ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • General Chemistry  (434)
  • Life and Medical Sciences  (133)
  • Aerodynamics  (71)
  • Fluid Mechanics and Heat Transfer  (66)
  • Humans
  • 2015-2019
  • 1955-1959  (704)
  • 1959  (704)
Collection
Publisher
Years
  • 2015-2019
  • 1955-1959  (704)
Year
  • 1
    Publication Date: 2019-05-11
    Description: A design guide is suggested as a basis for indicating combinations of airplane design variables for which the possibilities of pitch-up are minimized for tail-behind-wing and tailless airplane configurations. The guide specifies wing plan forms that would be expected to show increased tail-off stability with increasing lift and plan forms that show decreased tail-off stability with increasing lift. Boundaries indicating tail-behind-wing positions that should be considered along with given tail-off characteristics also are suggested. An investigation of one possible limitation of the guide with respect to the effects of wing-aspect-ratio variations on the contribution to stability of a high tail has been made in the Langley high-speed 7- by 10-foot tunnel through a Mach number range from 0.60 to 0.92. The measured pitching-moment characteristics were found to be consistent with those of the design guide through the lift range for aspect ratios from 3.0 to 2.0. However, a configuration with an aspect ratio of 1.55 failed t o provide the predicted pitch-up warning characterized by sharply increasing stability at the high lifts following the initial stall before pitching up. Thus, it appears that the design guide presented herein might not be applicable when the wing aspect ratios lower than about 2.0.
    Keywords: Aerodynamics
    Type: NASA-TM-X-26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: An investigation of some aspects of the sonic boom has been made with the aid of wind-tunnel measurements of the pressure distributions about bodies of various shapes. The tests were made in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 2.01 and at a Reynolds number per foot of 2.5 x 10(exp 6). Measurements of the pressure field were made at orifices in the surface of a boundary-layer bypass plate. The models which represented both fuselage and wing types of thickness distributions were small enough to allow measurements as far away as 8 body lengths or 64 chords. The results are compared with estimates made using existing theory. To the first order, the boom-producing pressure rise across the bow shock is dependent on the longitudinal development of body area and not on local details. Nonaxisymmetrical shapes may be replaced by equivalent bodies of revolution to obtain satisfactory theoretical estimates of the far-field pressures.
    Keywords: Aerodynamics
    Type: NASA-TN-D-161
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: Time histories of noise pressures near ground level were measured during flight tests of fighter-type airplanes over fairly flat, partly wooded terrain in the e Mach number range between 1.13 and 1.4 and at altitudes from 25,000 to 45,000 feet. Atmospheric soundings and radar tracking studies were made for correlation with the measured noise data. The measured and calculated values of the pressure rise across the shock wave were generally in good agreement. There is a tendency for the theory to overestimate the pressure at locations remote from the track and to underestimate the pressures for conditions of high tailwind at altitude. The measured values of ground-reflection factor averaged about 1.8 f or the surface tested as compared to a theoretical value of 2.0. P o booms were measured in all cases. The observers also generally reported two booms; although, in some cases, only one boom was reported. The shock-wave noise associated with some of the flight tests was judged to be objectionable by ground observers, and in one case the cracking of a plate-glass store window was correlated in time with the passage of the airplane at an altitude of 25,000 feet.
    Keywords: Aerodynamics
    Type: NASA-TN-D-48
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: A two-blade rotor having a diameter of 4 feet and a solidity of 0.037 was subjected to sharp-edge vertical gusts while being operated at various forward speeds to study the effect of the gusts on the blade periodic bending moments and flapping angles. Variables studied included gust velocity, collective pitch angle, flapping hinge offset, and tip-speed ratio. Dimensionless coefficients are derived for the periodic components of the incremental changes in blade flapping angles and bending moments which arise when a rotor blade penetrates a sharp-edge gust. Mental changes in both the flapping angles and bending moments are essentially proportional to gust velocity, and the coefficients express the ratio of these increments to gust velccity. The results show that the flapping coefficient usually increases with an increase in collective pitch angle, is generally dependent on tip-speed ratio, and is essentially independent of the amount of flapping hinge offset. The bending-moment coefficient is also dependent on collective pitch angle and tip-speed ratio. Expected reductions in bending moments are realized by the use of flapping hinges, and further reductions in bending moments are achieved as the amount of flapping hinge offset is increased. Comparison of the experimental results of this investigation with limited available theoretical results shows substantial agreement but indicates that the assumption that the response of the rotor to a sharp-edge gust is independent of the collective pitch angle prior to gust entry is probably inadequate.
    Keywords: Aerodynamics
    Type: NASA-TN-D-31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-17
    Description: The longitudinal aerodynamic characteristics of a wing-body-horizontal-tail configuration designed for efficient performance at transonic speeds has been investigated at Mach numbers from 0.80 to 1.03 in the Langley 16-foot transonic tunnel. The effect of adding an outboard leading-edge chord-extension to the highly tapered 45 deg. swept wing was also obtained. The average Reynolds number for this investigation was 6.7 x 10(exp 6) based on the wing mean aerodynamic chord. The relatively low tail placement as well as the addition of a chord-extension achieved some alleviation of the pitchup tendencies of the wing-fuselage configuration. The maximum trimmed lift-drag ratio was 16.5 up to a Mach number of 0.9, with the moment center located at the quarter-chord point of the mean aerodynamic chord. For the untrimmed case, the maximum lift-drag ratio was approximately 19.5 up to a Mach number of 0.9.
    Keywords: Aerodynamics
    Type: NASA-TM-X-130
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-17
    Description: Measurements of the statistical properties of the fluctuating wall pressure produced by a subsonic turbulent boundary layer are described. The measurements provide additional information about the structure of the turbulent boundary layer; they are applicable to the problems of boundary-layer induced noise inside an airplane fuselage and to the generation of waves-on water. The spectrum of the wall pressure is presented in dimensionless form. The ratio of the root-mean-square wall pressure to the free-stream dynamic pressure is found to be a constant square root of bar P(sup 2)/q(sub infinity) = 0.006 independent of Mach number and Reynolds number. In addition, space- time correlation measurements in the stream direction show that pressure fluctuations whose scale is greater than or equal to 0.3 times the boundary-layer thickness are convected with the convection speed U(sub c) = 0.82U(sub infinity) where U(infinity) is the free-stream velocity and have lost their identity in a distance approximately equal to 10 boundary-layer thicknesses.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-MEMO-3-17-59W
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-17
    Description: Approximate analytical solutions are presented for two-dimensional and axisymmetric hypersonic flow over slender power law bodies. Both zero order (M approaches infinity) and first order (small but nonvanishing values of 1/(M(Delta)(sup 2) solutions are presented, where M is free-stream Mach number and Delta is a characteristic slope. These solutions are compared with exact numerical integration of the equations of motion and appear to be accurate particularly when the shock is relatively close to the body.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-TR-R-15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-17
    Description: An experimental investigation of the mixing of two coaxial gas streams was conducted over a range of subsonic jet Mach numbers and temperatures. Three configurations were investigated. One had no innerbody in the primary or inner pipe and was designed to give flat velocity profiles at the exit of the primary pipe. The other two configurations had innerbodies in the primary pipe. These were designed to give velocity profiles similar to those existing at the inlet of propulsive systems such as afterburners. Curves of axial velocity and temperature profiles across the radius are presented at various axial stations. For the two configurations with the innerbody, data are shown at stations out to approximately 8 primary-pipe diameters from the exit of the primary pipe. For the flat-velocity-profile configuration, data are shown at distances extending downstream at 22 primary-pipe diameters from the exit of the primary pipe.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA-MEMO-12-21-58E , L-104
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-17
    Description: A diamond wing and body combination was designed to have an area distribution which would result in near optimum zero-lift wave-drag coefficients at a Mach number of 1.00, and decreasing wave-drag coefficient with increasing Mach number up to near sonic leading-edge conditions for the wing. The airfoil section were computed by varying their shape along with the body radii (blending process) to match the selected area distribution and the given plan form. The exposed wing section had an average maximum thickness of about 3 percent of the local chords, and the maximum thickness of the center-line chord was 5.49 percent. The wing had an aspect ratio of 2 and a leading-edge sweep of 45 deg. Test data were obtained throughout the Mach number range from 0.20 to 3.50 at Reynolds numbers based on the mean aerodynamic chord of roughly 6,000,000 to 9,000,000. The zero-lift wave-drag coefficients of the diamond model satisfied the design objectives and were equal to the low values for the Mach number 1.00 equivalent body up to the limit of the transonic tests. From the peak drag coefficient near M = 1.00 there was a gradual decrease in wave-drag coefficient up to M = 1.20. Above sonic leading-edge conditions of the wing there was a rise in the wave-drag coefficient which was attributed in part to the body contouring as well as to the wing geometry. The diamond model had good lift characteristics, in spite of the prediction from low-aspect-ratio theory that the rear half of the diamond wing would carry little lift. The experimental lift-curve slope obtained at supersonic speeds were equal to or greater than the values predicted by linear theory. Similarly the other basic aerodynamic parameters, aerodynamic center position, and maximum lift-drag ratios were satisfactorily predicted at supersonic speeds.
    Keywords: Aerodynamics
    Type: NASA-TM-X-105
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-17
    Description: An investigation of a model of a standard size body in combination with a representative 45 deg swept-wing-fuselage model has been conducted in the Langley 8-foot transonic pressure tunnel over a Mach number range from 0.80 to 1.43. The body, with a fineness ratio of 8.5, was tested with and without fins, and was pylon-mounted beneath the fuselage or wing. Force measurements were obtained on the wing-fuselage model with and without the body, for an angle-of-attack range from -2 deg to approximately 12 deg and an angle-of-sideslip range from -8 deg to 8 deg. In addition, body loads were measured over the same angle-of-attack and angle-of-sideslip range. The Reynolds number for the investigation, based on the wing mean aerodynamic chord, varied from 1.85 x 10(exp 6) to 2.85 x 10(exp 6). The addition of the body beneath the fuselage or the wing increased the drag coefficient of the complete model over the Mach number range tested. On the basis of the drag increase per body, the under-fuselage position was the more favorable. Furthermore, the bodies tended to increase the lateral stability of the complete model. The variation of body loads with angle of attack for the unfinned bodies was generally small and linear over the Mach number range tested with the addition of fins causing large increases in the rates of change of normal-force coefficient and nose-down pitching-moment coefficient. The variation of body side-force coefficient with sideslip for the unfinned body beneath the fuselage was at least twice as large as the variation of this load for the unfinned body beneath the wing. The addition of fins to the body beneath either the fuselage or the wing approximately doubled the rate of change of body side-force coefficient with sideslip. Furthermore, the variation of body side-force coefficient with sideslip for the body beneath the wing was at least twice as large as the variation of this load with angle of attack.
    Keywords: Aerodynamics
    Type: NASA-MEMO-4-20-59L , L-206
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...