). Here we report a biochemical characterization of the R- and N-proteins. Size-exclusion chromatography and SAXS experiments reveal that the isolated R.CglI, R.NgoAVII and N.CglI proteins form homodimers, while N.NgoAVII is a monomer in solution. Moreover, the R.CglI and N.CglI proteins assemble in a complex with R 2 N 2 stoichiometry. Next, we show that N-proteins have ATPase activity that is dependent on double-stranded DNA and is stimulated by the R-proteins. Functional ATPase activity and extensive ATP hydrolysis (~170 ATP/s/monomer) are required for site-specific DNA cleavage by R-proteins. We show that ATP-dependent DNA cleavage by R-proteins occurs at fixed positions (6–7 nucleotides) downstream of the asymmetric recognition sequence 5'-GCCGC-3'. Despite similarities to both Type I and II restriction endonucleases, the CglI and NgoAVII enzymes may employ a unique catalytic mechanism for DNA cleavage.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-12-17
    Description: Emerging evidence points to roles for tRNA modifications and tRNA abundance in cellular stress responses. While isolated instances of stress-induced tRNA degradation have been reported, we sought to assess the effects of stress on tRNA levels at a systems level. To this end, we developed a next-generation sequencing method that exploits the paucity of ribonucleoside modifications at the 3'-end of tRNAs to quantify changes in all cellular tRNA molecules. Application of this tRNA-seq method to Saccharomyces cerevisiae identified all 76 expressed unique tRNA species out of 295 coded in the yeast genome, including all isoacceptor variants, with highly precise relative (fold-change) quantification of tRNAs. In studies of stress-induced changes in tRNA levels, we found that oxidation (H 2 O 2 ) and alkylation (methylmethane sulfonate, MMS) stresses induced nearly identical patterns of up- and down-regulation for 58 tRNAs. However, 18 tRNAs showed opposing changes for the stresses, which parallels our observation of signature reprogramming of tRNA modifications caused by H 2 O 2 and MMS. Further, stress-induced degradation was limited to only a small proportion of a few tRNA species. With tRNA-seq applicable to any organism, these results suggest that translational control of stress response involves a contribution from tRNA abundance.
    Keywords: Nucleic acid modification, Transcriptome Mapping - Monitoring Gene Expression
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2014-12-17
    Description: During meiosis programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination using the sister chromatid or the homologous chromosome (homolog) as a template. This repair results in crossover (CO) and non-crossover (NCO) recombinants. Only CO formation between homologs provides the physical linkages guiding correct chromosome segregation, which are essential to produce healthy gametes. The factors that determine the CO/NCO decision are still poorly understood. Using Schizosaccharomyces pombe as a model we show that the Rad51/Dmc1-paralog complexes Rad55-Rad57 and Rdl1-Rlp1-Sws1 together with Swi5-Sfr1 play a major role in antagonizing both the FANCM-family DNA helicase/translocase Fml1 and the RecQ-type DNA helicase Rqh1 to limit hybrid DNA formation and promote Mus81-Eme1-dependent COs. A common attribute of these protein complexes is an ability to stabilize the Rad51/Dmc1 nucleoprotein filament, and we propose that it is this property that imposes constraints on which enzymes gain access to the recombination intermediate, thereby controlling the manner in which it is processed and resolved.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2014-12-17
    Description: To study target sequence specificity, selectivity, and reaction kinetics of Streptococcus pyogenes Cas9 activity, we challenged libraries of random variant targets with purified Cas9::guide RNA complexes in vitro . Cleavage kinetics were nonlinear, with a burst of initial activity followed by slower sustained cleavage. Consistent with other recent analyses of Cas9 sequence specificity, we observe considerable (albeit incomplete) impairment of cleavage for targets mutated in the PAM sequence or in ‘seed’ sequences matching the proximal 8 bp of the guide. A second target region requiring close homology was located at the other end of the guide::target duplex (positions 13–18 relative to the PAM). Sequences flanking the guide+PAM region had measurable (albeit modest) effects on cleavage. In addition, the first-base Guanine constraint commonly imposed by gRNA expression systems has little effect on overall cleavage efficiency. Taken together, these studies provide an in vitro understanding of the complexities of Cas9–gRNA interaction and cleavage beyond the general paradigm of site determination based on the ‘seed’ sequence and PAM.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2014-12-17
    Description: Transcripts possessing a 5'-triphosphate are a hallmark of viral transcription and can trigger the host antiviral response. 5'-triphosphates are also found on common host transcripts transcribed by RNA polymerase III (RNAP III), yet how these transcripts remain non-immunostimulatory is incompletely understood. Most microRNAs (miRNAs) are 5'-monophosphorylated as a result of sequential endonucleolytic processing by Drosha and Dicer from longer RNA polymerase II (RNAP II)-transcribed primary transcripts. In contrast, bovine leukemia virus (BLV) expresses subgenomic RNAP III transcripts that give rise to miRNAs independent of Drosha processing. Here, we demonstrate that each BLV pre-miRNA is directly transcribed by RNAP III from individual, compact RNAP III type II genes. Thus, similar to manmade RNAP III-generated short hairpin RNAs (shRNAs), the BLV pre-miRNAs are initially 5'-triphosphorylated. Nonetheless, the derivative 5p miRNAs and shRNA-generated 5p small RNAs (sRNAs) possess a 5'-monophosphate. Our enzymatic characterization and small RNA sequencing data demonstrate that BLV 5p miRNAs are co-terminal with 5'-triphosphorylated miRNA precursors (pre-miRNAs). Thus, these results identify a 5'-tri-phosphatase activity that is involved in the biogenesis of BLV miRNAs and shRNA-generated sRNAs. This work advances our understanding of retroviral miRNA and shRNA biogenesis and may have implications regarding the immunostimulatory capacity of RNAP III transcripts.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-12-17
    Description: Within the field of synthetic biology, a rational design of genetic parts should include a causal understanding of their input-output responses—the so-called transfer function—and how to tune them. However, a commonly adopted strategy is to fit data to Hill-shaped curves without considering the underlying molecular mechanisms. Here we provide a novel mathematical formalization that allows prediction of the global behavior of a synthetic device by considering the actual information from the involved biological parts. This is achieved by adopting an enzymology-like framework, where transfer functions are described in terms of their input affinity constant and maximal response. As a proof of concept, we characterize a set of Lux homoserine-lactone-inducible genetic devices with different levels of Lux receptor and signal molecule. Our model fits the experimental results and predicts the impact of the receptor's ribosome-binding site strength, as a tunable parameter that affects gene expression. The evolutionary implications are outlined.
    Keywords: Synthetic Biology and Assembly Cloning, Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-12-17
    Description: The restriction endonuclease (REase) NgoAVII is composed of two proteins, R.NgoAVII and N.NgoAVII, and shares features of both Type II restriction enzymes and Type I/III ATP-dependent restriction enzymes (see accompanying paper Zaremba et al. , 2014). Here we present crystal structures of the R.NgoAVII apo-protein and the R.NgoAVII C-terminal domain bound to a specific DNA. R.NgoAVII is composed of two domains: an N-terminal nucleolytic PLD domain; and a C-terminal B3-like DNA-binding domain identified previously in BfiI and EcoRII REases, and in plant transcription factors. Structural comparison of the B3-like domains of R.NgoAVII, EcoRII, BfiI and the plant transcription factors revealed a conserved DNA-binding surface comprised of N- and C-arms that together grip the DNA. The C-arms of R.NgoAVII, EcoRII, BfiI and plant B3 domains are similar in size, but the R.NgoAVII N-arm which makes the majority of the contacts to the target site is much longer. The overall structures of R.NgoAVII and BfiI are similar; however, whilst BfiI has stand-alone catalytic activity, R.NgoAVII requires an auxiliary cognate N.NgoAVII protein and ATP hydrolysis in order to cleave DNA at the target site. The structures we present will help formulate future experiments to explore the molecular mechanisms of intersubunit crosstalk that control DNA cleavage by R.NgoAVII and related endonucleases.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2014-12-17
    Description: Distinct translational initiation mechanisms between prokaryotes and eukaryotes limit the exploitation of prokaryotic riboswitch repertoire for regulatory RNA circuit construction in mammalian application. Here, we explored programmed ribosomal frameshifting (PRF) as the regulatory gene expression platform for engineered ligand-responsive RNA devices in higher eukaryotes. Regulation was enabled by designed ligand-dependent conformational rearrangements of the two cis-acting RNA motifs of opposite activity in -1 PRF. Particularly, RNA elements responsive to trans-acting ligands can be tailored to modify co-translational RNA refolding dynamics of a hairpin upstream of frameshifting site to achieve reversible and adjustable -1 PRF attenuating activity. Combined with a ligand-responsive stimulator, synthetic RNA devices for synergetic translational-elongation control of gene expression can be constructed. Due to the similarity between co-transcriptional RNA hairpin folding and co-translational RNA hairpin refolding, the RNA-responsive ligand repertoire provided in prokaryotic systems thus becomes accessible to gene-regulatory circuit construction for synthetic biology application in mammalian cells.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2014-12-17
    Description: Cutaneous photosensitization is a common side effect of drug treatment and can be associated with an increased skin cancer risk. The immunosuppressant azathioprine, the fluoroquinolone antibiotics and vemurafenib—a BRAF inhibitor used to treat metastatic melanoma—are all recognized clinical photosensitizers. We have compared the effects of UVA radiation on cultured human cells treated with 6-thioguanine (6-TG, a DNA-embedded azathioprine surrogate), the fluoroquinolones ciprofloxacin and ofloxacin and vemurafenib. Despite widely different structures and modes of action, each of these drugs potentiated UVA cytotoxicity. UVA photoactivation of 6-TG, ciprofloxacin and ofloxacin was associated with the generation of singlet oxygen that caused extensive protein oxidation. In particular, these treatments were associated with damage to DNA repair proteins that reduced the efficiency of nucleotide excision repair. Although vemurafenib was also highly phototoxic to cultured cells, its effects were less dependent on singlet oxygen. Highly toxic combinations of vemurafenib and UVA caused little protein carbonylation but were nevertheless inhibitory to nucleotide excision repair. Thus, for three different classes of drugs, photosensitization by at least two distinct mechanisms is associated with reduced protection against potentially mutagenic and carcinogenic DNA damage.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2014-12-17
    Description: The first level of genome packaging in eukaryotic cells involves the formation of dense nucleosome arrays, with DNA coverage near 90% in yeasts. How cells achieve such high coverage within a short time, e.g. after DNA replication, remains poorly understood. It is known that random sequential adsorption of impenetrable particles on a line reaches high density extremely slowly, due to a jamming phenomenon. The nucleosome-shifting action of remodeling enzymes has been proposed as a mechanism to resolve such jams. Here, we suggest two biophysical mechanisms which assist rapid filling of DNA with nucleosomes, and we quantitatively characterize these mechanisms within mathematical models. First, we show that the ‘softness’ of nucleosomes, due to nucleosome breathing and stepwise nucleosome assembly, significantly alters the filling behavior, speeding up the process relative to ‘hard’ particles with fixed, mutually exclusive DNA footprints. Second, we explore model scenarios in which the progression of the replication fork could eliminate nucleosome jamming, either by rapid filling in its wake or via memory of the parental nucleosome positions. Taken together, our results suggest that biophysical effects promote rapid nucleosome filling, making the reassembly of densely packed nucleosomes after DNA replication a simpler task for cells than was previously thought.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2014-12-17
    Description: Abasic (AP) lesions are the most frequent type of damages occurring in cellular DNA. Here we describe the conformational effects of AP sites substituted for 2'-deoxyadenosine in the first ( ap7 ), second ( ap13 ) or third ( ap19 ) loop of the quadruplex formed in K + by the human telomere DNA 5'-d[AG 3 (TTAG 3 ) 3 ]. CD spectra and electrophoresis reveal that the presence of AP sites does not hinder the formation of intramolecular quadruplexes. NMR spectra show that the structural heterogeneity is substantially reduced in ap7 and ap19 as compared to that in the wild-type. These two ( ap7 and ap19 ) sequences are shown to adopt the hybrid-1 and hybrid-2 quadruplex topology, respectively, with AP site located in a propeller-like loop. All three studied sequences transform easily into parallel quadruplex in dehydrating ethanol solution. Thus, the AP site in any loop region facilitates the formation of the propeller loop. Substitution of all adenines by AP sites stabilizes the parallel quadruplex even in the absence of ethanol. Whereas guanines are the major determinants of quadruplex stability, the presence or absence of loop adenines substantially influences quadruplex folding. The naturally occurring adenine-lacking sites in the human telomere DNA can change the quadruplex topology in vivo with potentially vital biological consequences.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2014-12-17
    Description: The DNA sequence preferences of nearly all sequence specific DNA binding proteins are influenced by the identities of bases that are not directly contacted by protein. Discrimination between non-contacted base sequences is commonly based on the differential abilities of DNA sequences to allow narrowing of the DNA minor groove. However, the factors that govern the propensity of minor groove narrowing are not completely understood. Here we show that the differential abilities of various DNA sequences to support formation of a highly ordered and stable minor groove solvation network are a key determinant of non-contacted base recognition by a sequence-specific binding protein. In addition, disrupting the solvent network in the non-contacted region of the binding site alters the protein's ability to recognize contacted base sequences at positions 5–6 bases away. This observation suggests that DNA solvent interactions link contacted and non-contacted base recognition by the protein.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2014-11-07
    Description: Motivation: Mapping of high-throughput sequencing data and other bulk sequence comparison applications have motivated a search for high-efficiency sequence alignment algorithms. The bit-parallel approach represents individual cells in an alignment scoring matrix as bits in computer words and emulates the calculation of scores by a series of logic operations composed of AND, OR, XOR, complement, shift and addition. Bit-parallelism has been successfully applied to the longest common subsequence (LCS) and edit-distance problems, producing fast algorithms in practice. Results: We have developed BitPAl, a bit-parallel algorithm for general, integer-scoring global alignment. Integer-scoring schemes assign integer weights for match, mismatch and insertion/deletion. The BitPAl method uses structural properties in the relationship between adjacent scores in the scoring matrix to construct classes of efficient algorithms, each designed for a particular set of weights. In timed tests, we show that BitPAl runs 7–25 times faster than a standard iterative algorithm. Availability and implementation: Source code is freely available for download at http://lobstah.bu.edu/BitPAl/BitPAl.html . BitPAl is implemented in C and runs on all major operating systems. Contact : jloving@bu.edu or yhernand@bu.edu or gbenson@bu.edu Supplementary information : Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2014-11-07
    Description: : Next-generation sequencing (NGS) has a large potential in HIV diagnostics, and genotypic prediction models have been developed and successfully tested in the recent years. However, albeit being highly accurate, these computational models lack computational efficiency to reach their full potential. In this study, we demonstrate the use of graphics processing units (GPUs) in combination with a computational prediction model for HIV tropism. Our new model named gCUP, parallelized and optimized for GPU, is highly accurate and can classify 〉175 000 sequences per second on an NVIDIA GeForce GTX 460. The computational efficiency of our new model is the next step to enable NGS technologies to reach clinical significance in HIV diagnostics. Moreover, our approach is not limited to HIV tropism prediction, but can also be easily adapted to other settings, e.g. drug resistance prediction. Availability and implementation: The source code can be downloaded at http://www.heiderlab.de Contact: d.heider@wz-straubing.de
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2014-11-07
    Description: : We present a new method to incrementally construct the FM-index for both short and long sequence reads, up to the size of a genome. It is the first algorithm that can build the index while implicitly sorting the sequences in the reverse (complement) lexicographical order without a separate sorting step. The implementation is among the fastest for indexing short reads and the only one that practically works for reads of averaged kilobases in length. Availability and implementation: https://github.com/lh3/ropebwt2 Contact: hengli@broadinstitute.org
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2014-11-07
    Description: : AliView is an alignment viewer and editor designed to meet the requirements of next-generation sequencing era phylogenetic datasets. AliView handles alignments of unlimited size in the formats most commonly used, i.e. FASTA, Phylip, Nexus, Clustal and MSF. The intuitive graphical interface makes it easy to inspect, sort, delete, merge and realign sequences as part of the manual filtering process of large datasets. AliView also works as an easy-to-use alignment editor for small as well as large datasets. Availability and implementation: AliView is released as open-source software under the GNU General Public License, version 3.0 (GPLv3), and is available at GitHub ( www.github.com/AliView ). The program is cross-platform and extensively tested on Linux, Mac OS X and Windows systems. Downloads and help are available at http://ormbunkar.se/aliview Contact: anders.larsson@ebc.uu.se Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2014-11-07
    Description: Motivation: The ability to accurately read the order of nucleotides in DNA and RNA is fundamental for modern biology. Errors in next-generation sequencing can lead to many artifacts, from erroneous genome assemblies to mistaken inferences about RNA editing. Uneven coverage in datasets also contributes to false corrections. Result: We introduce Trowel, a massively parallelized and highly efficient error correction module for Illumina read data. Trowel both corrects erroneous base calls and boosts base qualities based on the k -mer spectrum. With high-quality k -mers and relevant base information, Trowel achieves high accuracy for different short read sequencing applications.The latency in the data path has been significantly reduced because of efficient data access and data structures. In performance evaluations, Trowel was highly competitive with other tools regardless of coverage, genome size read length and fragment size. Availability and implementation: Trowel is written in C++ and is provided under the General Public License v3.0 (GPLv3). It is available at http://trowel-ec.sourceforge.net . Contact: euncheon.lim@tue.mpg.de or weigel@tue.mpg.de Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2014-11-07
    Description: : The application of protein–protein docking in large-scale interactome analysis is a major challenge in structural bioinformatics and requires huge computing resources. In this work, we present MEGADOCK 4.0, an FFT-based docking software that makes extensive use of recent heterogeneous supercomputers and shows powerful, scalable performance of 〉97% strong scaling. Availability and Implementation: MEGADOCK 4.0 is written in C++ with OpenMPI and NVIDIA CUDA 5.0 (or later) and is freely available to all academic and non-profit users at: http://www.bi.cs.titech.ac.jp/megadock . Contact: akiyama@cs.titech.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2014-11-07
    Description: Motivation: The identification of active transcriptional regulatory elements is crucial to understand regulatory networks driving cellular processes such as cell development and the onset of diseases. It has recently been shown that chromatin structure information, such as DNase I hypersensitivity (DHS) or histone modifications, significantly improves cell-specific predictions of transcription factor binding sites. However, no method has so far successfully combined both DHS and histone modification data to perform active binding site prediction. Results: We propose here a method based on hidden Markov models to integrate DHS and histone modifications occupancy for the detection of open chromatin regions and active binding sites. We have created a framework that includes treatment of genomic signals, model training and genome-wide application. In a comparative analysis, our method obtained a good trade-off between sensitivity versus specificity and superior area under the curve statistics than competing methods. Moreover, our technique does not require further training or sequence information to generate binding location predictions. Therefore, the method can be easily applied on new cell types and allow flexible downstream analysis such as de novo motif finding. Availability and implementation: Our framework is available as part of the Regulatory Genomics Toolbox. The software information and all benchmarking data are available at http://costalab.org/wp/dh-hmm . Contact: ivan.costa@rwth-aachen.de or eduardo.gusmao@rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2014-11-07
    Description: Motivation: A proper target or marker is essential in any diagnosis (e.g. an infection or cancer). An ideal diagnostic target should be both conserved in and unique to the pathogen. Currently, these targets can only be identified manually, which is time-consuming and usually error-prone. Because of the increasingly frequent occurrences of emerging epidemics and multidrug-resistant ‘superbugs’, a rapid diagnostic target identification process is needed. Results: A new method that can identify uniquely conserved regions (UCRs) as candidate diagnostic targets for a selected group of organisms solely from their genomic sequences has been developed and successfully tested. Using a sequence-indexing algorithm to identify UCRs and a k -mer integer-mapping model for computational efficiency, this method has successfully identified UCRs within the bacteria domain for 15 test groups, including pathogenic, probiotic, commensal and extremophilic bacterial species or strains. Based on the identified UCRs, new diagnostic primer sets were designed, and their specificity and efficiency were tested by polymerase chain reaction amplifications from both pure isolates and samples containing mixed cultures. Availability and implementation: The UCRs identified for the 15 bacterial species are now freely available at http://ucr.synblex.com . The source code of the programs used in this study is accessible at http://ucr.synblex.com/bacterialIdSourceCode.d.zip Contact: yazhousun@synblex.com Supplementary Information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2014-11-07
    Description: Motivation: A popular method for classification of protein domain movements apportions them into two main types: those with a ‘hinge’ mechanism and those with a ‘shear’ mechanism. The intuitive assignment of domain movements to these classes has limited the number of domain movements that can be classified in this way. Furthermore, whether intended or not, the term ‘shear’ is often interpreted to mean a relative translation of the domains. Results: Numbers of occurrences of four different types of residue contact changes between domains were optimally combined by logistic regression using the training set of domain movements intuitively classified as hinge and shear to produce a predictor for hinge and shear. This predictor was applied to give a 10-fold increase in the number of examples over the number previously available with a high degree of precision. It is shown that overall a relative translation of domains is rare, and that there is no difference between hinge and shear mechanisms in this respect. However, the shear set contains significantly more examples of domains having a relative twisting movement than the hinge set. The angle of rotation is also shown to be a good discriminator between the two mechanisms. Availability and implementation: Results are free to browse at http://www.cmp.uea.ac.uk/dyndom/interface/ . Contact: sjh@cmp.uea.ac.uk . Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2014-11-07
    Description: Motivation: Recent studies on human disease have revealed that aberrant interaction between proteins probably underlies a substantial number of human genetic diseases. This suggests a need to investigate disease inheritance mode using interaction, and based on which to refresh our conceptual understanding of a series of properties regarding inheritance mode of human disease. Results: We observed a strong correlation between the number of protein interactions and the likelihood of a gene causing any dominant diseases or multiple dominant diseases, whereas no correlation was observed between protein interaction and the likelihood of a gene causing recessive diseases. We found that dominant diseases are more likely to be associated with disruption of important interactions. These suggest inheritance mode should be understood using protein interaction. We therefore reviewed the previous studies and refined an interaction model of inheritance mode, and then confirmed that this model is largely reasonable using new evidences. With these findings, we found that the inheritance mode of human genetic diseases can be predicted using protein interaction. By integrating the systems biology perspectives with the classical disease genetics paradigm, our study provides some new insights into genotype–phenotype correlations. Contact: haodapeng@ems.hrbmu.edu.cn or biofomeng@hotmail.com Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2014-11-07
    Description: : Recently, several high profile studies collected cell viability data from panels of cancer cell lines treated with many drugs applied at different concentrations. Such drug sensitivity data for cancer cell lines provide suggestive treatments for different types and subtypes of cancer. Visualization of these datasets can reveal patterns that may not be obvious by examining the data without such efforts. Here we introduce Drug/Cell-line Browser (DCB), an online interactive HTML5 data visualization tool for interacting with three of the recently published datasets of cancer cell lines/drug-viability studies. DCB uses clustering and canvas visualization of the drugs and the cell lines, as well as a bar graph that summarizes drug effectiveness for the tissue of origin or the cancer subtypes for single or multiple drugs. DCB can help in understanding drug response patterns and prioritizing drug/cancer cell line interactions by tissue of origin or cancer subtype. Availability and implementation: DCB is an open source Web-based tool that is freely available at: http://www.maayanlab.net/LINCS/DCB Contact: avi.maayan@mssm.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2014-11-07
    Description: As an important subtype of structural variations, chromosomal translocation is associated with various diseases, especially cancers, by disrupting gene structures and functions. Traditional methods for identifying translocations are time consuming and have limited resolutions. Recently, a few studies have employed next-generation sequencing (NGS) technology for characterizing chromosomal translocations on human genome, obtaining high-throughput results with high resolutions. However, these studies are mainly focused on mechanism-specific or site-specific translocation mapping. In this study, we conducted a comprehensive genome-wide analysis on the characterization of human chromosomal material exchange with regard to the chromosome translocations. Using NGS data of 1,481 subjects from the 1000 Genomes Project, we identified 15,349,092 translocated DNA fragment pairs, ranging from 65 to 1,886 bp and with an average size of approximately 102 bp. On average, each individual genome carried about 10,364 pairs, covering approximately 0.069% of the genome. We identified 16 translocation hot regions, among which two regions did not contain repetitive fragments. Results of our study overlapped with a majority of previous results, containing approximately 79% of approximately 2,340 translocations characterized in three available translocation databases. In addition, our study identified five novel potential recurrent chromosomal material exchange regions with greater than 20% detection rates. Our results will be helpful for an accurate characterization of translocations in human genomes, and contribute as a resource for future studies of the roles of translocations in human disease etiology and mechanisms.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2014-11-07
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2014-11-07
    Description: Clinical and neuropathological similarities between dementia with Lewy bodies (DLB), Parkinson's and Alzheimer's diseases (PD and AD, respectively) suggest that these disorders may share etiology. To test this hypothesis, we have performed an association study of 54 genomic regions, previously implicated in PD or AD, in a large cohort of DLB cases and controls. The cohort comprised 788 DLB cases and 2624 controls. To minimize the issue of potential misdiagnosis, we have also performed the analysis including only neuropathologically proven DLB cases (667 cases). The results show that the APOE is a strong genetic risk factor for DLB, confirming previous findings, and that the SNCA and SCARB2 loci are also associated after a study-wise Bonferroni correction, although these have a different association profile than the associations reported for the same loci in PD. We have previously shown that the p.N370S variant in GBA is associated with DLB, which, together with the findings at the SCARB2 locus, suggests a role for lysosomal dysfunction in this disease. These results indicate that DLB has a unique genetic risk profile when compared with the two most common neurodegenerative diseases and that the lysosome may play an important role in the etiology of this disorder. We make all these data available.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2014-11-07
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2014-11-07
    Description: Mitochondrial DNA mutations at MT-ATP6 gene are relatively common in individuals suffering from striatal necrosis syndromes. These patients usually do not show apparent histochemical and/or biochemical signs of oxidative phosphorylation dysfunction. Because of this, MT-ATP6 is not typically analyzed in many other mitochondrial disorders that have not been previously associated to mutations in this gene. To correct this bias, we have performed a screening of the MT-ATP6 gene in a large collection of patients suspected of suffering different mitochondrial DNA (mtDNA) disorders. In three cases, biochemical, molecular-genetics and other analyses in patient tissues and cybrids were also carried out. We found three new pathologic mutations. Two of them in patients showing phenotypes that have not been commonly associated to mutations in the MT-ATP6 gene. These results remark the importance of sequencing the MT-ATP6 gene in patients with striatal necrosis syndromes, but also within other mitochondrial pathologies. This gene should be sequenced at least in all those patients suspected of suffering an mtDNA disorder disclosing normal results for histochemical and biochemical analyses of respiratory chain.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2014-11-07
    Description: Immunoglobulin-like domain containing receptor 1 ( ILDR1 ) is a poorly characterized gene that was first identified in lymphoma cells. Recently, ILDR1 has been found to be responsible for autosomal recessive hearing impairment DFNB42. Patients with ILDR1 mutations cause bilateral non-progressive moderate-to-profound sensorineural hearing impairment. However, the etiology and mechanism of ILDR1 -related hearing loss remains to be elucidated. In order to uncover the pathology of DFNB42 deafness, we used the morpholino injection technique to establish an ildr1b -morphant zebrafish model. Ildr1b -morphant zebrafish displayed defective hearing and imbalanced swimming, and developmental delays were seen in the semicircular canals of the inner ear. The gene expression profile and real-time PCR revealed down-regulation of atp1b2b (encoding Na + /K + transporting, beta 2b polypeptide) in ildr1b -morphant zebrafish. We found that injection of atp1b2b mRNA into ildr1b -knockdown zebrafish could rescue the phenotype of developmental delay of the semicircular canals. Moreover, ildr1b -morphant zebrafish had reduced numbers of lateral line neuromasts due to the disruption of lateral line primordium migration. In situ hybridization showed the involvement of attenuated FGF signaling and the chemokine receptor 4b ( cxcr4b ) and chemokine receptor 7b ( cxcr7b ) in posterior lateral line primordium of ildr1b -morphant zebrafish. We concluded that Ildr1b is crucial for the development of the inner ear and the lateral line system. This study provides the first evidence for the mechanism of Ildr1b on hearing in vivo and sheds light on the pathology of DFNB42.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2014-11-07
    Description: Huntington's disease (HD) is an inherited neurodegenerative disorder caused by abnormal expansion of CAG repeats in the gene encoding huntingtin. Mutant huntingtin undergoes proteolytic processing and its N-terminal fragment containing polyglutamine repeat accumulates as inclusion not only in nucleus but also in cytoplasm and neuronal processes. Here, we demonstrate that removal of ubiquitin ligase Ube3a selectively from HD mice brain resulted in accelerated disease phenotype and shorter lifespan in comparison with HD mice. The deficiency of Ube3a in HD mice brain also caused significant increase in global aggregates load, and these aggregates were less ubiquitinated when compared with age-matched HD mice. These Ube3a -maternal deficient HD mice also showed drastic reduction of DARPP-32, a dopamine-regulated phoshphoprotein in their striatum. These results emphasize the crucial role of Ube3a in the progression of HD and its immense potential as therapeutic target.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2014-11-07
    Description: Parent-of-origin-specific expression at imprinted genes is regulated by allele-specific DNA methylation at imprinting control regions (ICRs). This mechanism of gene regulation, where one element controls allelic expression of multiple genes, is not fully understood. Furthermore, the mechanism of gene dysregulation through ICR epimutations, such as loss or gain of DNA methylation, remains a mystery. We have used genetic mouse models to dissect ICR-mediated genetic and epigenetic regulation of imprinted gene expression. The H19/insulin-like growth factor 2 (Igf2) ICR has a multifunctional role including insulation, activation and repression. Microdeletions at the human H19/IGF2 ICR (IC1) are proposed to be responsible for IC1 epimutations associated with imprinting disorders such as Beckwith–Wiedemann syndrome (BWS). Here, we have generated and characterized a mouse model that mimics BWS microdeletions to define the role of the deleted sequence in establishing and maintaining epigenetic marks and imprinted expression at the H19/IGF2 locus. These mice carry a 1.3 kb deletion at the H19/Igf2 ICR [2,3] removing two of four CCCTC-binding factor (CTCF) sites and the intervening sequence, ~75% of the ICR. Surprisingly, the 2,3 deletion does not perturb DNA methylation at the ICR; however, it does disrupt imprinted expression. While repressive functions of the ICR are compromised by the deletion regardless of tissue type, insulator function is only disrupted in tissues of mesodermal origin where a significant amount of CTCF is poly(ADP-ribosyl)ated. These findings suggest that insulator activity of the H19/Igf2 ICR varies by cell type and may depend on cell-specific enhancers as well as posttranslational modifications of the insulator protein CTCF.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2014-11-07
    Description: Cerebral cavernous malformation (CCM) is a disease of vascular malformations known to be caused by mutations in one of three genes: CCM1 , CCM2 or CCM3 . Despite several studies, the mechanism of CCM lesion onset remains unclear. Using a Ccm1 knockout mouse model, we studied the morphogenesis of early lesion formation in the retina in order to provide insight into potential mechanisms. We demonstrate that lesions develop in a stereotypic location and pattern, preceded by endothelial hypersprouting as confirmed in a zebrafish model of disease. The vascular defects seen with loss of Ccm1 suggest a defect in endothelial flow response. Taken together, these results suggest new mechanisms of early CCM disease pathogenesis and provide a framework for further study.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2014-11-07
    Description: Genomic imprinting is the epigenetic process that results in monoallelic expression of genes depending on parental origin. These genes are known to be critical for placental development and fetal growth in mammals. Aberrant epigenetic profiles at imprinted loci, such as DNA methylation defects, are surprisingly rare in pregnancies with compromised fetal growth, while variations in transcriptional output from the expressed alleles of imprinted genes are more commonly reported in pregnancies complicated with intrauterine growth restriction (IUGR). To determine if PLAGL1 and HYMAI , two imprinted transcripts deregulated in Transient Neonatal Diabetes Mellitus, are involved in non-syndromic IUGR we compared the expression and DNA methylation levels in a large cohort of placental biopsies from IUGR and uneventful pregnancies. This revealed that despite appropriate maternal methylation at the shared PLAGL1 / HYMAI promoter, there was a loss of correlation between PLAGL1 and HYMAI expression in IUGR. This incongruity was due to higher HYMAI expression in IUGR gestations, coupled with PLAGL1 down-regulation in placentas from IUGR girls, but not boys. The PLAGL1 protein is a zinc-finger transcription factor that has been shown to be a master coordinator of a genetic growth network in mice. We observe PLAGL1 binding to the H19 / IGF2 shared enhancers in placentae, with significant correlations between PLAGL1 levels with H19 and IGF2 expression levels. In addition, PLAGL1 binding and expression also correlate with expression levels of metabolic regulator genes SLC2A4 , TCF4 and PPAR1 . Our results strongly suggest that fetal growth can be influenced by altered expression of the PLAGL1 gene network in human placenta.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2014-11-07
    Description: MicroRNAs (miRNAs) have emerged as a class of small, endogenous, regulatory RNAs that exhibit the ability to epigenetically modulate the translation of mRNAs into proteins. This feature enables them to control cell phenotypes and, consequently, modify cell function in a disease context. The role of inflammatory miRNAs in Alzheimer's disease (AD) and their ability to modulate glia responses are now beginning to be explored. In this study, we propose to disclose the functional role of miR-155, one of the most well studied immune-related miRNAs in AD-associated neuroinflammatory events, employing the 3xTg AD animal model. A strong upregulation of miR-155 levels was observed in the brain of 12-month-old 3xTg AD animals. This event occurred simultaneously with an increase of microglia and astrocyte activation, and before the appearance of extracellular Aβ aggregates, suggesting that less complex Aβ species, such as Aβ oligomers may contribute to early neuroinflammation. In addition, we investigated the contribution of miR-155 and the c-Jun transcription factor to the molecular mechanisms that underlie Aβ-mediated activation of glial cells. Our results suggest early miR-155 and c-Jun upregulation in the 3xTg AD mice, as well as in Aβ-activated microglia and astrocytes, thus contributing to the production of inflammatory mediators such as IL-6 and IFN-β. This effect is associated with a miR-155-dependent decrease of suppressor of cytokine signaling 1. Furthermore, since c-Jun silencing decreases the levels of miR-155 in Aβ-activated microglia and astrocytes, we propose that miR-155 targeting can constitute an interesting and promising approach to control neuroinflammation in AD.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2014-11-07
    Description: Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin ( HTT ) gene. Disease pathogenesis derives, at least in part, from the long polyglutamine tract encoded by mutant HTT . Therefore, considerable effort has been dedicated to the development of therapeutic strategies that significantly reduce the expression of the mutant HTT protein. Antisense oligonucleotides (ASOs) targeted to the CAG repeat region of HTT transcripts have been of particular interest due to their potential capacity to discriminate between normal and mutant HTT transcripts. Here, we focus on phosphorodiamidate morpholino oligomers (PMOs), ASOs that are especially stable, highly soluble and non-toxic. We designed three PMOs to selectively target expanded CAG repeat tracts (CTG22, CTG25 and CTG28), and two PMOs to selectively target sequences flanking the HTT CAG repeat (HTTex1a and HTTex1b). In HD patient–derived fibroblasts with expanded alleles containing 44, 77 or 109 CAG repeats, HTTex1a and HTTex1b were effective in suppressing the expression of mutant and non-mutant transcripts. CTGn PMOs also suppressed HTT expression, with the extent of suppression and the specificity for mutant transcripts dependent on the length of the targeted CAG repeat and on the CTG repeat length and concentration of the PMO. PMO CTG25 reduced HTT-induced cytotoxicity in vitro and suppressed mutant HTT expression in vivo in the N171-82Q transgenic mouse model. Finally, CTG28 reduced mutant HTT expression and improved the phenotype of Hdh Q7/Q150 knock-in HD mice. These data demonstrate the potential of PMOs as an approach to suppressing the expression of mutant HTT.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2014-11-07
    Description: Reduced expression of SMN protein causes spinal muscular atrophy (SMA), a neurodegenerative disorder leading to motor neuron dysfunction and loss. However, the molecular mechanisms by which SMN regulates neuronal dysfunction are not fully understood. Here, we report that reduced SMN protein level alters miRNA expression and distribution in neurons. In particular, miR-183 levels are increased in neurites of SMN-deficient neurons. We demonstrate that miR-183 regulates translation of mTor via direct binding to its 3' UTR. Interestingly, local axonal translation of mTor is reduced in SMN-deficient neurons, and this can be recovered by miR-183 inhibition. Finally, inhibition of miR-183 expression in the spinal cord of an SMA mouse model prolongs survival and improves motor function of Smn -mutant mice. Together, these observations suggest that axonal miRNAs and the mTOR pathway are previously unidentified molecular mechanisms contributing to SMA pathology.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2014-11-07
    Description: Microphthalmia-associated transcription factor ( MITF ) is a master regulator of pigmented cell survival and differentiation with direct transcriptional links to cell cycle, apoptosis and pigmentation. In mouse, Mitf is expressed early and uniformly in optic vesicle (OV) cells as they evaginate from the developing neural tube, and null Mitf mutations result in microphthalmia and pigmentation defects. However, homozygous mutations in MITF have not been identified in humans; therefore, little is known about its role in human retinogenesis. We used a human embryonic stem cell (hESC) model that recapitulates numerous aspects of retinal development, including OV specification and formation of retinal pigment epithelium (RPE) and neural retina progenitor cells (NRPCs), to investigate the earliest roles of MITF. During hESC differentiation toward a retinal lineage, a subset of MITF isoforms was expressed in a sequence and tissue distribution similar to that observed in mice. In addition, we found that promoters for the MITF-A , -D and -H isoforms were directly targeted by Visual Systems Homeobox 2 (VSX2), a transcription factor involved in patterning the OV toward a NRPC fate. We then manipulated MITF RNA and protein levels at early developmental stages and observed decreased expression of eye field transcription factors, reduced early OV cell proliferation and disrupted RPE maturation. This work provides a foundation for investigating MITF and other highly complex, multi-purposed transcription factors in a dynamic human developmental model system.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2014-11-07
    Description: The p.N478D missense mutation in human mitochondrial poly(A) polymerase (mtPAP) has previously been implicated in a form of spastic ataxia with optic atrophy. In this study, we have investigated fibroblast cell lines established from family members. The homozygous mutation resulted in the loss of polyadenylation of all mitochondrial transcripts assessed; however, oligoadenylation was retained. Interestingly, this had differential effects on transcript stability that were dependent on the particular species of transcript. These changes were accompanied by a severe loss of oxidative phosphorylation complexes I and IV, and perturbation of de novo mitochondrial protein synthesis. Decreases in transcript polyadenylation and in respiratory chain complexes were effectively rescued by overexpression of wild-type mtPAP. Both mutated and wild-type mtPAP localized to the mitochondrial RNA-processing granules thereby eliminating mislocalization as a cause of defective polyadenylation. In vitro polyadenylation assays revealed severely compromised activity by the mutated protein, which generated only short oligo(A) extensions on RNA substrates, irrespective of RNA secondary structure. The addition of LRPPRC/SLIRP, a mitochondrial RNA-binding complex, enhanced activity of the wild-type mtPAP resulting in increased overall tail length. The LRPPRC/SLIRP effect although present was less marked with mutated mtPAP, independent of RNA secondary structure. We conclude that (i) the polymerase activity of mtPAP can be modulated by the presence of LRPPRC/SLIRP, (ii) N478D mtPAP mutation decreases polymerase activity and (iii) the alteration in poly(A) length is sufficient to cause dysregulation of post-transcriptional expression and the pathogenic lack of respiratory chain complexes.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2014-11-07
    Description: During postnatal development, neuronal activity controls the remodeling of initially imprecise neuronal connections through the regulation of gene expression. MeCP2 binds to methylated DNA and modulates gene expression during neuronal development and MECP2 mutation causes the autistic disorder Rett syndrome. To investigate a role for MeCP2 in neuronal circuit refinement and to identify activity-dependent MeCP2 transcription regulations, we leveraged the precise organization and accessibility of olfactory sensory axons to manipulation of neuronal activity through odorant exposure in vivo . We demonstrate that olfactory sensory axons failed to develop complete convergence when Mecp2 is deficient in olfactory sensory neurons (OSNs) in an otherwise wild-type animal. Furthermore, we demonstrate that expression of selected adhesion genes was elevated in Mecp2 -deficient glomeruli, while acute odor stimulation in control mice resulted in significantly reduced MeCP2 binding to these gene loci, correlating with increased expression. Thus, MeCP2 is required for both circuitry refinement and activity-dependent transcriptional responses in OSNs.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2014-11-07
    Description: Simultaneous generation of neural cells and that of the nutrient-supplying vasculature during brain development is called neurovascular coupling. We report on a transgenic mouse with impaired transforming growth factor β (TGFβ)-signalling in forebrain-derived neural cells using a Foxg1-cre knock-in to drive the conditional knock-out of the Tgfbr2 . Although the expression of FOXG1 is assigned to neural progenitors and neurons of the telencephalon, Foxg1 cre/+ ; Tgfbr2 flox/flox (Tgfbr2-cKO) mutants displayed intracerebral haemorrhage. Blood vessels exhibited an atypical, clustered appearance were less in number and displayed reduced branching. Vascular endothelial growth factor (VEGF) A, insulin-like growth factor (IGF) 1, IGF2, TGFβ, inhibitor of DNA binding (ID) 1, thrombospondin (THBS) 2, and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) 1 were altered in either expression levels or tissue distribution. Accordingly, human umbilical vein endothelial cells (HUVEC) displayed branching defects after stimulation with conditioned medium (CM) that was derived from primary neural cultures of the ventral and dorsal telencephalon of Tgfbr2-cKO. Supplementing CM of Tgfbr2-cKO with VEGFA rescued these defects, but application of TGFβ aggravated them. HUVEC showed reduced migration towards CM of mutants compared with controls. Supplementing the CM with growth factors VEGFA, fibroblast growth factor (FGF) 2 and IGF1 partially restored HUVEC migration. In contrast, TGFβ supplementation further impaired migration of HUVEC. We observed differences along the dorso-ventral axis of the telencephalon with regard to the impact of these factors on the phenotype. Together these data establish a TGFBR2-dependent molecular crosstalk between neural and endothelial cells during brain vessel development. These findings will be useful to further elucidate neurovascular interaction in general and to understand pathologies of the blood vessel system such as intracerebral haemorrhages, hereditary haemorrhagic telangiectasia, Alzheimeŕs disease, cerebral amyloid angiopathy or tumour biology.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2014-11-07
    Description: Pneumoconiosis is the most serious occupational disease in China and its leading cause is occupational silica exposure. Pneumoconiosis takes several years to develop depending on the exposure level of silica. However, individual variation in the susceptibility to pneumoconiosis has been observed among the subjects with similar exposure. We conducted a genome-wide screening with 710 999 single nucleotide polymorphisms (SNPs) in a cohort of 400 coal workers (202 cases and 198 exposed controls) for pneumoconiosis susceptible loci. Seven promising variants were evaluated in an independent cohort of 568 coal workers (323 cases and 245 exposed controls), followed by a second replication on 463 iron ore workers (167 cases and 296 exposed controls). By pooling all of the genome-wide association studies and replication stages together, we found a genome-wide significant ( P 〈 5.0 x 10 –8 ) association for rs73329476 ( P = 1.74 x 10 –8 , OR = 2.17, 95% CI = 1.66–2.85) and two additional replicated associations for rs4320486 ( P 〈 0.05) and rs117626015 ( P 〈 0.05) with combined P -values of 4.29 x 10 –6 and 5.05 x 10 –6 , respectively. In addition, the risk allele T of rs73329476 was significantly associated with lower mRNA expression levels of carboxypeptidase M ( CPM ) in total cellular RNA from whole blood of 156 healthy individuals ( P = 0.0252). The identified pneumoconiosis susceptibility loci may provide new insights into the pathogenesis of pneumoconiosis, and may also have some clinical utility for risk prediction for pneumoconiosis and high-risk population screening for workers with occupational silica exposure.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2014-11-07
    Description: Hearing function is known to be heritable, but few significant and reproducible associations of genetic variants have been identified to date in the adult population. In this study, genome-wide association results of hearing function from the G-EAR consortium and TwinsUK were used for meta-analysis. Hearing ability in eight population samples of Northern and Southern European ancestry ( n = 4591) and the Silk Road ( n = 348) was measured using pure-tone audiometry and summarized using principal component (PC) analysis. Genome-wide association analyses for PC1–3 were conducted separately in each sample assuming an additive model adjusted for age, sex and relatedness of subjects. Meta-analysis was performed using 2.3 million single-nucleotide polymorphisms (SNPs) tested against each of the three PCs of hearing ability in 4939 individuals. A single SNP lying in intron 6 of the salt-inducible kinase 3 ( SIK3 ) gene was found to be associated with hearing PC2 ( P = 3.7 x 10 –8 ) and further supported by whole-genome sequence in a subset. To determine the relevance of this gene in the ear, expression of the Sik3 protein was studied in mouse cochlea of different ages. Sik3 was expressed in murine hair cells during early development and in cells of the spiral ganglion during early development and adulthood. Our results suggest a developmental role of Sik3 in hearing and may be required for the maintenance of adult auditory function.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2014-11-07
    Description: Genome instability, epigenetic remodelling and structural chromosomal rearrangements are hallmarks of cancer. However, the coordinated epigenetic effects of constitutional chromosomal rearrangements that disrupt genes associated with congenital neurodevelopmental diseases are poorly understood. To understand the genetic–epigenetic interplay at breakpoints of chromosomal translocations disrupting CG-rich loci, we quantified epigenetic modifications at DLGAP4 ( SAPAP4), a key post-synaptic density 95 (PSD95) associated gene, truncated by the chromosome translocation t(8;20)(p12;q11.23), co-segregating with cerebellar ataxia in a five-generation family. We report significant epigenetic remodelling of the DLGAP4 locus triggered by the t(8;20)(p12;q11.23) translocation and leading to dysregulation of DLGAP4 expression in affected carriers. Disruption of DLGAP4 results in monoallelic hypermethylation of the truncated DLGAP4 promoter CpG island. This induced hypermethylation is maintained in somatic cells of carriers across several generations in a t(8;20) dependent-manner however, is erased in the germ cells of the translocation carriers. Subsequently, chromatin remodelling of the locus-perturbed monoallelic expression of DLGAP4 mRNAs and non-coding RNAs in haploid cells having the translocation. Our results provide new mechanistic insight into the way a balanced chromosomal rearrangement associated with a neurodevelopmental disorder perturbs allele-specific epigenetic mechanisms at breakpoints leading to the deregulation of the truncated locus.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2014-11-07
    Description: We conducted blinded psychiatric assessments of 26 Amish subjects (52 ± 11 years) from four families with prevalent bipolar spectrum disorder, identified 10 potentially pathogenic alleles by exome sequencing, tested association of these alleles with clinical diagnoses in the larger Amish Study of Major Affective Disorder (ASMAD) cohort, and studied mutant potassium channels in neurons. Fourteen of 26 Amish had bipolar spectrum disorder. The only candidate allele shared among them was rs78247304, a non-synonymous variant of KCNH7 (c.1181G〉A, p.Arg394His). KCNH7 c.1181G〉A and nine other potentially pathogenic variants were subsequently tested within the ASMAD cohort, which consisted of 340 subjects grouped into controls subjects and affected subjects from overlapping clinical categories (bipolar 1 disorder, bipolar spectrum disorder and any major affective disorder). KCNH7 c.1181G〉A had the highest enrichment among individuals with bipolar spectrum disorder ( 2 = 7.3) and the strongest family-based association with bipolar 1 ( P = 0.021), bipolar spectrum ( P = 0.031) and any major affective disorder ( P = 0.016). In vitro, the p.Arg394His substitution allowed normal expression, trafficking, assembly and localization of HERG3/Kv11.3 channels, but altered the steady-state voltage dependence and kinetics of activation in neuronal cells. Although our genome-wide statistical results do not alone prove association, cumulative evidence from multiple independent sources (parallel genome-wide study cohorts, pharmacological studies of HERG-type potassium channels, electrophysiological data) implicates neuronal HERG3/Kv11.3 potassium channels in the pathophysiology of bipolar spectrum disorder. Such a finding, if corroborated by future studies, has implications for mental health services among the Amish, as well as development of drugs that specifically target HERG3/Kv11.3.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2014-11-07
    Description: Complex III (cytochrome bc 1 ) is a protein complex of the mitochondrial inner membrane that transfers electrons from ubiquinol to cytochrome c . Its assembly requires the coordinated expression of mitochondrial-encoded cytochrome b and nuclear-encoded subunits and assembly factors. Complex III deficiency is a severe multisystem disorder caused by mutations in subunit genes or assembly factors. Sequence-profile-based orthology predicts C11orf83 , hereafter named UQCC3 , to be the ortholog of the fungal complex III assembly factor CBP4 . We describe a homozygous c.59T〉A missense mutation in UQCC3 from a consanguineous patient diagnosed with isolated complex III deficiency, displaying lactic acidosis, hypoglycemia, hypotonia and delayed development without dysmorphic features. Patient fibroblasts have reduced complex III activity and lower levels of the holocomplex and its subunits than controls. They have no detectable UQCC3 protein and have lower levels of cytochrome b protein. Furthermore, in patient cells, cytochrome b is absent from a high-molecular-weight complex III. UQCC3 is reduced in cells depleted for the complex III assembly factors UQCC1 and UQCC2. Conversely, absence of UQCC3 in patient cells does not affect UQCC1 and UQCC2. This suggests that UQCC3 functions in the complex III assembly pathway downstream of UQCC1 and UQCC2 and is consistent with what is known about the function of Cbp4 and of the fungal orthologs of UQCC1 and UQCC2, Cbp3 and Cbp6. We conclude that UQCC3 functions in complex III assembly and that the c.59T〉A mutation has a causal role in complex III deficiency.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2014-11-07
    Description: Mutations in the photoreceptor-specific gene peripherin-2 ( PRPH-2 , also known as retinal degeneration slow/RDS) cause incurable retinal degeneration with a high degree of phenotypic variability. Patient phenotypes range from retinitis pigmentosa to various forms of macular and pattern dystrophy. Macular and pattern dystrophy in particular are associated with complex, poorly understood disease mechanisms, as severe vision loss is often associated both with defects in the photoreceptors, as well as the choroid and retinal pigment epithelium (RPE). Since there is currently no satisfactory model to study pattern dystrophy disease mechanisms, we generated a knockin mouse model expressing an RDS pattern dystrophy mutation, Y141C. Y141C mice exhibited clinical signs similar to those in patients including late-onset fundus abnormalities characteristic of RPE and choroidal defects and electroretinogram defects. Ultrastructural examination indicated that disc formation was initiated by the Y141C protein, but proper sizing and alignment of discs required wild-type RDS. The biochemical mechanism underlying these abnormalities was tied to defects in the normal process of RDS oligomerization which is required for proper RDS function. Y141C-RDS formed strikingly abnormal disulfide-linked complexes which were localized to the outer segment (OS) where they impaired the formation of proper OS structure. These data support a model of pattern dystrophy wherein a primary molecular defect occurring in all photoreceptors leads to secondary sequellae in adjacent tissues, an outcome which leads to macular vision loss. An understanding of the role of RDS in the interplay between these tissues significantly enhances our understanding of RDS-associated pathobiology and our ability to design rational treatment strategies.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2014-11-07
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2014-11-07
    Description: In recent years, an increasing number of reports have been focused on the structure and biological role of non-canonical nucleic acid secondary structures. Many of these studies involve the use of oligonucleotides that can often adopt a variety of structures depending on the experimental conditions, and hence change the outcome of an assay. The knowledge of the structure(s) formed by oligonucleotides is thus critical to correctly interpret the results, and gain insight into the biological role of these particular sequences. Herein we demonstrate that size-exclusion HPLC (SE-HPLC) is a simple yet surprisingly powerful tool to quickly and effortlessly assess the secondary structure(s) formed by oligonucleotides. For the first time, an extensive calibration and validation of the use of SE-HPLC to confidently detect the presence of different species displaying various structure and/or molecularity, involving 〉110 oligonucleotides forming a variety of secondary structures (antiparallel, parallel, A-tract bent and mismatched duplexes, triplexes, G-quadruplexes and i-motifs, RNA stem loops), is performed. Moreover, we introduce simple metrics that allow the use of SE-HPLC without the need for a tedious calibration work. We show that the remarkable versatility of the method allows to quickly establish the influence of a number of experimental parameters on nucleic acid structuration and to operate on a wide range of oligonucleotide concentrations. Case studies are provided to clearly illustrate the all-terrain capabilities of SE-HPLC for oligonucleotide secondary structure analysis. Finally, this manuscript features a number of important observations contributing to a better understanding of nucleic acid structural polymorphism.
    Keywords: Phsyical and Biochemical Characterisation of DNA
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2014-11-07
    Description: Single-molecule manipulation (SMM) techniques use applied force, and measured elastic response, to reveal microscopic physical parameters of individual biomolecules and details of biomolecular interactions. A major hurdle in the application of these techniques is the labeling method needed to immobilize biomolecules on solid supports. A simple, minimally-perturbative labeling strategy would significantly broaden the possible applications of SMM experiments, perhaps even allowing the study of native biomolecular structures. To accomplish this, we investigate the use of functionalized locked nucleic acid (LNA) oligomers as biomolecular handles that permit sequence-specific binding and immobilization of DNA. We find these probes form bonds with DNA with high specificity but with varied stability in response to the direction of applied mechanical force: when loaded in a shear orientation, the bound LNA oligomers were measured to be two orders of magnitude more stable than when loaded in a peeling, or unzipping, orientation. Our results show that LNA provides a simple, stable means to functionalize dsDNA for manipulation. We provide design rules that will facilitate their use in future experiments.
    Keywords: Phsyical and Biochemical Characterisation of DNA
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2014-11-07
    Description: Development of single-molecule localization microscopy techniques has allowed nanometre scale localization accuracy inside cells, permitting the resolution of ultra-fine cell structure and the elucidation of crucial molecular mechanisms. Application of these methodologies to understanding processes underlying DNA replication and repair has been limited to defined in vitro biochemical analysis and prokaryotic cells. In order to expand these techniques to eukaryotic systems, we have further developed a photo-activated localization microscopy-based method to directly visualize DNA-associated proteins in unfixed eukaryotic cells. We demonstrate that motion blurring of fluorescence due to protein diffusivity can be used to selectively image the DNA-bound population of proteins. We designed and tested a simple methodology and show that it can be used to detect changes in DNA binding of a replicative helicase subunit, Mcm4, and the replication sliding clamp, PCNA, between different stages of the cell cycle and between distinct genetic backgrounds.
    Keywords: Protein-nucleic acid interaction, Cell biology
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2014-11-07
    Description: Decitabine (5-aza-2'-deoxycytidine) is a DNA methyltransferase inhibitor and an archetypal epigenetic drug for the therapy of myeloid leukemias. The mode of action of decitabine strictly depends on the incorporation of the drug into DNA. However, DNA incorporation and ensuing genotoxic effects of decitabine have not yet been investigated in human cancer cell lines or in models related to the approved indication of the drug. Here we describe a robust assay for the quantitative determination of decitabine incorporation rates into DNA from human cancer cells. Using a panel of human myeloid leukemia cell lines we show appreciable amounts of decitabine incorporation that closely correlated with cellular drug uptake. Decitabine incorporation was also detectable in primary cells from myeloid leukemia patients, indicating that the assay is suitable for biomarker analyses to predict drug responses in patients. Finally, we also used next-generation sequencing to comprehensively analyze the effects of decitabine incorporation on the DNA sequence level. Interestingly, this approach failed to reveal significant changes in the rates of point mutations and genome rearrangements in myeloid leukemia cell lines. These results indicate that standard rates of decitabine incorporation are not genotoxic in myeloid leukemia cells.
    Keywords: Mutagenesis, Phsyical and Biochemical Characterisation of DNA
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2014-11-07
    Description: A new functional gene database, FOAM (Functional Ontology Assignments for Metagenomes), was developed to screen environmental metagenomic sequence datasets. FOAM provides a new functional ontology dedicated to classify gene functions relevant to environmental microorganisms based on Hidden Markov Models (HMMs). Sets of aligned protein sequences (i.e. ‘profiles’) were tailored to a large group of target KEGG Orthologs (KOs) from which HMMs were trained. The alignments were checked and curated to make them specific to the targeted KO. Within this process, sequence profiles were enriched with the most abundant sequences available to maximize the yield of accurate classifier models. An associated functional ontology was built to describe the functional groups and hierarchy. FOAM allows the user to select the target search space before HMM-based comparison steps and to easily organize the results into different functional categories and subcategories. FOAM is publicly available at http://portal.nersc.gov/project/m1317/FOAM/ .
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2014-11-07
    Description: The understanding of folding and function of RNA molecules depends on the identification and classification of interactions between ribonucleotide residues. We developed a new method named ClaRNA for computational classification of contacts in RNA 3D structures. Unique features of the program are the ability to identify imperfect contacts and to process coarse-grained models. Each doublet of spatially close ribonucleotide residues in a query structure is compared to clusters of reference doublets obtained by analysis of a large number of experimentally determined RNA structures, and assigned a score that describes its similarity to one or more known types of contacts, including pairing, stacking, base–phosphate and base–ribose interactions. The accuracy of ClaRNA is 0.997 for canonical base pairs, 0.983 for non-canonical pairs and 0.961 for stacking interactions. The generalized squared correlation coefficient (GC 2 ) for ClaRNA is 0.969 for canonical base pairs, 0.638 for non-canonical pairs and 0.824 for stacking interactions. The classifier can be easily extended to include new types of spatial relationships between pairs or larger assemblies of nucleotide residues. ClaRNA is freely available via a web server that includes an extensive set of tools for processing and visualizing structural information about RNA molecules.
    Keywords: RNA characterisation and manipulation, Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2014-11-07
    Description: The Prp19-associated complex is required for spliceosome activation by stabilizing the binding of U5 and U6 on the spliceosome after the release of U4. The complex comprises at least eight proteins, among which Ntc90 and Ntc77 contain multiple tetratricopeptide repeat (TPR) elements. We have previously shown that Ntc90 is not involved in spliceosome activation, but is required for the recruitment of essential first-step factor Yju2 to the spliceosome. We demonstrate here that Ntc77 has dual functions in both spliceosome activation and the first catalytic step in recruiting Yju2. We have identified an amino-terminal region of Ntc77, which encompasses the N-terminal domain and the first three TPR motifs, dispensable for spliceosome activation but required for stable interaction of Yju2 with the spliceosome. Deletion of this region had no severe effect on the integrity of the NTC, binding of NTC to the spliceosome or spliceosome activation, but impaired splicing and exhibited a dominant-negative growth phenotype. Our data reveal functional roles of Ntc77 in both spliceosome activation and the first catalytic step, and distinct structural domains of Ntc77 required for these two steps.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2014-11-07
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2014-12-16
    Description: Angiosperm mitochondrial genomes exhibit many unusual properties, including heterogeneous nucleotide composition and exceptionally large and variable genome sizes. Determining the role of nonadaptive mechanisms such as mutation bias in shaping the molecular evolution of these unique genomes has proven challenging because their dynamic structures generally prevent identification of homologous intergenic sequences for comparative analyses. Here, we report an analysis of angiosperm mitochondrial DNA sequences that are derived from inserted plastid DNA ( mtpts ). The availability of numerous completely sequenced plastid genomes allows us to infer the evolutionary history of these insertions, including the specific nucleotide substitutions and indels that have occurred because their incorporation into the mitochondrial genome. Our analysis confirmed that many mtpts have a complex history, including frequent gene conversion and multiple examples of horizontal transfer between divergent angiosperm lineages. Nevertheless, it is clear that the majority of extant mtpt sequence in angiosperms is the product of recent transfer (or gene conversion) and is subject to rapid loss/deterioration, suggesting that most mtpts are evolving relatively free from functional constraint. The evolution of mtpt sequences reveals a pattern of biased mutational input in angiosperm mitochondrial genomes, including an excess of small deletions over insertions and a skew toward nucleotide substitutions that increase AT content. However, these mutation biases are far weaker than have been observed in many other cellular genomes, providing insight into some of the notable features of angiosperm mitochondrial architecture, including the retention of large intergenic regions and the relatively neutral GC content found in these regions.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2014-12-17
    Description: Here we conducted an integrative multi-omics analysis to understand how cancers harbor various types of aberrations at the genomic, epigenomic and transcriptional levels. In order to elucidate biological relevance of the aberrations and their mutual relations, we performed whole-genome sequencing, RNA-Seq, bisulfite sequencing and ChIP-Seq of 26 lung adenocarcinoma cell lines. The collected multi-omics data allowed us to associate an average of 536 coding mutations and 13,573 mutations in promoter or enhancer regions with aberrant transcriptional regulations. We detected the 385 splice site mutations and 552 chromosomal rearrangements, representative cases of which were validated to cause aberrant transcripts. Averages of 61, 217, 3687 and 3112 mutations are located in the regulatory regions which showed differential DNA methylation, H3K4me3, H3K4me1 and H3K27ac marks, respectively. We detected distinct patterns of aberrations in transcriptional regulations depending on genes. We found that the irregular histone marks were characteristic to EGFR and CDKN1A, while a large genomic deletion and hyper-DNA methylation were most frequent for CDKN2A. We also used the multi-omics data to classify the cell lines regarding their hallmarks of carcinogenesis. Our datasets should provide a valuable foundation for biological interpretations of interlaced genomic and epigenomic aberrations.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2014-12-17
    Description: Alkylative damage to DNA can be induced by environmental chemicals, endogenous metabolites and some commonly prescribed chemotherapeutic agents. The regioisomeric N 3-, O 2 - and O 4 -ethylthymidine ( N 3-, O 2 - and O 4 -EtdT, respectively) represent an important class of ethylated DNA lesions. Using nonreplicative double-stranded vectors containing an N 3-EtdT, O 2 -EtdT or O 4 -EtdT at a defined site in the template strand, herein we examined the effects of these lesions on DNA transcription mediated by single-subunit T7 RNA polymerase or multisubunit human RNA polymerase II in vitro and in human cells. We found that O 4 -EtdT is highly mutagenic and exclusively induces the misincorporation of guanine opposite the lesion, whereas N 3-EtdT and O 2 -EtdT display promiscuous miscoding properties during transcription. In addition, N 3-EtdT and O 2 -EtdT were found to inhibit strongly DNA transcription in vitro and in certain human cells. Moreover, N 3-EtdT, but not O 2 -EtdT or O 4 -EtdT, is an efficient substrate for transcription-coupled nucleotide excision repair. These findings provide new important insights into how these alkylated DNA lesions compromise the flow of genetic information, which may help to understand the risk of these lesions in living cells.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2014-12-17
    Description: In the liver Wnt-signaling contributes to the metabolic fate of hepatocytes, but the precise role of the TCF7L2 in this process is unknown. We employed a temporal RNA-Seq approach to examine gene expression 3–96 h following Tcf7l2 silencing in rat hepatoma cells, and combined this with ChIP-Seq to investigate mechanisms of target gene regulation by TCF7L2. Silencing Tcf7l2 led to a time-dependent appearance of 406 differentially expressed genes (DEGs), including key regulators of cellular growth and differentiation, and amino acid, lipid and glucose metabolism. Direct regulation of 149 DEGs was suggested by strong proximal TCF7L2 binding (peak proximity score 〉 10) and early mRNA expression changes (≤18 h). Indirect gene regulation by TCF7L2 likely occurred via alternate transcription factors, including Hnf4a , Foxo1 , Cited2 , Myc and Lef1 , which were differentially expressed following Tcf7l2 knock-down. Tcf7l2 -silencing enhanced the expression and chromatin occupancy of HNF4α, and co-siRNA experiments revealed that HNF4α was required for the regulation of a subset of metabolic genes by TCF7L2, particularly those involved in lipid and amino-acid metabolism. Our findings suggest TCF7L2 is an important regulator of the hepatic phenotype, and highlight novel mechanisms of gene regulation by TCF7L2 that involve interplay between multiple hepatic transcriptional pathways.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2014-12-17
    Description: 5S Ribosomal RNA (5S rRNA) is a universal component of ribosomes, and the corresponding gene is easily identified in archaeal, bacterial and nuclear genome sequences. However, organelle gene homologs ( rrn5 ) appear to be absent from most mitochondrial and several chloroplast genomes. Here, we re-examine the distribution of organelle rrn5 by building mitochondrion- and plastid-specific covariance models (CMs) with which we screened organelle genome sequences. We not only recover all organelle rrn5 genes annotated in GenBank records, but also identify more than 50 previously unrecognized homologs in mitochondrial genomes of various stramenopiles, red algae, cryptomonads, malawimonads and apusozoans, and surprisingly, in the apicoplast (highly derived plastid) genomes of the coccidian pathogens Toxoplasma gondii and Eimeria tenella . Comparative modeling of RNA secondary structure reveals that mitochondrial 5S rRNAs from brown algae adopt a permuted triskelion shape that has not been seen elsewhere. Expression of the newly predicted rrn5 genes is confirmed experimentally in 10 instances, based on our own and published RNA-Seq data. This study establishes that particularly mitochondrial 5S rRNA has a much broader taxonomic distribution and a much larger structural variability than previously thought. The newly developed CMs will be made available via the Rfam database and the MFannot organelle genome annotator.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2014-12-17
    Description: Mammalian splicing regulatory protein RNA-binding motif protein 4 (RBM4) has an alanine repeat-containing C-terminal domain (CAD) that confers both nuclear- and splicing speckle-targeting activities. Alanine-repeat expansion has pathological potential. Here we show that the alanine-repeat tracts influence the subnuclear targeting properties of the RBM4 CAD in cultured human cells. Notably, truncation of the alanine tracts redistributed a portion of RBM4 to paraspeckles. The alanine-deficient CAD was sufficient for paraspeckle targeting. On the other hand, alanine-repeat expansion reduced the mobility of RBM4 and impaired its splicing activity. We further took advantage of the putative coactivator activator (CoAA)-RBM4 conjoined splicing factor, CoAZ, to investigate the function of the CAD in subnuclear targeting. Transiently expressed CoAZ formed discrete nuclear foci that emerged and subsequently separated—fully or partially—from paraspeckles. Alanine-repeat expansion appeared to prevent CoAZ separation from paraspeckles, resulting in their complete colocalization. CoAZ foci were dynamic but, unlike paraspeckles, were resistant to RNase treatment. Our results indicate that the alanine-rich CAD, in conjunction with its conjoined RNA-binding domain(s), differentially influences the subnuclear localization and biogenesis of RBM4 and CoAZ.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2014-12-17
    Description: Efficient transcription of the HIV-1 genome is regulated by Tat, which recruits P-TEFb from the 7SK small nuclear ribonucleoprotein (snRNP) and other nucleoplasmic complexes to phosphorylate RNA polymerase II and other factors associated with the transcription complex. Although Tat activity is dependent on its binding to the viral TAR sequence, little is known about the cellular factors that might also assemble onto this region of the viral transcript. Here, we report that the splicing factor SRSF1 (SF2/ASF) and Tat recognize overlapping sequences within TAR and the 7SK RNA. SRSF1 expression can inhibit Tat transactivation by directly competing for its binding to TAR. Additionally, we provide evidence that SRSF1 can increase the basal level of viral transcription in the absence of Tat. We propose that SRSF1 activates transcription in the early stages of viral infection by recruiting P-TEFb to TAR from the 7SK snRNP. Whereas in the later stages, Tat substitutes for SRSF1 by promoting release of the stalled polymerase and more efficient transcriptional elongation.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2014-12-17
    Description: We describe the identification and characterization of novel homing endonucleases using genome database mining to identify putative target sites, followed by high throughput activity screening in a bacterial selection system. We characterized the substrate specificity and kinetics of these endonucleases by monitoring DNA cleavage events with deep sequencing. The endonuclease specificities revealed by these experiments can be partially recapitulated using 3D structure-based computational models. Analysis of these models together with genome sequence data provide insights into how alternative endonuclease specificities were generated during natural evolution.
    Keywords: Protein-nucleic acid interaction, Massively Parallel (Deep) Sequencing, Nucleic Acid Enzymology
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2014-12-17
    Description: Mtr4 is a conserved Ski2-like RNA helicase and a subunit of the TRAMP complex that activates exosome-mediated 3'-5' turnover in nuclear RNA surveillance and processing pathways. Prominent features of the Mtr4 structure include a four-domain ring-like helicase core and a large arch domain that spans the core. The ‘ratchet helix’ is positioned to interact with RNA substrates as they move through the helicase. However, the contribution of the ratchet helix in Mtr4 activity is poorly understood. Here we show that strict conservation along the ratchet helix is particularly extensive for Ski2-like RNA helicases compared to related helicases. Mutation of residues along the ratchet helix alters in vitro activity in Mtr4 and TRAMP and causes slow growth phenotypes in vivo . We also identify a residue on the ratchet helix that influences Mtr4 affinity for polyadenylated substrates. Previous work indicated that deletion of the arch domain has minimal effect on Mtr4 unwinding activity. We now show that combining the arch deletion with ratchet helix mutations abolishes helicase activity and produces a lethal in vivo phenotype. These studies demonstrate that the ratchet helix modulates helicase activity and suggest that the arch domain plays a previously unrecognized role in unwinding substrates.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2014-12-17
    Description: Recent evidence points to a role of chromatin in regulation of alternative pre-mRNA splicing (AS). In order to identify novel chromatin regulators of AS, we screened an RNAi library of chromatin proteins using a cell-based high-throughput in vivo assay. We identified a set of chromatin proteins that regulate AS. Using simultaneous genome-wide expression and AS analysis, we demonstrate distinct and non-overlapping functions of these chromatin modifiers on transcription and AS. Detailed mechanistic characterization of one dual function chromatin modifier, the H3K9 methyltransferase EHMT2 (G9a), identified VEGFA as a major chromatin-mediated AS target. Silencing of EHMT2, or its heterodimer partner EHMT1, affects AS by promoting exclusion of VEGFA exon 6a, but does not alter total VEGFA mRNA levels. The epigenetic regulatory mechanism of AS by EHMT2 involves an adaptor system consisting of the chromatin modulator HP1, which binds methylated H3K9 and recruits splicing regulator SRSF1. The epigenetic regulation of VEGFA is physiologically relevant since EHMT2 is transcriptionally induced in response to hypoxia and triggers concomitant changes in AS of VEGFA. These results characterize a novel epigenetic regulatory mechanism of AS and they demonstrate separate roles of epigenetic modifiers in transcription and alternative splicing.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2014-12-17
    Description: N 6 A methylation is the most abundant RNA modification occurring within messenger RNA. Impairment of methylase or demethylase functions are associated with severe phenotypes and diseases in several organisms. Beside writer and eraser enzymes of this dynamic RNA epigenetic modification, reader proteins that recognize this modification are involved in numerous cellular processes. Although the precise characterization of these reader proteins remains unknown, preliminary data showed that most potential reader proteins contained a conserved YT521-B homology (YTH) domain. Here we define the YTH domain of rat YT521-B as a N 6 -methylated adenosine reader domain and report its solution structure in complex with a N 6 -methylated RNA. The structure reveals a binding preference for NGANNN RNA hexamer and a deep hydrophobic cleft for m 6 A recognition. These findings establish a molecular function for YTH domains as m 6 A reader domains and should guide further studies into the biological functions of YTH-containing proteins in m 6 A recognition.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2014-12-17
    Description: Homologous non-coding RNAs frequently exhibit domain insertions, where a branch of secondary structure is inserted in a sequence with respect to its homologs. Dynamic programming algorithms for common secondary structure prediction of multiple RNA homologs, however, do not account for these domain insertions. This paper introduces a novel dynamic programming algorithm methodology that explicitly accounts for the possibility of inserted domains when predicting common RNA secondary structures. The algorithm is implemented as Dynalign II, an update to the Dynalign software package for predicting the common secondary structure of two RNA homologs. This update is accomplished with negligible increase in computational cost. Benchmarks on ncRNA families with domain insertions validate the method. Over base pairs occurring in inserted domains, Dynalign II improves accuracy over Dynalign, attaining 80.8% sensitivity (compared with 14.4% for Dynalign) and 91.4% positive predictive value (PPV) for tRNA; 66.5% sensitivity (compared with 38.9% for Dynalign) and 57.0% PPV for RNase P RNA; and 50.1% sensitivity (compared with 24.3% for Dynalign) and 58.5% PPV for SRP RNA. Compared with Dynalign, Dynalign II also exhibits statistically significant improvements in overall sensitivity and PPV. Dynalign II is available as a component of RNAstructure, which can be downloaded from http://rna.urmc.rochester.edu/RNAstructure.html .
    Keywords: Computational Methods
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2014-12-17
    Description: Fanconi anaemia (FA) is a genome instability disease caused by defects in the FA DNA repair pathway that senses and repairs damage caused by DNA interstrand crosslinks. At least 8 of the 16 genes found mutated in FA encode proteins that assemble into the FA core complex, a multisubunit monoubiquitin E3 ligase. Here, we show that the RuvBL1 and RuvBL2 AAA+ ATPases co-purify with FA core complex isolated under stringent but native conditions from a vertebrate cell line. Depletion of the RuvBL1-RuvBL2 complex in human cells causes hallmark features of FA including DNA crosslinker sensitivity, chromosomal instability and defective FA pathway activation. Genetic knockout of RuvBL1 in a murine model is embryonic lethal while conditional inactivation in the haematopoietic stem cell pool confers profound aplastic anaemia. Together these findings reveal a function for RuvBL1-RuvBL2 in DNA repair through a physical and functional association with the FA core complex. Surprisingly, depletion of RuvBL1-RuvBL2 leads to co-depletion of the FA core complex in human cells. This suggests that a potential mechanism for the role of RuvBL1-RuvBL2 in maintaining genome integrity is through controlling the cellular abundance of FA core complex.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2014-11-28
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2014-11-28
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2014-11-28
    Description: It is now known that unwanted noise and unmodeled artifacts such as batch effects can dramatically reduce the accuracy of statistical inference in genomic experiments. These sources of noise must be modeled and removed to accurately measure biological variability and to obtain correct statistical inference when performing high-throughput genomic analysis. We introduced surrogate variable analysis (sva) for estimating these artifacts by (i) identifying the part of the genomic data only affected by artifacts and (ii) estimating the artifacts with principal components or singular vectors of the subset of the data matrix. The resulting estimates of artifacts can be used in subsequent analyses as adjustment factors to correct analyses. Here I describe a version of the sva approach specifically created for count data or FPKMs from sequencing experiments based on appropriate data transformation. I also describe the addition of supervised sva (ssva) for using control probes to identify the part of the genomic data only affected by artifacts. I present a comparison between these versions of sva and other methods for batch effect estimation on simulated data, real count-based data and FPKM-based data. These updates are available through the sva Bioconductor package and I have made fully reproducible analysis using these methods available from: https://github.com/jtleek/svaseq .
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2014-11-28
    Description: High-throughput techniques have considerably increased the potential of comparative genomics whilst simultaneously posing many new challenges. One of those challenges involves efficiently mining the large amount of data produced and exploring the landscape of both conserved and idiosyncratic genomic regions across multiple genomes. Domains of application of these analyses are diverse: identification of evolutionary events, inference of gene functions, detection of niche-specific genes or phylogenetic profiling. Insyght is a comparative genomic visualization tool that combines three complementary displays: (i) a table for thoroughly browsing amongst homologues, (ii) a comparator of orthologue functional annotations and (iii) a genomic organization view designed to improve the legibility of rearrangements and distinctive loci. The latter display combines symbolic and proportional graphical paradigms. Synchronized navigation across multiple species and interoperability between the views are core features of Insyght. A gene filter mechanism is provided that helps the user to build a biologically relevant gene set according to multiple criteria such as presence/absence of homologues and/or various annotations. We illustrate the use of Insyght with scenarios. Currently, only Bacteria and Archaea are supported. A public instance is available at http://genome.jouy.inra.fr/Insyght . The tool is freely downloadable for private data set analysis.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2014-11-28
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2014-11-28
    Description: BRCA1 is involved in many disparate cellular functions, including DNA damage repair, cell-cycle checkpoint activation, gene transcriptional regulation, DNA replication, centrosome function and others. The majority of evidence strongly favors the maintenance of genomic integrity as a principal tumor suppressor activity of BRCA1. At the same time some functional aspects of BRCA1 are not fully understood. Here, a HAC (human artificial chromosome) module with a regulated centromere was constructed for delivery and expression of the 90 kb genomic copy of the BRCA1 gene into BRCA1-deficient human cells. A battery of functional tests was carried out to demonstrate functionality of the exogenous BRCA1. In separate experiments, we investigated the role of BRCA1 in maintenance of heterochromatin integrity within a human functional kinetochore. We demonstrated that BRCA1 deficiency results in a specific activation of transcription of higher-order alpha-satellite repeats (HORs) assembled into heterochromatin domains flanking the kinetochore. At the same time no detectable elevation of transcription was observed within HORs assembled into centrochromatin domains. Thus, we demonstrated a link between BRCA1 deficiency and kinetochore dysfunction and extended previous observations that BRCA1 is required to silence transcription in heterochromatin in specific genomic loci. This supports the hypothesis that epigenetic alterations of the kinetochore initiated in the absence of BRCA1 may contribute to cellular transformation.
    Keywords: Chromatin and Epigenetics, DNA-Mediated Cell Transformation and Nucleic Acids Transfer
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2014-11-28
    Description: Nucleic acids have become a powerful tool in nanotechnology because of their controllable diverse conformational transitions and adaptable higher-order nanostructure. Using single-stranded DNA probes as the pore-caps for various target recognition, here we present an ultrasensitive universal electrochemical detection system based on graphene and mesoporous silica, and achieve sensitivity with all of the major classes of analytes and simultaneously realize DNA logic gate operations. The concept is based on the locking of the pores and preventing the signal-reporter molecules from escape by target-induced the conformational change of the tailored DNA caps. The coupling of ‘waking up’ gatekeeper with highly specific biochemical recognition is an innovative strategy for the detection of various targets, able to compete with classical methods which need expensive instrumentation and sophisticated experimental operations. The present study has introduced a new electrochemical signal amplification concept and also adds a new dimension to the function of graphene-mesoporous materials hybrids as multifunctional nanoscale logic devices. More importantly, the development of this approach would spur further advances in important areas, such as point-of-care diagnostics or detection of specific biological contaminations, and hold promise for use in field analysis.
    Keywords: Phsyical and Biochemical Characterisation of DNA
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2014-11-28
    Description: Many critical processes in the cell involve direct binding between RNAs and proteins, making it imperative to fully understand the physicochemical principles behind such interactions at the atomistic level. Here, we use molecular dynamics simulations and 15 μs of sampling to study the behavior of amino acids and amino acid sidechain analogs in high-concentration aqueous solutions of standard RNA nucleobases. Structural and energetic analysis of simulated systems allows us to derive interaction propensity scales for different amino acid/nucleobase combinations. The derived scales closely match and greatly extend the available experimental data, providing a comprehensive foundation for studying RNA–protein interactions in different contexts. By using these scales, we demonstrate a statistically significant connection between nucleobase composition of human mRNA coding sequences and nucleobase interaction propensities of their cognate protein sequences. For example, pyrimidine density profiles of mRNAs match uracil-propensity profiles of their cognate proteins with a median Pearson correlation coefficient of R = –0.70. Our results provide support for the recently proposed hypotheses that mRNAs and their cognate proteins may be physicochemically complementary to each other and bind, especially if unstructured, with the complementarity level being negatively influenced by mRNA adenine content. Finally, we utilize the derived scales to refine the complementarity hypothesis and closely examine its physicochemical underpinnings.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2014-11-28
    Description: The 54 promoters are unique in prokaryotic genome and responsible for transcripting carbon and nitrogen-related genes. With the avalanche of genome sequences generated in the postgenomic age, it is highly desired to develop automated methods for rapidly and effectively identifying the 54 promoters. Here, a predictor called ‘ iPro54-PseKNC ’ was developed. In the predictor, the samples of DNA sequences were formulated by a novel feature vector called ‘pseudo k -tuple nucleotide composition’, which was further optimized by the incremental feature selection procedure. The performance of iPro54-PseKNC was examined by the rigorous jackknife cross-validation tests on a stringent benchmark data set. As a user-friendly web-server, iPro54-PseKNC is freely accessible at http://lin.uestc.edu.cn/server/iPro54-PseKNC . For the convenience of the vast majority of experimental scientists, a step-by-step protocol guide was provided on how to use the web-server to get the desired results without the need to follow the complicated mathematics that were presented in this paper just for its integrity. Meanwhile, we also discovered through an in-depth statistical analysis that the distribution of distances between the transcription start sites and the translation initiation sites were governed by the gamma distribution, which may provide a fundamental physical principle for studying the 54 promoters.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2014-11-28
    Description: Telomeres at chromosome ends are normally masked from proteins that signal and repair DNA double strand breaks (DSBs). Bulky DNA lesions can cause DSBs if they block DNA replication, unless they are bypassed by translesion (TLS) DNA polymerases. Here, we investigated roles for TLS polymerase , (pol) in preserving telomeres following acute physical UVC exposure and chronic chemical Cr(VI) exposure, which both induce blocking lesions. We report that pol protects against cytotoxicity and replication stress caused by Cr(VI), similar to results with ultraviolet C light (UVC). Both exposures induce ataxia telangiectasia and Rad3-related (ATR) kinase and pol accumulation into nuclear foci and localization to individual telomeres, consistent with replication fork stalling at DNA lesions. Pol-deficient cells exhibited greater numbers of telomeres that co-localized with DSB response proteins after exposures. Furthermore, the genotoxic exposures induced telomere aberrations associated with failures in telomere replication that were suppressed by pol. We propose that pol's ability to bypass bulky DNA lesions at telomeres is critical for proper telomere replication following genotoxic exposures.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2014-11-28
    Description: The DNA damage response triggers cell-cycle checkpoints, DNA repair and apoptosis using multiple post-translational modifications as molecular switches. However, how ubiquitination regulates ATR signaling in response to replication stress and single-strand break is still unclear. Here, we identified the deubiquitination enzyme (DUB) USP20 as a pivotal regulator of ATR-related DDR pathway. Through screening a panel of DUBs, we identified USP20 as critical for replication stress response. USP20 is phosphorylated by ATR, resulting in disassociation of the E3 ubiquitin ligase HERC2 from USP20 and USP20 stabilization. USP20 in turn deubiquitinates and stabilizes Claspin and enhances the activation of ATR-Chk1 signaling. These findings reveal USP20 to be a novel regulator of ATR-dependent DNA damage signaling.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2014-11-28
    Description: Sunlight-induced C to T mutation hotspots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. The C or 5-methyl-C in CPDs are not stable and deaminate to U and T, respectively, which leads to the insertion of A by DNA polymerase and defines a probable mechanism for the origin of UV-induced C to T mutations. We have now determined the photoproduct formation and deamination rates for 10 consecutive T= m CG CPDs over a full helical turn at the dyad axis of a nucleosome and find that whereas photoproduct formation and deamination is greatly inhibited for the CPDs closest to the histone surface, it is greatly enhanced for the outermost CPDs. Replacing the G in a T= m CG CPD with A greatly decreased the deamination rate. These results show that rotational position and flanking sequence in a nucleosome can significantly and synergistically modulate CPD formation and deamination that contribute to C to T mutations associated with skin cancer induction and may have influenced the evolution of the human genome.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2014-11-28
    Description: We present a discriminative learning method for pattern discovery of binding sites in nucleic acid sequences based on hidden Markov models. Sets of positive and negative example sequences are mined for sequence motifs whose occurrence frequency varies between the sets. The method offers several objective functions, but we concentrate on mutual information of condition and motif occurrence. We perform a systematic comparison of our method and numerous published motif-finding tools. Our method achieves the highest motif discovery performance, while being faster than most published methods. We present case studies of data from various technologies, including ChIP-Seq, RIP-Chip and PAR-CLIP, of embryonic stem cell transcription factors and of RNA-binding proteins, demonstrating practicality and utility of the method. For the alternative splicing factor RBM10, our analysis finds motifs known to be splicing-relevant. The motif discovery method is implemented in the free software package Discrover. It is applicable to genome- and transcriptome-scale data, makes use of available repeat experiments and aside from binary contrasts also more complex data configurations can be utilized.
    Keywords: Computational Methods, Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2014-11-28
    Description: In Escherichia coli , the ATP-bound form of DnaA (ATP–DnaA) promotes replication initiation. During replication, the bound ATP is hydrolyzed to ADP to yield the ADP-bound form (ADP–DnaA), which is inactive for initiation. The chromosomal site DARS2 facilitates the regeneration of ATP–DnaA by catalyzing nucleotide exchange between free ATP and ADP bound to DnaA. However, the regulatory mechanisms governing this exchange reaction are unclear. Here, using in vitro reconstituted experiments, we show that two nucleoid-associated proteins, IHF and Fis, bind site-specifically to DARS2 to activate coordinately the exchange reaction. The regenerated ATP–DnaA was fully active in replication initiation and underwent DnaA–ATP hydrolysis. ADP–DnaA formed heteromultimeric complexes with IHF and Fis on DARS2 , and underwent nucleotide dissociation more efficiently than ATP–DnaA. Consistently, mutant analyses demonstrated that specific binding of IHF and Fis to DARS2 stimulates the formation of ATP–DnaA production, thereby promoting timely initiation. Moreover, we show that IHF– DARS2 binding is temporally regulated during the cell cycle, whereas Fis only binds to DARS2 in exponentially growing cells. These results elucidate the regulation of ATP–DnaA and replication initiation in coordination with the cell cycle and growth phase.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2014-11-28
    Description: The virF gene of Shigella , responsible for triggering the virulence cascade in this pathogenic bacterium, is transcriptionally repressed by the nucleoid-associated protein H-NS. The primary binding sites of H-NS within the promoter region of virF have been detected here by footprinting experiments in the presence of H-NS or its monomeric DNA-binding domain (H-NS ctd ), which displays the same specificity as intact H-NS. Of the 14 short DNA fragments identified, 10 overlap sequences similar to the H-NS binding motif. The ‘fast’, ‘intermediate’ and ‘slow’ H-NS binding events leading to the formation of the nucleoprotein complex responsible for transcription repression have been determined by time-resolved hydroxyl radical footprinting experiments in the presence of full-length H-NS. We demonstrate that this process is completed in ≤1 s and H-NS protections occur simultaneously on site I and site II of the virF promoter. Furthermore, all ‘fast’ protections have been identified in regions containing predicted H-NS binding motifs, in agreement with the hypothesis that H-NS nucleoprotein complex assembles from a few nucleation sites containing high-affinity binding sequences. Finally, data are presented showing that the 22-bp fragment corresponding to one of the HNS binding sites deviates from canonical B-DNA structure at three TpA steps.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2014-11-28
    Description: Human DBC1 (Deleted in Breast Cancer 1; KIAA1967; CCAR2) is a protein implicated in the regulation of apoptosis, transcription and histone modifications. Upon DNA damage, DBC1 is phosphorylated by ATM/ATR on Thr454 and this modification increases its inhibitory interaction with SIRT1, leading to p53 acetylation and p53-dependent apoptosis. Here, we report that the inhibition of SIRT1 by DBC1 in the DNA damage response (DDR) also depends on Chk2, the transducer kinase that is activated by ATM upon DNA lesions and contributes to the spreading of DNA damage signal. Indeed we found that inactivation of Chk2 reduces DBC1-SIRT1 binding, thus preventing p53 acetylation and DBC1-induced apoptosis. These events are mediated by Chk2 phosphorylation of the 11S proteasome activator REG on Ser247, which increases REG-DBC1 interaction and SIRT1 inhibition. Overall our results clarify the mechanisms underlying the DBC1-dependent SIRT1 inhibition and link, for the first time, Chk2 and REG to the ATM-DBC1-SIRT1 axis.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2014-11-28
    Description: The mechanisms of gene amplification in tumour cells are poorly understood and the relationship between extrachromosomal DNA molecules, named double minutes (dmins), and intrachromosomal homogeneously staining regions (hsr) is not documented at nucleotide resolution. Using fluorescent in situ hybridization and whole genome sequencing, we studied a xenografted human oligodendroglioma where the co-amplification of the EGFR and MYC loci was present in the form of dmins at early passages and of an hsr at later passages. The amplified regions underwent multiple rearrangements and deletions during the formation of the dmins and their transformation into hsr. In both forms of amplification, non-homologous end-joining and microhomology-mediated end-joining rather than replication repair mechanisms prevailed in fusions. Small fragments, some of a few tens of base pairs, were associated in contigs. They came from clusters of breakpoints localized hundreds of kilobases apart in the amplified regions. The characteristics of some pairs of junctions suggest that at least some fragments were not fused randomly but could result from the concomitant repair of neighbouring breakpoints during the interaction of remote DNA sequences. This characterization at nucleotide resolution of the transition between extra- and intrachromosome amplifications highlights a hitherto uncharacterized organization of the amplified regions suggesting the involvement of new mechanisms in their formation.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2014-11-28
    Description: DNA palindromes are hotspots for DNA double strand breaks, inverted duplications and intra-chromosomal translocations in a wide spectrum of organisms from bacteria to humans. These reactions are mediated by DNA secondary structures such as hairpins and cruciforms. In order to further investigate the pathways of formation and cleavage of these structures, we have compared the processing of a 460 base pair (bp) perfect palindrome in the Escherichia coli chromosome with the same construct interrupted by a 20 bp spacer to form a 480 bp interrupted palindrome. We show here that the perfect palindrome can form hairpin DNA structures on the templates of the leading- and lagging-strands in a replication-dependent reaction. In the presence of the hairpin endonuclease SbcCD, both copies of the replicated chromosome containing the perfect palindrome are cleaved, resulting in the formation of an unrepairable DNA double-strand break and cell death. This contrasts with the interrupted palindrome, which forms a hairpin on the lagging-strand template that is processed to form breaks, which can be repaired by homologous recombination.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2014-11-28
    Description: Nucleic acid-dependent ATPases are involved in nearly all aspects of DNA and RNA metabolism. Previous studies have described a number of mitochondrial helicases. However, double-stranded DNA-dependent ATPases, including translocases or enzymes remodeling DNA-protein complexes, have not been identified in mitochondria of the yeast Saccharomyces cerevisae . Here, we demonstrate that Irc3p is a mitochondrial double-stranded DNA-dependent ATPase of the Superfamily II. In contrast to the other mitochondrial Superfamily II enzymes Mss116p, Suv3p and Mrh4p, which are RNA helicases, Irc3p has a direct role in mitochondrial DNA (mtDNA) maintenance. Specific Irc3p-dependent mtDNA metabolic intermediates can be detected, including high levels of double-stranded DNA breaks that accumulate in irc3 mutants. irc3- related topology changes in rho- mtDNA can be reversed by the deletion of mitochondrial RNA polymerase RPO41, suggesting that Irc3p counterbalances adverse effects of transcription on mitochondrial genome stability.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...