ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,336)
  • Oxford University Press  (448)
  • Springer Nature  (281)
  • GFZ Data Services  (193)
  • Paris, France  (163)
  • American Meteorological Society  (126)
  • Blackwell Publishing Ltd
  • De Gruyter
  • International Union of Crystallography
  • Springer Science + Business Media
  • 2020-2024  (981)
  • 2020-2023  (355)
  • 1960-1964
  • 1950-1954
  • 1935-1939
  • 2022  (409)
  • 2022  (409)
  • 2021  (927)
  • 2021  (927)
  • 1959
Collection
Publisher
Language
Years
Year
Journal
  • 1
    Publication Date: 2022-03-02
    Description: Crystalline rocks can produce dangerous radiation levels on the basis of their content in radioisotopes. Here, we report radiological data from 10 metamorphic and igneous rock samples collected from the crystalline basement of the Peloritani Mountains (southern Italy). In order to evaluate the radiological properties of these rocks, the gamma radiation and the radon emanation have been measured. Moreover, since some of these rocks are employed as building materials, we assess the potential hazard for population connected to their use. Gamma spectroscopy was used to measure the 226Ra, 232Th and 40K activity concentration, whereas the radon emanation was investigated by using a RAD 7 detector. The results show 226Ra, 232Th and 40K activity concentration values ranging from (17 ± 4) to (56 ± 8) Bq kg-1, (14 ± 3) to (77 ± 14) Bq kg-1 and (167 ± 84) to (1760 ± 242) Bq kg-1, respectively. Values of the annual effective dose equivalent outdoor range from 0.035 to 0.152 mSv y-1, whereas the gamma index is in the range of 0.22-0.98. The 222Rn emanation coefficient and the 222Rn surface exhalation rate vary from (0.63 ± 0.3) to (8.27 ± 1.6)% and from (0.12 ± 0.03) to (2.75 ± 0.17) Bq m-2 h-1, respectively. The indoor radon derived from the building use of these rocks induces an approximate contribution to the annual effective dose ranging from 8 to 176 μSv y-1. All the obtained results suggest that the crystalline rocks from the Peloritani Mountains are not harmful for the residential population, even though they induce annual effective doses due to terrestrial gamma radiation above the worldwide average values. Moreover, their use as building materials does not produce significant health hazards connected to the indoor radon exposure.
    Description: Published
    Description: 452–464
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-07
    Description: The Pollino range is a region of slow deformation where earthquakes generally nucleate on low-angle normal faults. Recent studies have mapped fault structures and identified fluid related dynamics responsible for historical and recent seismicity in the area. Here, we apply the coda-normalization method at multiple frequencies and scales to image the 3-D P-wave attenuation (QP) properties of its slowly deforming fault network. The wide-scale average attenuation properties of the Pollino range are typical for a stable continental block, with a dependence of QP on frequency of Q−1 P = (0.0011   0.0008) f (0.36 0.32). Using only waveforms comprised in the area of seismic swarms, the dependence of attenuation on frequency increases [Q−1 P = (0.0373   0.0011) f (−0.59 0.01)], as expected when targeting seismically active faults. A shallow very-low-attenuation anomaly (max depth of 4–5 km) caps the seismicity recorded within the western cluster 1 of the Pollino seismic sequence (2012, maximum magnitude Mw = 5.1). High-attenuation volumes below this anomaly are likely related to fluid storage and comprise the western and northern portions of cluster 1 and the Mercure basin. These anomalies are constrained to the NW by a sharp low-attenuation interface, corresponding to the transition towards the eastern unit of the Apennine Platform under the Lauria mountains. The low-seismicity volume between cluster 1 and cluster 2 (maximum magnitude Mw = 4.3, east of the primary) shows diffuse low-to-average attenuation features. There is no clear indication of fluid-filled pathways between the two clusters resolvable at our resolution. In this volume, the attenuation values are anyway lower than in recognized low-attenuation blocks, like the Lauria Mountain and Pollino Range. As the volume develops in a region marked at surface by small-scale cross-faulting, it suggests no actual barrier between clusters, more likely a system of small locked fault patches that can break in the future. Our model loses resolution at depth, but it can still resolve a 5-to-15-km-deep high-attenuation anomaly that underlies the Castrovillari basin. This anomaly is an ideal deep source for the SE-to-NW migration of historical seismicity. Our novel deep structural maps support the hypothesis that the Pollino sequence has been caused by a mechanism of deep and lateral fluid-induced migration.
    Description: Natural Environment Research Council (NERC) Centre for Doctoral Training (CDT) in Oil and Gas. University of Aberdeen.
    Description: Published
    Description: 536–547
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: body waves ; seismic attenuation ; seismic tomography ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-16
    Description: Of all the socio-economic changes caused by the Covid-19 pandemic, the disruption to workforce organizations will probably leave the largest indelible mark. The way work will be organized in the future will be closely linked to the experience of work-ing under the same institution’s response to the pandemic. This paper aims to fill the gap in knowledge about smart working (SW) in public organizations, with a focus on the experience of the employees of two Italian research organizations, CNR and INGV. Analysing primary data, it explored and assessed how SW had been experi-enced following the implementation of governmental measures aimed at limiting the spread of COVID-19
    Description: Published
    Description: 815–833
    Description: 2TM. Divulgazione Scientifica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-16
    Description: Data visualization, and to a lesser extent data sonification, are classic tools to the scientific community. However, these two approaches are very rarely combined, although they are highly complementary: our visual system is good at recognizing spatial patterns, whereas our auditory system is better tuned for temporal patterns. In this article, data representation methods are proposed that combine visualization, sonification, and spatial audio techniques, in order to optimize the user’s perception of spatial and temporal patterns in a single display, to increase the feeling of immersion, and to take advantage of multimodal integration mechanisms. Three seismic data sets are used to illustrate the methods, covering different physical phenomena, time scales, spatial distributions, and spatio-temporal dynamics. The methods are adapted to the specificities of each data set, and to the amount of information that the designer wants to display. This leads to further developments, namely the use of audification with two time scales, the switch from pure audification to time-modulated noise, and the switch from pure audification to sonic icons. First user feedback from live demonstrations indicates that the methods presented in this article seem to enhance the perception of spatio-temporal patterns, which is a key parameter to the understanding of seismically active systems, and a step towards apprehending the processes that drive this activity.
    Description: Published
    Description: 125–142
    Description: 7T. Variazioni delle caratteristiche crostali e "precursori"
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-03-16
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2021. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: In a recent study (Jozinovi\'c et al, 2020) we showed that convolutional neural networks (CNNs) applied to network seismic traces can be used for rapid prediction of earthquake peak ground motion intensity measures (IMs) at distant stations using only recordings from stations near the epicenter. The predictions are made without any previous knowledge concerning the earthquake location and magnitude. This approach differs from the standard procedure adopted by earthquake early warning systems (EEWSs) that rely on location and magnitude information. In the previous study, we used 10 s, raw, multistation waveforms for the 2016 earthquake sequence in central Italy for 915 events (CI dataset). The CI dataset has a large number of spatially concentrated earthquakes and a dense station network. In this work, we applied the CNN model to an area around the VIRGO gravitational waves observatory sited near Pisa, Italy. In our initial application of the technique, we used a dataset consisting of 266 earthquakes recorded by 39 stations. We found that the CNN model trained using this smaller dataset performed worse compared to the results presented in the original study by Jozinovi\'c et al. (2020). To counter the lack of data, we adopted transfer learning (TL) using two approaches: first, by using a pre-trained model built on the CI dataset and, next, by using a pre-trained model built on a different (seismological) problem that has a larger dataset available for training. We show that the use of TL improves the results in terms of outliers, bias, and variability of the residuals between predicted and true IMs values. We also demonstrate that adding knowledge of station positions as an additional layer in the neural network improves the results. The possible use for EEW is demonstrated by the times for the warnings that would be received at the station PII.
    Description: RISE (Union's Horizon 2020 research and innovation programme, grant agreement No.821115)
    Description: Published
    Description: 704–718
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: Physics - Geophysics; Physics - Geophysics ; machine learning ; ground motion prediction ; seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-03-01
    Description: To examine the atmospheric responses to Arctic sea ice variability in the Northern Hemisphere cold season (from October to the following March), this study uses a coordinated set of large-ensemble experiments of nine atmospheric general circulation models (AGCMs) forced with observed daily varying sea ice, sea surface temperature, and radiative forcings prescribed during the 1979–2014 period, together with a parallel set of experiments where Arctic sea ice is substituted by its climatology. The simulations of the former set reproduce the near-surface temperature trends in reanalysis data, with similar amplitude, and their multimodel ensemble mean (MMEM) shows decreasing sea level pressure over much of the polar cap and Eurasia in boreal autumn. The MMEM difference between the two experiments allows isolating the effects of Arctic sea ice loss, which explain a large portion of the Arctic warming trends in the lower troposphere and drive a small but statistically significant weakening of the wintertime Arctic Oscillation. The observed interannual covariability between sea ice extent in the Barents–Kara Seas and lagged atmospheric circulation is distinguished from the effects of confounding factors based on multiple regression, and quantitatively compared to the covariability in MMEMs. The interannual sea ice decline followed by a negative North Atlantic Oscillation–like anomaly found in observations is also seen in the MMEM differences, with consistent spatial structure but much smaller amplitude. This result suggests that the sea ice impacts on trends and interannual atmospheric variability simulated by AGCMs could be underestimated, but caution is needed because internal atmospheric variability may have affected the observed relationship.
    Description: Published
    Description: 8419–8443
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Keywords: Arctic ; Sea ice ; Atmospheric circulation ; Climate models ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-02-21
    Description: The stability of the West Antarctic Ice Sheet is threatened by the incursion of warm Circumpolar Deepwater which flows southwards via cross-shelf troughs towards the coast there melting ice shelves. However, the onset of this oceanic forcing on the development and evolution of the West Antarctic Ice Sheet remains poorly understood. Here, we use single- and multichannel seismic reflection profiles to investigate the architecture of a sediment body on the shelf of the Amundsen Sea Embayment. We estimate the formation age of this sediment body to be around the Eocene-Oligocene Transition and find that it possesses the geometry and depositional pattern of a plastered sediment drift. We suggest this indicates a southward inflow of deep water which probably supplied heat and, thus, prevented West Antarctic Ice Sheet advance beyond the coast at this time. We conclude that the West Antarctic Ice Sheet has likely experienced a strong oceanic influence on its dynamics since its initial formation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-11-03
    Description: Short-term earthquake clustering properties in the Eastern Aegean Sea (Greece) area investigated through the application of an epidemic type stochastic model (Epidemic Type Earthquake Sequence; ETES). The computations are performed in an earthquake catalog covering the period 2008 to 2020 and including 2332 events with a completeness threshold of Mc = 3.1 and separated into two subcatalogs. The first subcatalog is employed for the learning period, which is between 2008/01/01 and 2016/12/31 (N = 1197 earthquakes), and used for the model’s parameters estimation. The second subcatalog from 2017/01/01 to 2020/11/10 (1135 earthquakes), in which the sequences of 2017 Mw = 6.4 Lesvos, 2017 Mw = 6.6 Kos and 2020 Mw = 7.0 Samos main shocks are included, and used for a retrospective forecast testing based on the constructed model. The estimated model parameters imply a swarm like behavior, indicating the ability of earthquakes of small to moderate magnitude above Mc to produce their own offsprings, along with the stronger earthquakes. The retrospective evaluation of the model is examined in the three aftershock sequences, where lack of foreshocks resulted in low predictability of the mainshocks, with estimated daily probabilities around 10– 5. Immediately after the mainshocks occurrence the model adjusts with notable resemblance between the expected and observed aftershock rates, particularly for earthquakes with M ≥ 3.5.
    Description: Published
    Description: 1085–1099
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-11-29
    Description: This work presents an up-to-date model for the simulation of non-stationary ground motions, including several novelties compared to the original study of Sabetta and Pugliese (Bull Seism Soc Am 86:337–352, 1996). The selection of the input motion in the framework of earthquake engineering has become progressively more important with the growing use of nonlinear dynamic analyses. Regardless of the increasing availability of large strong motion databases, ground motion records are not always available for a given earthquake scenario and site condition, requiring the adoption of simulated time series. Among the different techniques for the generation of ground motion records, we focused on the methods based on stochastic simulations, considering the time- frequency decomposition of the seismic ground motion. We updated the non-stationary stochastic model initially developed in Sabetta and Pugliese (Bull Seism Soc Am 86:337–352, 1996) and later modified by Pousse et al. (Bull Seism Soc Am 96:2103–2117, 2006) and Laurendeau et al. (Nonstationary stochastic simulation of strong ground-motion time histories: application to the Japanese database. 15 WCEE Lisbon, 2012). The model is based on the S-transform that implicitly considers both the amplitude and frequency modulation. The four model parameters required for the simulation are: Arias intensity, significant duration, central frequency, and frequency bandwidth. They were obtained from an empirical ground motion model calibrated using the accelerometric records included in the updated Italian strong-motion database ITACA. The simulated accelerograms show a good match with the ground motion model prediction of several amplitude and frequency measures, such as Arias intensity, peak acceleration, peak velocity, Fourier spectra, and response spectra.
    Description: Published
    Description: 3287–3315
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-12-01
    Description: Probabilistic earthquake locations provide confidence intervals for the hypocentre solutions such as errors encountered in the position, the origin time, and in magnitude. If the relationship of the parameters relative to the local arrangement of the seismic network is considered, such as the node distance, the number of stations, the seismic gap, and the quality of phase readings), the uncertainties can then provide insights on the location capability of the network. In this paper, we collect the earthquake data recorded from the Italian Seismic Network for a time span of 5 years. The data pertain to three different catalogues according to the progressive refinement phases of the location procedure: automatic location, revised location, and published location. By means of spatial analysis,we assess the distribution of the location-related and network-related estimators across the study area. These estimators are subsequently combined to assess the existence of spatial correlations at a local scale. The results indicate that the Italian network is generally able to provide robust locations at the national scale and for smaller earthquakes, and the elongated shape of Italy (and of its network) does not cause systematic bias in the locations. However, we highlight the existence of subregions in which the performance of the network is weaker. At present, a unique 2D, 3-layer velocity model is used for the earthquake location procedure, and this could represent the main limitation for the improvement of the locations. Therefore, the assessment of locally optimized velocity models is the priority for the homogenization and the improvement of the Italian Seismic Network performance.
    Description: Published
    Description: 1061–1076
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...