ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (59)
  • Models, Molecular  (59)
  • 1995-1999  (59)
  • 1980-1984
  • 1975-1979
  • 1970-1974
  • 1925-1929
  • 1996  (59)
  • 1976
  • Natural Sciences in General  (59)
  • Political Science
  • Geography
Collection
  • Articles  (59)
Years
  • 1995-1999  (59)
  • 1980-1984
  • 1975-1979
  • 1970-1974
  • 1925-1929
Year
Topic
  • 1
    Publication Date: 1996-12-13
    Description: The structure of the Staphylococcus aureus alpha-hemolysin pore has been determined to 1.9 A resolution. Contained within the mushroom-shaped homo-oligomeric heptamer is a solvent-filled channel, 100 A in length, that runs along the sevenfold axis and ranges from 14 A to 46 A in diameter. The lytic, transmembrane domain comprises the lower half of a 14-strand antiparallel beta barrel, to which each protomer contributes two beta strands, each 65 A long. The interior of the beta barrel is primarily hydrophilic, and the exterior has a hydrophobic belt 28 A wide. The structure proves the heptameric subunit stoichiometry of the alpha-hemolysin oligomer, shows that a glycine-rich and solvent-exposed region of a water-soluble protein can self-assemble to form a transmembrane pore of defined structure, and provides insight into the principles of membrane interaction and transport activity of beta barrel pore-forming toxins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Song, L -- Hobaugh, M R -- Shustak, C -- Cheley, S -- Bayley, H -- Gouaux, J E -- New York, N.Y. -- Science. 1996 Dec 13;274(5294):1859-66.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Chicago, 920 East 58 Street, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8943190" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Bacterial Toxins/*chemistry/metabolism ; Cell Membrane/chemistry/metabolism ; Crystallography, X-Ray ; Hemolysin Proteins/*chemistry/metabolism ; Hydrogen Bonding ; Lipid Bilayers/*chemistry ; Membrane Potentials ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Staphylococcus aureus/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-06-28
    Description: Nucleic acid bulges have been implicated in a number of biological processes and are specific cleavage targets for the enediyne antitumor antibiotic neocarzinostatin chromophore in a base-catalyzed, radical-mediated reaction. The solution structure of the complex between an analog of the bulge-specific cleaving species and an oligodeoxynucleotide containing a two-base bulge was elucidated by nuclear magnetic resonance. An unusual binding mode involves major groove recognition by the drug carbohydrate unit and tight fitting of the wedge-shaped drug in the triangular prism pocket formed by the two looped-out bulge bases and the neighboring base pairs. The two drug rings mimic helical DNA bases, complementing the bent DNA structure. The putative abstracting drug radical is 2.2 +/- 0.1 angstroms from the pro-S H5' of the target bulge nucleotide. This structure clarifies the mechanism of bulge recognition and cleavage by a drug and provides insight into the design of bulge-specific nucleic acid binding molecules.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stassinopoulos, A -- Ji, J -- Gao, X -- Goldberg, I H -- CA44257/CA/NCI NIH HHS/ -- GM53793/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jun 28;272(5270):1943-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8658168" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Base Sequence ; DNA/chemistry/*metabolism ; Enediynes ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Oligodeoxyribonucleotides/chemistry/*metabolism ; Zinostatin/analogs & derivatives/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1996-05-31
    Description: In a previous study, an RNA aptamer for the specific recognition of arginine was evolved from a parent sequence that bound citrulline specifically. The two RNAs differ at only 3 positions out of 44. The solution structures of the two aptamers complexed to their cognate amino acids have now been determined by two-dimensional nuclear magnetic resonance spectroscopy. Both aptamers contain two asymmetrical internal loops that are not well ordered in the free RNA but that fold into a compact structure upon ligand binding. Those nucleotides common to both RNAs include a conserved cluster of purine residues, three of which form an uneven plane containing a G:G pair, and two other residues nearly perpendicular to that surface. Two of the three variant nucleotides are stacked on the cluster of purines and form a triple contact to the amino acid side chain, whereas the edge of the third variant nucleotide is capping the binding pocket.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Y -- Kochoyan, M -- Burgstaller, P -- Westhof, E -- Famulok, M -- New York, N.Y. -- Science. 1996 May 31;272(5266):1343-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre de Biochimie Structurale (CBS), Unite Mixte de Recherche, CNRS 9955, Montpellier, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8650546" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/chemistry/*metabolism ; Base Composition ; Base Sequence ; Citrulline/chemistry/*metabolism ; Crystallography, X-Ray ; Hydrogen Bonding ; Ligands ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Mutation ; *Nucleic Acid Conformation ; RNA/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1996-09-20
    Description: Group I self-splicing introns catalyze their own excision from precursor RNAs by way of a two-step transesterification reaction. The catalytic core of these ribozymes is formed by two structural domains. The 2.8-angstrom crystal structure of one of these, the P4-P6 domain of the Tetrahymena thermophila intron, is described. In the 160-nucleotide domain, a sharp bend allows stacked helices of the conserved core to pack alongside helices of an adjacent region. Two specific long-range interactions clamp the two halves of the domain together: a two-Mg2+-coordinated adenosine-rich corkscrew plugs into the minor groove of a helix, and a GAAA hairpin loop binds to a conserved 11-nucleotide internal loop. Metal- and ribose-mediated backbone contacts further stabilize the close side-by-side helical packing. The structure indicates the extent of RNA packing required for the function of large ribozymes, the spliceosome, and the ribosome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cate, J H -- Gooding, A R -- Podell, E -- Zhou, K -- Golden, B L -- Kundrot, C E -- Cech, T R -- Doudna, J A -- 5T32GM08283-07/GM/NIGMS NIH HHS/ -- GM22778-21/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Sep 20;273(5282):1678-85.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA. doudna@csb.yale.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8781224" target="_blank"〉PubMed〈/a〉
    Keywords: Adenine/chemistry ; Animals ; Base Composition ; Base Sequence ; Binding Sites ; Catalysis ; Crystallography, X-Ray ; Hydrogen Bonding ; *Introns ; Magnesium/chemistry ; Models, Molecular ; Molecular Sequence Data ; *Nucleic Acid Conformation ; Phosphates/chemistry ; Phylogeny ; RNA Splicing ; RNA, Catalytic/*chemistry/metabolism ; RNA, Protozoan/*chemistry/metabolism ; Ribose/chemistry ; Tetrahymena thermophila/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-07-12
    Description: The three-dimensional structure of the amino-terminal core domain (residues 1 through 151) of the human immunodeficiency virus-type 1 (HIV-1) capsid protein has been solved by multidimensional heteronuclear magnetic resonance spectroscopy. The structure is unlike those of previously characterized viral coat proteins and is composed of seven alpha helices, two beta hairpins, and an exposed partially ordered loop. The domain is shaped like an arrowhead, with the beta hairpins and loop exposed at the trailing edge and the carboxyl-terminal helix projecting from the tip. The proline residue Pro1 forms a salt bridge with a conserved, buried aspartate residue (Asp51), which suggests that the amino terminus of the protein rearranges upon proteolytic maturation. The binding site for cyclophilin A, a cellular rotamase that is packaged into the HIV-1 virion, is located on the exposed loop and encompasses the essential proline residue Pro90. In the free monomeric domain, Pro90 adopts kinetically trapped cis and trans conformations, raising the possibility that cyclophilin A catalyzes interconversion of the cis- and trans-Pro90 loop structures.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gitti, R K -- Lee, B M -- Walker, J -- Summers, M F -- Yoo, S -- Sundquist, W I -- AI30917/AI/NIAID NIH HHS/ -- CA 42014/CA/NCI NIH HHS/ -- GM 42561/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jul 12;273(5272):231-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21228, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662505" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Isomerases/metabolism ; Amino Acid Sequence ; Aspartic Acid/chemistry ; Binding Sites ; Capsid/*chemistry/metabolism ; Carrier Proteins/metabolism ; HIV Core Protein p24/*chemistry/metabolism ; HIV-1/*chemistry ; Magnetic Resonance Spectroscopy ; Models, Molecular ; Molecular Sequence Data ; Peptidylprolyl Isomerase ; Proline/chemistry ; Protein Conformation ; Protein Processing, Post-Translational ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Virion/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-03-08
    Description: Domain 5 is an essential active-site component of group II intron ribozymes. The role of backbone substituents in D5 function was explored through synthesis of a series of derivatives containing deoxynucleotides at each position along the D5 strand. Kinetic screens revealed that eight 2'-hydroxyl groups were likely to be critical for activity of D5. Through two separate methods, including competitive inhibition and direct kinetic analysis, effects on binding and chemistry were distinguished. Depending on their function, important 2'-hydroxyl groups lie on opposite faces of the molecule, defining distinct loci for molecular recognition and catalysis by D5.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Abramovitz, D L -- Friedman, R A -- Pyle, A M -- GM41371/GM/NIGMS NIH HHS/ -- GM50313/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Mar 8;271(5254):1410-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8596912" target="_blank"〉PubMed〈/a〉
    Keywords: Base Composition ; Base Sequence ; Binding Sites ; Catalysis ; Exons ; Hydrogen Bonding ; Hydroxyl Radical/chemistry ; *Introns ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; Oligoribonucleotides/chemistry/metabolism ; RNA/metabolism ; RNA, Catalytic/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1996-07-12
    Description: Rapamycin, a potent immunosuppressive agent, binds two proteins: the FK506-binding protein (FKBP12) and the FKBP-rapamycin-associated protein (FRAP). A crystal structure of the ternary complex of human FKBP12, rapamycin, and the FKBP12-rapamycin-binding (FRB) domain of human FRAP at a resolution of 2.7 angstroms revealed the two proteins bound together as a result of the ability of rapamycin to occupy two different hydrophobic binding pockets simultaneously. The structure shows extensive interactions between rapamycin and both proteins, but fewer interactions between the proteins. The structure of the FRB domain of FRAP clarifies both rapamycin-independent and -dependent effects observed for mutants of FRAP and its homologs in the family of proteins related to the ataxia-telangiectasia mutant gene product, and it illustrates how a small cell-permeable molecule can mediate protein dimerization.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, J -- Chen, J -- Schreiber, S L -- Clardy, J -- CA59021/CA/NCI NIH HHS/ -- GM38625/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jul 12;273(5272):239-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662507" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Carrier Proteins/chemistry/genetics/*metabolism ; Crystallography, X-Ray ; DNA-Binding Proteins/chemistry/*metabolism ; Heat-Shock Proteins/chemistry/*metabolism ; Humans ; *Immunophilins ; Models, Molecular ; Mutation ; *Phosphotransferases (Alcohol Group Acceptor) ; Polyenes/*chemistry/*metabolism ; *Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins/chemistry/metabolism ; Sirolimus ; TOR Serine-Threonine Kinases ; Tacrolimus Binding Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1996-12-20
    Description: Enoyl reductase (ENR), an enzyme involved in fatty acid biosynthesis, is the target for antibacterial diazaborines and the front-line antituberculosis drug isoniazid. Analysis of the structures of complexes of Escherichia coli ENR with nicotinamide adenine dinucleotide and either thienodiazaborine or benzodiazaborine revealed the formation of a covalent bond between the 2' hydroxyl of the nicotinamide ribose and a boron atom in the drugs to generate a tight, noncovalently bound bisubstrate analog. This analysis has implications for the structure-based design of inhibitors of ENR, and similarities to other oxidoreductases suggest that mimicking this molecular linkage may have generic applications in other areas of medicinal chemistry.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baldock, C -- Rafferty, J B -- Sedelnikova, S E -- Baker, P J -- Stuitje, A R -- Slabas, A R -- Hawkes, T R -- Rice, D W -- New York, N.Y. -- Science. 1996 Dec 20;274(5295):2107-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK. D.Rice@sheffield.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8953047" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/*metabolism/pharmacology ; Binding Sites ; Boron Compounds/*metabolism/pharmacology ; Crystallography, X-Ray ; Drug Design ; Drug Resistance, Microbial ; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) ; Enzyme Inhibitors/*metabolism/pharmacology ; Escherichia coli/enzymology ; Escherichia coli Proteins ; Fatty Acid Synthase, Type II ; Fatty Acid Synthases/antagonists & inhibitors/*chemistry/metabolism ; Hydrogen Bonding ; Models, Molecular ; NAD/*metabolism ; Oxidoreductases/antagonists & inhibitors/*chemistry/metabolism ; Protein Conformation ; Protein Structure, Secondary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-05-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jacobson, R H -- Tjian, R -- New York, N.Y. -- Science. 1996 May 10;272(5263):827-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, University of California, Berkeley 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8629011" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallography, X-Ray ; DNA/*chemistry/metabolism ; DNA-Binding Proteins/*chemistry/metabolism ; Humans ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; Protein Structure, Secondary ; TATA Box ; TATA-Box Binding Protein ; Transcription Factor TFIIA ; Transcription Factor TFIID ; Transcription Factors/*chemistry/genetics/*metabolism ; *Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1996-05-17
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, I A -- New York, N.Y. -- Science. 1996 May 17;272(5264):973-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8638141" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen Presentation ; Antigens/chemistry/*metabolism ; Antigens, Differentiation, B-Lymphocyte/chemistry/*metabolism ; HLA-DR1 Antigen/chemistry/metabolism ; Histocompatibility Antigens Class II/chemistry/immunology/*metabolism ; Humans ; Hydrogen Bonding ; Hydrogen-Ion Concentration ; Mice ; Models, Molecular ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...