ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (22)
  • Nature Publishing Group  (22)
  • American Physical Society
  • Annual Reviews
  • 2005-2009  (22)
  • 1990-1994
  • 1980-1984
  • 1960-1964
  • 2008  (16)
  • 2007  (6)
  • 1964
  • 1960
  • 1
    Publication Date: 2017-03-13
    Description: Although rising global sea levels will affect the shape of coastlines over the coming decades1, 2, the most severe and catastrophic shoreline changes occur as a consequence of local and regional-scale processes. Changes in sediment supply3 and deltaic subsidence4, 5, both natural or anthropogenic, and the occurrences of tropical cyclones4, 5 and tsunamis6 have been shown to be the leading controls on coastal erosion. Here, we use satellite images of South American mangrove-colonized mud banks collected over the past twenty years to reconstruct changes in the extent of the shoreline between the Amazon and Orinoco rivers. The observed timing of the redistribution of sediment and migration of the mud banks along the 1,500 km muddy coast suggests the dominant control of ocean forcing by the 18.6 year nodal tidal cycle7. Other factors affecting sea level such as global warming or El Niño and La Niña events show only secondary influences on the recorded changes. In the coming decade, the 18.6 year cycle will result in an increase of mean high water levels of 6 cm along the coast of French Guiana, which will lead to a 90 m shoreline retreat.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 447 . p. 383.
    Publication Date: 2019-09-23
    Description: As the complex interplay of forces in the ocean responds to climate change, the dynamics of global ocean circulation are shifting.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-06-09
    Description: The new aromatic polyketides genoketide A1, genoketide A2 and prechrysophanol glucuronide are biosynthetic intermediates of the octaketide chrysophanol. They were isolated from the alkaliphilic strain Streptomyces sp. AK 671 together with the new metabolite chrysophanol glucuronide. The structures of the compounds were elucidated by mass spectrometry and NMR methods. Genoketide A2 exhibited a slight and prechrysophanol glucuronide a more pronounced inhibition of the proliferation of L5178y lymphoma cells.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Predicting the evolution of climate over decadal timescales requires a quantitative understanding of the dynamics that govern the meridional overturning circulation (MOC)1. Comprehensive ocean measurement programmes aiming to monitor MOC variations have been established in the subtropical North Atlantic2, 3 (RAPID, at latitude 26.5° N, and MOVE, at latitude 16° N) and show strong variability on intraseasonal to interannual timescales. Observational evidence of longer-term changes in MOC transport remains scarce, owing to infrequent sampling of transoceanic sections over past decades4, 5. Inferences based on long-term sea surface temperature records, however, supported by model simulations, suggest a variability with an amplitude of plusminus1.5–3 Sv (1 Sv = 106 m3 s-1) on decadal timescales in the subtropics6. Such variability has been attributed to variations of deep water formation in the sub-arctic Atlantic, particularly the renewal rate of Labrador Sea Water7. Here we present results from a model simulation that suggest an additional influence on decadal MOC variability having a Southern Hemisphere origin: dynamic signals originating in the Agulhas leakage region at the southern tip of Africa. These contribute a MOC signal in the tropical and subtropical North Atlantic that is of the same order of magnitude as the northern source. A complete rationalization of observed MOC changes therefore also requires consideration of signals arriving from the south.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Geoscience, 1 (1). pp. 14-15.
    Publication Date: 2017-02-22
    Description: The relationship between carbon dioxide and climate over millions of years has been a source of controversy. Fossilized liverwort leaves can help illuminate both temperature and atmospheric carbon dioxide levels from 200 to 60 million years ago.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-02-23
    Description: Despite similar physical properties, the Northern and Southern Atlantic subtropical gyres have different biogeochemical regimes. The Northern subtropical gyre, which is subject to iron deposition from Saharan dust1, is depleted in the nutrient phosphate, possibly as a result of iron-enhanced nitrogen fixation2. Although phosphate depleted, rates of carbon fixation in the euphotic zone of the North Atlantic subtropical gyre are comparable to those of the South Atlantic subtropical gyre3, which is not phosphate limited. Here we use the activity of the phosphorus-specific enzyme alkaline phosphatase to show potentially enhanced utilization of dissolved organic phosphorus occurring over much of the North Atlantic subtropical gyre. We find that during the boreal spring up to 30% of primary production in the North Atlantic gyre is supported by dissolved organic phosphorus. Our diagnostics and composite map of the surface distribution of dissolved organic phosphorus in the subtropical Atlantic Ocean reveal shorter residence times in the North Atlantic gyre than the South Atlantic gyre. We interpret the asymmetry of dissolved organic phosphorus cycling in the two gyres as a consequence of enhanced nitrogen fixation in the North Atlantic Ocean4, which forces the system towards phosphorus limitation. We suggest that dissolved organic phosphorus utilization may contribute to primary production in other phosphorus-limited ocean settings as well.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-05-11
    Description: Marine sponges (phylum Porifera) are among the oldest multicellular animals (metazoans), the sea's most prolific producers of bioactive metabolites, and of considerable ecological importance due to their abundance and ability to filter enormous volumes of seawater. In addition to these important attributes, sponge microbiology is now a rapidly expanding field.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-10-26
    Description: Resolving flow geometry in the mantle wedge is central to understanding the thermal and chemical structure of subduction zones, subducting plate dehydration, and melting that leads to arc volcanism, which can threaten large populations and alter climate through gas and particle emission. Here we show that isotope geochemistry and seismic velocity anisotropy provide strong evidence for trench-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. This finding contradicts classical models, which predict trench-normal flow owing to the overlying wedge mantle being dragged downwards by the subducting plate. The isotopic signature of central Costa Rican volcanic rocks is not consistent with its derivation from the mantle wedge1, 2, 3 or eroded fore-arc complexes4 but instead from seamounts of the Galapagos hotspot track on the subducting Cocos plate. This isotopic signature decreases continuously from central Costa Rica to northwestern Nicaragua. As the age of the isotopic signature beneath Costa Rica can be constrained and its transport distance is known, minimum northwestward flow rates can be estimated (63–190 mm yr-1) and are comparable to the magnitude of subducting Cocos plate motion (approx85 mm yr-1). Trench-parallel flow needs to be taken into account in models evaluating thermal and chemical structure and melt generation in subduction zones.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-18
    Description: The climate of the North Atlantic region exhibits fluctuations on decadal timescales that have large societal consequences. Prominent examples include hurricane activity in the Atlantic1, and surface-temperature and rainfall variations over North America2, Europe3 and northern Africa4. Although these multidecadal variations are potentially predictable if the current state of the ocean is known5, 6, 7, the lack of subsurface ocean observations8 that constrain this state has been a limiting factor for realizing the full skill potential of such predictions9. Here we apply a simple approach—that uses only sea surface temperature (SST) observations—to partly overcome this difficulty and perform retrospective decadal predictions with a climate model. Skill is improved significantly relative to predictions made with incomplete knowledge of the ocean state10, particularly in the North Atlantic and tropical Pacific oceans. Thus these results point towards the possibility of routine decadal climate predictions. Using this method, and by considering both internal natural climate variations and projected future anthropogenic forcing, we make the following forecast: over the next decade, the current Atlantic meridional overturning circulation will weaken to its long-term mean; moreover, North Atlantic SST and European and North American surface temperatures will cool slightly, whereas tropical Pacific SST will remain almost unchanged. Our results suggest that global surface temperature may not increase over the next decade, as natural climate variations in the North Atlantic and tropical Pacific temporarily offset the projected anthropogenic warming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Geoscience, 1 (7). pp. 423-424.
    Publication Date: 2017-02-23
    Description: Ninety-five million years ago, ocean bottom waters were much warmer than at present. Some of this warmth could have come from the proto-North Atlantic's continental shelves after the balmy surface waters became increasingly salty through evaporation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-09-23
    Description: The early oceanographic history of the Arctic Ocean is important in regulating, and responding to, climatic changes. However, constraints on its oceanographic history preceding the Quaternary (the past 1.8 Myr) have become available only recently, because of the difficulties associated with obtaining continuous sediment records in such a hostile setting. Here, we use the neodymium isotope compositions of two sediment cores recovered near the North Pole to reconstruct over the past approx15 Myr the sources contributing to Arctic Intermediate Water, a water mass found today at depths of 200 to 1,500 m. We interpret high neodymium ratios for the period between 15 and 2 Myr ago, and for the glacial periods thereafter, as indicative of weathering input from the Siberian Putoranan basalts into the Arctic Ocean. Arctic Intermediate Water was then derived from brine formation in the Eurasian shelf regions, with only a limited contribution of intermediate water from the North Atlantic. In contrast, the modern circulation pattern, with relatively high contributions of North Atlantic Intermediate Water and negligible input from brine formation, exhibits low neodymium isotope ratios and is typical for the interglacial periods of the past 2 Myr. We suggest that changes in climatic conditions and the tectonic setting were responsible for switches between these two modes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2017-02-22
    Description: Organic-rich sedimentary units called sapropels have formed repeatedly in the eastern Mediterranean Sea, in response to variations of solar radiation. Sapropel formation is due to a change either in the flux of organic matter to the sea floor from productivity changes or in preservation by bottom-water oxygen levels. However, the relative importance of surface-ocean productivity versus deep-water preservation for the formation of these organic-rich shale beds is still being debated, and conflicting interpretations are often invoked1, 2, 3, 4, 5, 6, 7. Here we analyse at high resolution the differences in the composition of the most recent sapropel, S1, in a suite of cores covering the entire eastern Mediterranean basin. We demonstrate that during the 4,000 years of sapropel formation, surface-water salinity was reduced and the deep eastern Mediterranean Sea, below 1,800 m depth, was devoid of oxygen. This resulted in the preferential basin-wide preservation of sapropel S1 with different characteristics above and below 1,800 m depth as a result of different redox conditions. We conclude that climate-induced stratification of the ocean may therefore contribute to enhanced preservation of organic matter in sapropels and potentially also in black shales.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-09-23
    Description: Deep-water formation in the northern North Atlantic Ocean and the Arctic Ocean is a key driver of the global thermohaline circulation and hence also of global climate1. Deciphering the history of the circulation regime in the Arctic Ocean has long been prevented by the lack of data from cores of Cenozoic sediments from the Arctic's deep-sea floor. Similarly, the timing of the opening of a connection between the northern North Atlantic and the Arctic Ocean, permitting deep-water exchange, has been poorly constrained. This situation changed when the first drill cores were recovered from the central Arctic Ocean2. Here we use these cores to show that the transition from poorly oxygenated to fully oxygenated ('ventilated') conditions in the Arctic Ocean occurred during the later part of early Miocene times. We attribute this pronounced change in ventilation regime to the opening of the Fram Strait. A palaeo-geographic and palaeo-bathymetric reconstruction of the Arctic Ocean, together with a physical oceanographic analysis of the evolving strait and sill conditions in the Fram Strait, suggests that the Arctic Ocean went from an oxygen-poor 'lake stage', to a transitional 'estuarine sea' phase with variable ventilation, and finally to the fully ventilated 'ocean' phase 17.5 Myr ago. The timing of this palaeo-oceanographic change coincides with the onset of the middle Miocene climatic optimum3, although it remains unclear if there is a causal relationship between these two events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-03-06
    Description: Diatoms are photosynthetic secondary endosymbionts found throughout marine and freshwater environments, and are believed to be responsible for around one-fifth of the primary productivity on Earth1, 2. The genome sequence of the marine centric diatom Thalassiosira pseudonana was recently reported, revealing a wealth of information about diatom biology3, 4, 5. Here we report the complete genome sequence of the pennate diatom Phaeodactylum tricornutum and compare it with that of T. pseudonana to clarify evolutionary origins, functional significance and ubiquity of these features throughout diatoms. In spite of the fact that the pennate and centric lineages have only been diverging for 90 million years, their genome structures are dramatically different and a substantial fraction of genes (approx40%) are not shared by these representatives of the two lineages. Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms. Contributing factors include selective gene family expansions, differential losses and gains of genes and introns, and differential mobilization of transposable elements. Most significantly, we document the presence of hundreds of genes from bacteria. More than 300 of these gene transfers are found in both diatoms, attesting to their ancient origins, and many are likely to provide novel possibilities for metabolite management and for perception of environmental signals. These findings go a long way towards explaining the incredible diversity and success of the diatoms in contemporary oceans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-02-22
    Description: Observations show a significant intensification of the Southern Hemisphere westerlies, the prevailing winds between the latitudes of 30° and 60° S, over the past decades. A continuation of this intensification trend is projected by climate scenarios for the twenty-first century. The response of the Antarctic Circumpolar Current and the carbon sink in the Southern Ocean to changes in wind stress and surface buoyancy fluxes is under debate. Here we analyse the Argo network of profiling floats and historical oceanographic data to detect coherent hemispheric-scale warming and freshening trends that extend to depths of more than 1,000 m. The warming and freshening is partly related to changes in the properties of the water masses that make up the Antarctic Circumpolar Current, which are consistent with the anthropogenic changes in heat and freshwater fluxes suggested by climate models. However, we detect no increase in the tilt of the surfaces of equal density across the Antarctic Circumpolar Current, in contrast to coarse-resolution model studies. Our results imply that the transport in the Antarctic Circumpolar Current and meridional overturning in the Southern Ocean are insensitive to decadal changes in wind stress.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 454 . pp. 46-47.
    Publication Date: 2019-09-23
    Description: Rising levels of atmospheric carbon dioxide lead to acidification of the oceans. A site in the Mediterranean, naturally carbonated by under-sea volcanoes, provides clues to the possible effects on marine ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-05-25
    Description: The ecological niche of nitrate-storing Beggiatoa, and their contribution to the removal of sulfide were investigated in coastal sediment. With microsensors a clear suboxic zone of 2-10cm thick was identified, where neither oxygen nor free sulfide was detectable. In this zone most of the Beggiatoa were found, where they oxidize sulfide with internally stored nitrate. The sulfide input into the suboxic zone was dominated by an upward sulfide flux from deeper sediment, whereas the local production in the suboxic zone was much smaller. Despite their abundance, the calculated sulfide-oxidizing capacity of the Beggiatoa could account for only a small fraction of the total sulfide removal in the sediment. Consequently, most of the sulfide flux into the suboxic layer must have been removed by chemical processes, mainly by precipitation with Fe2+ and oxidation by Fe(III), which was coupled with a pH increase. The free Fe2+ diffusing upwards was oxidized by Mn(IV), resulting in a strong pH decrease. The nitrate storage capacity allows Beggiatoa to migrate randomly up and down in anoxic sediments with an accumulated gliding distance of 4m before running out of nitrate. We propose that the steep sulfide gradient and corresponding high sulfide flux, a typical characteristic of Beggiatoa habitats, is not needed for their metabolic performance, but rather used as a chemotactic cue by the highly motile filaments to avoid getting lost at depth in the sediment. Indeed sulfide is a repellant for Beggiatoa.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2020-01-07
    Description: Large uncertainties remain in the current and future contribution to sea level rise from Antarctica. Climate warming may increase snowfall in the continent’s interior1,2,3, but enhance glacier discharge at the coast where warmer air and ocean temperatures erode the buttressing ice shelves4,5,6,7,8,9,10,11. Here, we use satellite interferometric synthetic-aperture radar observations from 1992 to 2006 covering 85% of Antarctica’s coastline to estimate the total mass flux into the ocean. We compare the mass fluxes from large drainage basin units with interior snow accumulation calculated from a regional atmospheric climate model for 1980 to 2004. In East Antarctica, small glacier losses in Wilkes Land and glacier gains at the mouths of the Filchner and Ross ice shelves combine to a near-zero loss of 4±61 Gt yr−1. In West Antarctica, widespread losses along the Bellingshausen and Amundsen seas increased the ice sheet loss by 59% in 10 years to reach 132±60 Gt yr−1 in 2006. In the Peninsula, losses increased by 140% to reach 60±46 Gt yr−1 in 2006. Losses are concentrated along narrow channels occupied by outlet glaciers and are caused by ongoing and past glacier acceleration. Changes in glacier flow therefore have a significant, if not dominant impact on ice sheet mass balance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-09-23
    Description: The oceans have absorbed nearly half of the fossil-fuel carbon dioxide (CO2) emitted into the atmosphere since pre-industrial times1, causing a measurable reduction in seawater pH and carbonate saturation2. If CO2 emissions continue to rise at current rates, upper-ocean pH will decrease to levels lower than have existed for tens of millions of years and, critically, at a rate of change 100 times greater than at any time over this period3. Recent studies have shown effects of ocean acidification on a variety of marine life forms, in particular calcifying organisms4, 5, 6. Consequences at the community to ecosystem level, in contrast, are largely unknown. Here we show that dissolved inorganic carbon consumption of a natural plankton community maintained in mesocosm enclosures at initial CO2 partial pressures of 350, 700 and 1,050 μatm increases with rising CO2. The community consumed up to 39% more dissolved inorganic carbon at increased CO2 partial pressures compared to present levels, whereas nutrient uptake remained the same. The stoichiometry of carbon to nitrogen drawdown increased from 6.0 at low CO2 to 8.0 at high CO2, thus exceeding the Redfield carbon:nitrogen ratio of 6.6 in today’s ocean7. This excess carbon consumption was associated with higher loss of organic carbon from the upper layer of the stratified mesocosms. If applicable to the natural environment, the observed responses have implications for a variety of marine biological and biogeochemical processes, and underscore the importance of biologically driven feedbacks in the ocean to global change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature Geoscience, 1 . pp. 2-3.
    Publication Date: 2019-09-23
    Description: The Intergovernmental Panel for Climate Change has convinced the public that climate change is real. To tackle it, the panel needs complementary climate services that provide continuous climate information for all regions and the globe.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-01-22
    Description: Permafrost-affected soils of the Siberian Arctic were investigated with regard to identification of nitrite oxidizing bacteria active at low temperature. Analysis of the fatty acid profiles of enrichment cultures grown at 4°C, 10°C and 17°C revealed a pattern that was different from that of known nitrite oxidizers but was similar to fatty acid profiles of Betaproteobacteria. Electron microscopy of two enrichment cultures grown at 10°C showed prevalent cells with a conspicuous ultrastructure. Sequence analysis of the 16S rRNA genes allocated the organisms to a so far uncultivated cluster of the Betaproteobacteria, with Gallionella ferruginea as next related taxonomically described organism. The results demonstrate that a novel genus of chemolithoautotrophic nitrite oxidizing bacteria is present in polygonal tundra soils and can be enriched at low temperatures up to 17°C. Cloned sequences with high sequence similarities were previously reported from mesophilic habitats like activated sludge and therefore an involvement of this taxon in nitrite oxidation in nonarctic habitats is suggested. The presented culture will provide an opportunity to correlate nitrification with nonidentified environmental clones in moderate habitats and give insights into mechanisms of cold adaptation. We propose provisional classification of the novel nitrite oxidizing bacterium as 'Candidatus Nitrotoga arctica'.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2023-01-31
    Description: Palaeoclimate records and numerical model simulations indicate that changes in tropical and subtropical sea surface temperatures and in the annual average position of the intertropical convergence zone are linked to high-latitude climate changes on millennial to glacial–interglacial timescales. It has recently been suggested that cooling in the high latitudes associated with abrupt climate-change events is evident primarily during the northern hemisphere winter, implying increased seasonality at these times8. However, it is unclear whether such a seasonal bias also exists for the low latitudes. Here we analyse the Mg/Ca ratios of surface-dwelling foraminifera to reconstruct sea surface temperatures in the northeastern Gulf of Mexico for the past 300,000 years. We suggest that sea surface temperatures are controlled by the migration of the northern boundary of the Atlantic Warm Pool, and hence the position of the intertropical convergence zone during boreal summer, and are relatively insensitive to winter conditions. Our results suggest that summer Atlantic Warm Pool expansion is primarily affected by glacial–interglacial variability and low-latitude summer insolation. Because a clear signature of rapid climate-change events, such as the Younger Dryas cold event, is lacking in our record, we conclude that high-latitude events seem to influence only the winter Caribbean climate conditions, consistent with the hypothesis of extreme northern-hemisphere seasonality during abrupt cooling events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...