ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (17,967)
  • 2000-2004  (17,959)
  • 1955-1959  (8)
  • 1950-1954
  • 1945-1949
  • 2004  (17,959)
  • 1959  (8)
Collection
Keywords
Publisher
Years
  • 2000-2004  (17,959)
  • 1955-1959  (8)
  • 1950-1954
  • 1945-1949
Year
  • 1
    Publication Date: 2024-07-01
    Keywords: AGE; Alpha spectrometry; Carbon, organic, total; Carbon, organic, total, standard deviation; CHIPAL; Density, dry bulk; DEPTH, sediment/rock; Element analyser CHN-O Rapid, Heraeus; Event label; GeoB3375-1; GeoB7101-1; Gravity corer (Kiel type); off Chile; Opal, auto analysis (Müller & Schneider, 1993); Opal, biogenic silica; Opal, biogenic silica, standard deviation; PUCK; SL; SO102/2; SO156/1; Sonne; South-East Pacific; Terrigenous; Thorium-230; Thorium-230, standard deviation; Thorium-230 excess; Thorium-230 excess, decay-corrected; Thorium-230 excess, decay-corrected, standard deviation; Thorium-230 excess, standard deviation; Thorium-232; Thorium-232, standard deviation; Uranium-238; Uranium-238, authigenic; Uranium-238, authigenic, standard deviation; Uranium-238, standard deviation; Weight loss during freeze-drying
    Type: Dataset
    Format: text/tab-separated-values, 576 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-07-01
    Keywords: Aluminium oxide; Area/locality; axial deep of Gibbs Rise; Barium; Caesium; Calcium oxide; central seamount of G ridge; Cerium; Chromium; Cobalt; Copper; Date/Time of event; Dredge; DRG; Dysprosium; Elements, total; Erbium; Europium; Event label; Gadolinium; Group; Hafnium; Holmium; Hook Ridge crater; HYDROARC; Inductively coupled plasma - mass spectrometry (ICP-MS); inner southern flank of NE-SW trending ridge at Hook Ridge; Iron oxide, Fe2O3; Lanthanum; Latitude of event; Latitude of event 2; Lead; Longitude of event; Longitude of event 2; Loss on ignition; lower NE end of G ridge; lower NE flank of G ridge; lower western flank of Bridgeman Ridge; lower western flank of Gibbs Rise; Lutetium; Magnesium oxide; Manganese oxide; middle western flank of Gibbs Rise; Neodymium; Nickel; Niobium; Phosphorus pentoxide; Potassium oxide; Praseodymium; Rubidium; Samarium; Sample ID; Scandium; seamount at northern flank of axial deep at Spanish Rise; seamount at NW end of Spanish Rise; seamount at SW end of G ridge; seamount at SW flank of axial deep at Spanish Rise; seamount in axial deep at Spanish Rise; seamount on NE flank of Spanish Rise; second highest seamount at SW end of G ridge; Silicon dioxide; small seamount NW of Bridgeman Ridge; SO155; SO155_02DR; SO155_03DR; SO155_04DR; SO155_07GTV; SO155_13DR; SO155_14DR; SO155_15DR; SO155_16DR; SO155_17DR; SO155_18DR; SO155_20DR; SO155_21DR; SO155_23DR; SO155_25DR; SO155_26DR; SO155_27DR; SO155_28DR; SO155_38DR; Sodium oxide; Sonne; Strontium; Tantalum; Television-Grab; Terbium; Thallium; Thorium; Thulium; Titanium dioxide; TVG; upper western flank of Bridgeman Ridge; Uranium; X-ray fluorescence (XRF); Ytterbium; Yttrium; Zinc; Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 2107 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-07-01
    Keywords: Area/locality; axial deep of Gibbs Rise; central seamount of G ridge; Date/Time of event; Dredge; DRG; Event label; Hook Ridge crater; HYDROARC; inner southern flank of NE-SW trending ridge at Hook Ridge; Latitude of event; Latitude of event 2; Lead-206/Lead-204 ratio; Lead-206/Lead-204 ratio, error; Lead-207/Lead-204 ratio; Lead-207/Lead-204 ratio, error; Lead-208/Lead-204 ratio; Lead-208/Lead-204 ratio, error; Longitude of event; Longitude of event 2; lower NE end of G ridge; lower NE flank of G ridge; lower western flank of Bridgeman Ridge; lower western flank of Gibbs Rise; middle western flank of Gibbs Rise; Neodymium-143/Neodymium-144 ratio; Neodymium-143/Neodymium-144 ratio, error; Sample ID; seamount at northern flank of axial deep at Spanish Rise; seamount at NW end of Spanish Rise; seamount at SW end of G ridge; seamount at SW flank of axial deep at Spanish Rise; seamount in axial deep at Spanish Rise; seamount on NE flank of Spanish Rise; second highest seamount at SW end of G ridge; small seamount NW of Bridgeman Ridge; SO155; SO155_02DR; SO155_03DR; SO155_04DR; SO155_07GTV; SO155_13DR; SO155_14DR; SO155_15DR; SO155_16DR; SO155_17DR; SO155_18DR; SO155_20DR; SO155_21DR; SO155_23DR; SO155_25DR; SO155_26DR; SO155_27DR; SO155_28DR; SO155_38DR; Sonne; Strontium-87/Strontium-86 ratio; Strontium-87/Strontium-86 ratio, error; Television-Grab; TVG; upper western flank of Bridgeman Ridge
    Type: Dataset
    Format: text/tab-separated-values, 248 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wollenburg, Jutta Erika; Knies, Jochen; Mackensen, Andreas (2004): High-resolution palaeoproductivity fluctuations during the past 24 kyr as indicated by benthic foraminifera in the marginal Arctic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 204(3-4), 209-238, https://doi.org/10.1016/S0031-0182(03)00726-0
    Publication Date: 2024-07-01
    Description: Analyses of benthic foraminifera in sediment cores taken at about 1000 m water depth at the Yermak Plateau and the Barents Sea slope, adjacent to the position of the ice-sheet edge during the Last Glacial Maximum, show that paleoproductivity was reduced to about a third of its present level during peak glacial stadials. These reduced values are still higher than values for modern, permanently ice-covered regions, suggesting that the core locations were at least partially ice-free even during stadials. Paleoproductivity at the core locations was higher than or equal to that of today during initial deglaciations and warm substages. Peak paleoproductivity occurred in samples with low-salinity surface waters as indicated by oxygen isotope values of planktonic foraminifera, and slightly after increased abundance of 'Atlantic species', suggesting that enhanced advection of warmer waters from the Atlantic supported the initial ice-sheet retreat. During the Holocene Climatic Optimum productivity was much less than at present on the Yermak Plateau, high at the Barents Sea site, perhaps because of increased advection of Atlantic water to the latter site and heavier ice coverage at the former. After this optimum, paleoproductivity at both sites was similar, with slightly lower values during cold periods such as the Little Ice Age.
    Keywords: Amundsen Basin; ARK-IX/4; ARK-VIII/2; ARK-VIII/3; ARK-XIII/2; AWI_Paleo; Barents Sea; Gakkel Ridge, Arctic Ocean; Giant box corer; GKG; Gravity corer (Kiel type); KAL; Kasten corer; Lomonosov Ridge, Arctic Ocean; Makarov Basin; MIC; MiniCorer; Morris Jesup Rise; MSN; MUC; MultiCorer; Multiple opening/closing net; Nansen Basin; Paleoenvironmental Reconstructions from Marine Sediments @ AWI; Polarstern; PS19/091; PS19/094; PS19/100; PS19/111; PS19/112; PS19/113; PS19/114; PS19/117; PS19/150; PS19/152; PS19/153; PS19/154; PS19/157; PS19/158; PS19/159; PS19/160; PS19/161; PS19/164; PS19/165; PS19/166; PS19/167; PS19/172; PS19/173; PS19/175; PS19/176; PS19/178; PS19/181; PS19/182; PS19/183; PS19/184; PS19/185; PS19/186; PS19/189; PS19/190; PS19/194; PS19/196; PS19/198; PS19/200; PS19/214; PS19/216; PS19/218; PS19/222; PS19/224; PS19/226; PS19/228; PS19/234; PS19/241; PS19/245; PS19/246; PS19/249; PS19/252; PS19 ARCTIC91; PS19 EPOS II; PS2125-1; PS2127-1; PS2129-2; PS2137-1; PS2138-1; PS2139-1; PS2140-1; PS2143-1; PS2157-3; PS2159-3; PS2160-3; PS2161-1; PS2163-1; PS2164-1; PS2165-5; PS2166-1; PS2167-3; PS2168-3; PS2170-4; PS2171-2; PS2172-3; PS2175-4; PS2176-2; PS2177-3; PS2178-4; PS2179-3; PS2180-1; PS2181-4; PS2182-4; PS2183-3; PS2184-3; PS2185-4; PS2186-3; PS2187-5; PS2190-5; PS2191-1; PS2192-2; PS2193-3; PS2198-4; PS2199-4; PS2200-4; PS2202-4; PS2204-3; PS2205-1; PS2206-4; PS2208-1; PS2210-3; PS2212-6; PS2213-4; PS2214-1; PS2215-1; PS2445-2; PS2446-2; PS2447-3; PS2448-3; PS27; PS27/019; PS27/020; PS27/024; PS27/025; PS2833-5; PS2833-7; PS2834-6; PS2834-7; PS2835-5; PS2836-9; PS2837-5; PS2837-6; PS2837-8; PS2837-9; PS2838-11; PS2838-6; PS2840-4; PS2840-5; PS44; PS44/060; PS44/062; PS44/063; PS44/064; PS44/065; PS44/067; PS44/069; SL; Svalbard; W Spitzbergen; Yermak Plateau
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mohtadi, Mahyar; Hebbeln, Dierk (2004): Mechanisms and variations of the paleoproductivity off northern Chile (24°S–33°S) during the last 40,000 years. Paleoceanography, 19(2), PA2023, https://doi.org/10.1029/2004PA001003
    Publication Date: 2024-07-01
    Description: A multiparameter investigation including organic carbon, carbonate, opal, and planktic foraminifera was carried out on five sediment cores from the coastal upwelling area between 24°S and 33°S along the Peru-Chile Current to reconstruct the history of the paleoproductivity and its driving mechanisms during the last 40,000 years. Inferred from our data, we conclude that the Antarctic Circumpolar Current as the main nutrient source in this region mainly drives the productivity by its latitudinal shifts associated with climate change. Simplified, its northerly position during the last glacial led to enhanced productivities, and its southerly position during the Holocene caused lower productivities. At 33°S the paleoproductivity was additionally affected by the southern westerlies and records highest levels during the Last Glacial Maximum (LGM). North of 33°S, several factors (e.g., position and strength of the South Pacific anticyclone, wind stress, continental runoff, and El Niño Southern Oscillation events) supplementary influenced upwelling and paleoproductivity, where maximum values occurred prior to the LGM and during the deglaciation.
    Keywords: Center for Marine Environmental Sciences; CHIPAL; CONDOR-Ia; East Pacific; GeoB3302-1; GeoB3375-1; GeoB7112-5; GeoB7139-2; GIK17748-2; Gravity corer (Kiel type); HOTLINE, HYGAPE; MARUM; off Chile; PUCK; SL; SO101; SO101/3_2-1; SO102/2; SO156/2; SO80_4; SO80a; Sonne; South-East Pacific
    Type: Dataset
    Format: application/zip, 5 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Seiter, Katherina; Hensen, Christian; Schröter, Jürgen; Zabel, Matthias (2004): Organic carbon content in surface sediments-defining regional provinces. Deep Sea Research Part I: Oceanographic Research Papers, 51(12), 2001-2026, https://doi.org/10.1016/j.dsr.2004.06.014
    Publication Date: 2024-07-01
    Description: Approaches to quantify the organic carbon accumulation on a global scale generally do not consider the small-scale variability of sedimentary and oceanographic boundary conditions along continental margins. In this study, we present a new approach to regionalize the total organic carbon (TOC) content in surface sediments (〈5 cm sediment depth). It is based on a compilation of more than 5500 single measurements from various sources. Global TOC distribution was determined by the application of a combined qualitative and quantitative-geostatistical method. Overall, 33 benthic TOC-based provinces were defined and used to process the global distribution pattern of the TOC content in surface sediments in a 1°x1° grid resolution. Regional dependencies of data points within each single province are expressed by modeled semi-variograms. Measured and estimated TOC values show good correlation, emphasizing the reasonable applicability of the method. The accumulation of organic carbon in marine surface sediments is a key parameter in the control of mineralization processes and the material exchange between the sediment and the ocean water. Our approach will help to improve global budgets of nutrient and carbon cycles.
    Keywords: 0010PG; 0029PG; 0036PG; 0038PG; 01_BC1; 01BOX; 01BOXC; 01BOXG; 02_BC5; 02BOX; 02BOXC; 02BOXG; 03_BC4; 03BOX; 03BOXG; 03MULC; 04_BC4; 04BOX; 04BOXG; 04MULC; 05_BC5; 05BOX; 05BOXG; 05MULC; 06_BC5; 06BOX; 06BOXG; 06MT28_2; 06MULC; 07_BC4; 07BOX; 07BOXG; 07MULC; 08_BC5; 08BOX; 08BOXG; 08MULC; 09_BC1; 09BOX; 09BOXG; 09MULC; 10_BC4; 10103-1B; 10103-8K; 108-663; 108-663A; 108-664; 108-664B; 10BOX; 11_BC8; 110#1, M31/3-110.1_MC2; 11B; 11BC39; 11BOX; 12B; 12BC47-2; 12BOX; 13B; 13BCP56; 13BOX; 14B; 14BOX; 159-959; 159-959C; 159-962; 159-962B; 15B; 167-1011; 167-1018; 167-1019; 167-1020; 167-1021; 16B; 179KG; 17B; 17 m-Lake; 185KG; 186KG; 188KG; 193KG; 194KG; 1BC1-2; 200227; 200228; 200229; 200230; 200231; 201MX; 202KG; 204KG; 209KG; 210MX; 212KG; 215KG; 216KG; 234KG; 236KG; 24#1; 243K; 252KG; 255KG; 26-258A; 264KG; 27#2; 280K; 290KG; 292KG; 2BC5-1; 30#3, SAST; 30#4; 3-14; 371; 373; 375; 376; 377; 379; 380; 381; 382; 383; 386; 388; 39#1; 4#2; 403; 406; 41; 414; 415; 416; 423; 424; 428; 429; 431; 432; 433; 434; 4399-1; 440; 4403-1; 4411-1; 4414-1; 4418-1; 442; 443; 444; 449; 451; 452; 453; 455; 460; 49-407; 4B; 4BC14-2; 4IMP11; 50#4; 53#1; 58#3, CAST; 581, NAST; 5B; 6#2; 603; 637; 641; 655; 655, EAST; 661, EAST; 669; 67#2; 6B; 6BC20-2; 70#1; 76#2; 76#3; 7B; 8-73; 88#1; 8B; 8BC27-3; 92#1; 92#3; 9B; 9BC26; A_EN179-BC1; A_EN179-BC2; A_EN179-BC3; A_EN179-BC4; A_EN179-BC5; A_EN179-BC7; A_EN187-BC1; A_EN187-BC10; A_EN187-BC11; A_EN187-BC3; A_EN187-BC4; A_EN187-BC5; A_EN187-BC6; A_EN187-BC8; A_EN187-BC9; A-10-VG; A-15-VG; A-16-BG; A-17-BG; A-19-VG; A-1-VG; A-20-BG; A-21; A-23-VG; A-24; A-25-BG; A-262; A-27-VG; A-28-BG; A-29-BG; A-30; A-31-VG; A-32; A-33-BG; A-34-BG; A-36-BG; A-37-BG; A-38; A-39; A-40-BG; A-41-BG; A-6-BG; A-7-BG; A84-01; A84-02; A84-03; A84-04; A84-05; A84-06; A84-07; A84-08; A84-09; A84-11; A84-12; A84-13; A84-14; A84-15; A84-17; A84-18; A84-19; A84-21; A84-22; A84-23; A84-24; A84-25; A84-26; A84-27; A84-28; A-8-BG; A-9; Achterwasser; ADEPDCruises; ADS; Agadir Canyon; Agulhas Basin; AK1-10; AK1-12; AK11-880; AK11-882; AK11-918; AK11-927; AK11-928; AK11-929; AK11-981; AK1-2; AK1-3; AK1-5; AK3-100; AK3-101,2; AK3-108; AK3-130; AK3-136; AK3-137; AK3-138; AK3-140; AK3-141; AK3-142; AK3-143; AK3-144; AK3-145; AK3-147; AK3-150,3; AK3-151; AK3-152; AK3-153; AK3-157; AK3-158; AK3-159; AK3-160; AK3-161; AK3-163; AK3-166; AK3-167; AK3-168; AK3-170,2; AK3-171; AK3-175; AK3-185; AK3-203; AK3-205; AK3-208; AK3-209; AK3-210; AK3-51; AK3-52; AK3-53,2; AK3-53,3; AK3-54; AK3-55; AK3-56; AK3-59,2; AK3-87,2; AK3-95; AK3-97; AK3-98; AK3-99; AK40-4306; AK40-4323; AK40-4324; AK40-4333; AK40-4334; AK43-4834; AK43-4877; AK43-4878; AK43-4879; AK43-4880; AK43-4881; AK43-4882; AK43-4889; AK43-4890; AK43-4891; AK43-4896; AK43-4898; AK43-4899; AK43-4900; AK43-4901; AK43-4902; AK43-4903; AK43-4904; AK43-4905; AK43-4907; AK43-4910; AK43-4912; AK43-4923; AK43-4925; AK43-4926; AK43-4928; AK43-4929; AK43-4931; AK43-4933; AK43-4934; AK43-4935; AK43-4936; AK43-4938; AK43-4940; AK43-4943; AK43-4945; AK43-4946; AK43-4949; AK43-4952; AK43-4955; AK43-4956; AK5-327,1; AK5-328,2; AK5-332,2; AK5-333,2; AK5-337,2; AK5-340,2; AK5-345; AK5-351; AK5-352,2; AK5-356; AK5-362; AK5-366,2; AK5-375; AK5-376,2; AK5-377,2; AK5-378; AK5-400,2; AK5-402; AK5-403; AK5-405; AK5-414; AK5-416,2; AK5-419; AK5-421,2; AK6-431-1; AK6-431-2; AK6-435; AK6-436; AK6-439; AK6-440; AK6-441-1; AK6-441-3; AK6-441-6a; AK6-441-7; AK6-441-9; AK6-443-9; Akademik Boris Petrov; Akademik Kurchatov; Akademik Nikolaj Strakhov; Akademik Sergey Vavilov; AKU1; AKU11; AKU3; AKU40; AKU43; AKU5; AKU6; AL63; Alexander von Humboldt; Alkor (1990); ALV76; Alv-ADS; Alv-DOS-1; Alv-DOS-2; Alv-DS-1; Alv-DWD; Alvin; Amazon Fan; Amazon Shelf/Fan; Amundsen Basin; Amundsen Sea; Andromeda; Angola Basin; Angola Benguela Front; Angola Diapir Field; ANIRO; ANIRO-611; ANIRO-613; ANIRO-636; ANIRO-641; ANIRO-645; ANIRO-654; ANIRO-657; ANS2; ANS2-1; ANS2-10; ANS2-11; ANS2-12; ANS2-13; ANS2-14; ANS2-15; ANS2-18; ANS2-19; ANS2-2; ANS2-22; ANS2-23; ANS2-24; ANS2-26; ANS2-27; ANS2-3; ANS2-4; ANS2-5; ANS2-6; ANS2-7; ANS2-8; ANS2-9; Antarctic Ocean; ANT-I/2; ANT-II/3; ANT-II/4; ANT-III/3; ANTIPROD; ANT-IV/1c; ANT-IV/3; ANT-IV/4; ANT-IX/3; ANT-IX/4; ANT-V/4; ANT-VI/3; ANT-VIII/3; ANT-VIII/5; ANT-VIII/6; ANT-X/2; ANT-X/4; ANT-XI/2; ANT-XI/3; ANT-XIV/3; AOS94_1; AOS94_12; AOS94_13; AOS94_16; AOS94_17; AOS94_19; AOS94_21; AOS94_23; AOS94_24; AOS94_25; AOS94_26; AOS94_28; AOS94_30; AOS94_31; AOS94_32; AOS94_33; AOS94_6; AOS94_7; AOS94_8; APSARA4; Arabian Sea; Arctic Ocean; Argentine Basin; Argentine Islands; Argentinian Basin; Argo; ARIES; ARIES-040PG; ARIES-045PG; ARIES-048G; ARK-I/3; ARK-II/5; ARK-III/3; ARK-IV/3; ARK-IX/3; ARK-IX/4; Arkona Basin; ARK-V/2; ARK-V/3b; ARK-VI/2; ARK-VII/1; ARK-VII/3b; ARK-VIII/2; ARK-VIII/3; ARK-XI/1; Arlis Plateau; ASV11; ASV11-1006; ASV11-1006.1; ASV11-1024; ASV11-1026; ASV11-1054; ASV11-829; ASV11-830; ASV11-831; ASV11-833; ASV11-835; ASV11-837; ASV11-838; ASV11-841; ASV11-842; ASV11-844; ASV11-847; ASV11-850; ASV11-853; ASV11-855; ASV11-858; ASV11-860; ASV11-861; ASV11-863; ASV11-865; ASV11-867; ASV11-869; ASV11-873; ASV11-875; ASV11-877; ASV11-879; ASV11-880; ASV11-882; ASV11-883; ASV11-891; ASV11-892; ASV11-894; ASV11-895; ASV11-896; ASV11-897; ASV11-898; ASV11-899; ASV11-900; ASV11-901; ASV11-902; ASV11-987; ASV11-988; ASV12; ASV12_1081-GC; ASV13; ASV13_1018-G; ASV13_1088-G; ASV13_1093-G; ASV13_1094-G; ASV13_1095-G; ASV13_1096-G; ASV13_1097-G; ASV13_1098-G; ASV13_1099-G; ASV13_1101-G; ASV13_1102-G; ASV13_1103-G; ASV13_1104-G; ASV13_1105-G; ASV13_1106-GC; ASV13_1112-G; ASV13_1115-G; ASV13_1117-G; ASV13_1119-G; ASV13_1120-G; ASV13_1121-G; ASV13_1122-G; ASV13_1123-G; ASV13_1124-G; ASV13_1125-G; ASV13_1126-G; ASV13_1127-G; ASV13_1128-G; ASV13_1129-G; ASV13_1132-G; ASV13_1133-G; ASV13_1134-G; ASV13_1135-G; ASV13_1136-G; ASV13_1137-G; ASV13_1139-G; ASV13_1140-G; ASV13_1141-G; ASV13_1142-G; ASV13_1143-G; ASV13_1144-G; ASV13_1145-G; ASV13_1146-G; ASV13_1147-G; ASV13_1148-G; ASV13_1149-G; ASV13_1150-G; ASV13_1151-G; ASV13_1152-G; ASV13_1153-G; ASV13_1154-G; ASV13_1155-G; ASV13_1156-G; ASV13_1158-G; ASV13_1159-G; ASV13_1162-G; ASV13_1163-G; ASV13_1164-G; ASV13_1165-G; ASV13_1201-G; ASV13_1202-G; ATESEPP; Atka Bay; Atlantic Caribbean Margin; Atlantic Ocean; Atlantic Ridge; Aurelia; Aurelia_08_1984; Aurelia_08_1984_01_BC; Aurelia_08_1984_02_BC; Aurelia_08_1984_03_BC; Aurelia_08_1984_04_BC; Aurelia_08_1984_05_BC; Aurelia_08_1984_06_BC; Aurelia_08_1984_07_BC; Aurelia_08_1984_08_BC; Aurelia_08_1984_09_BC; Aurelia_08_1984_11_BC; Aurelia_08_1984_12_BC; Aurelia_08_1984_13_BC; Aurelia_08_1984_14_BC; Aurelia_08_1984_15_BC; Aurelia_08_1984_17_BC; Aurelia_08_1984_18_BC; Aurelia_08_1984_19_BC; Aurelia_08_1984_21_BC; Aurelia_08_1984_22_BC; Aurelia_08_1984_23_BC; Aurelia_08_1984_24_BC; Aurelia_08_1984_25_BC; Aurelia_08_1984_26_BC; Aurelia_08_1984_27_BC; Aurelia_08_1984_28_BC; Auriga; AWI Antarctic Land Expedition; AWI Arctic Land Expedition; B-10-BG; B-11-BG; B-143; B-14-VG; B-16-BG; B-17-BG; B-187; B-18-BG; B-191; B-192; B-19-VG; B-20-VG; B-24-BG; B-26-VG; B-28-BG; B-2-BG; B-33-BG; B-34-BG; B-35-BG; B-37-BG; B-41-BG; B-43-BG; B-44-BG; B-45-BG; B-46-BG; B-4-BG; B-5; B-50-BG; B-51-BG; B-59-BG; B-6; B-61-BG; B-62-BG; B-67-BG; B-69-BG; B-6-VG; B-7; B-70-BG; B-71-BG; B-75-VG; B-76-VG; B-78-BG; B-79-BG; B-7-VG; B-89-BG; B-8-VG; B-9-BG; BA84; BA84-02PC; BA84-03TW; BA84-08GC; Baltic Sea; Bannock; Bannock basin; Barents abyssal plain; Barents Sea; Basalt Sø; Basin-I_BC31; BC; BCORE1; BCORE2; BCORE3; BCORE4; BCORE6; BCORE7; BCR; Bear Island Trough; Bel1; Bel1-611; Bel1-613; Bel1-621; Bel1-636; Bel1-641; Bel1-645; Bel1-654; Bel1-657; Bel2; Bel2-1; Bel2-10; Bel2-100; Bel2-103; Bel2-107; Bel2-11; Bel2-111; Bel2-115; Bel2-12; Bel2-13; Bel2-16; Bel2-18; Bel2-19; Bel2-2; Bel2-20; Bel2-21; Bel2-22; Bel2-24; Bel2-25; Bel2-27; Bel2-28; Bel2-31; Bel2-32; Bel2-33; Bel2-35; Bel2-36; Bel2-37; Bel2-38; Bel2-39; Bel2-4; Bel2-40; Bel2-41; Bel2-42; Bel2-43; Bel2-45; Bel2-47;
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-07-01
    Keywords: 06MT15_2; 06MT41_3; Amazon Fan; Angola Basin; Argentine Basin; Brazil Basin; Cardno Seamount; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; East Brazil Basin; Eastern Rio Grande Rise; Elevation of event; Equatorial Atlantic; Event label; GeoB; GeoB1008-3; GeoB1016-3; GeoB1031-4; GeoB1034-3; GeoB1041-3; GeoB1101-5; GeoB1105-4; GeoB1112-4; GeoB1115-4; GeoB1117-2; GeoB1309-2; GeoB1312-2; GeoB1408-2; GeoB1413-4; GeoB1417-1; GeoB1419-2; GeoB1501-4; GeoB1503-1; GeoB1505-1; GeoB1515-1; GeoB1523-1; GeoB1701-4; GeoB1903-3; GeoB1905-3; GeoB2016-1; GeoB2019-1; GeoB2021-5; GeoB2109-1; GeoB2117-1; GeoB2125-1; GeoB2202-4; GeoB2204-2; GeoB2819-1; GeoB3104-1; GeoB3117-1; GeoB3175-1; GeoB3176-1; GeoB3801-6; GeoB3808-6; GeoB3813-3; GeoB5112-5; GeoB5115-2; GeoB5121-2; GeoB5133-3; GeoB5140-3; Geosciences, University of Bremen; Giant box corer; GKG; Gravity corer (Kiel type); Guinea Basin; JOPSII-6; KOL; LATITUDE; LONGITUDE; M15/2; M16/1; M16/2; M20/2; M23/1; M23/2; M23/3; M29/2; M34/3; M41/3; M6/6; M9/4; Meteor (1986); Mid Atlantic Ridge; MUC; MultiCorer; NE-Brazilian continental margin; Niger Sediment Fan; Piston corer (Kiel type); Rio Grande Rise; Sea surface temperature, annual mean; Sea surface temperature, January-March; Sea surface temperature, July-September; SL; SO84; Sonne; Southwest Walvis Ridge; ST. HELENA HOTSPOT; Transfer function F271-24-5 (Niebler et al., 1999, in Fischer & Wefer, Springer); Victor Hensen; Walvis Ridge, Southeast Atlantic Ocean; West Angola Basin
    Type: Dataset
    Format: text/tab-separated-values, 225 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Department of Geosciences, Bremen University
    Publication Date: 2024-07-01
    Keywords: 06MT41_3; Brazil Basin; Calculated from mass/volume; Density, dry bulk; Density, wet bulk; DEPTH, sediment/rock; GeoB; GeoB5136-1; Geosciences, University of Bremen; Gravity corer (Kiel type); M41/3; Meteor (1986); Porosity; SL; Water content, wet mass
    Type: Dataset
    Format: text/tab-separated-values, 416 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Department of Geosciences, Bremen University
    Publication Date: 2024-07-01
    Keywords: 06MT41_3; Brazil Basin; Calculated from mass/volume; Density, dry bulk; Density, wet bulk; DEPTH, sediment/rock; GeoB; GeoB5138-1; Geosciences, University of Bremen; Gravity corer (Kiel type); M41/3; Meteor (1986); Porosity; SL; Water content, wet mass
    Type: Dataset
    Format: text/tab-separated-values, 144 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Department of Geosciences, Bremen University
    Publication Date: 2024-07-01
    Keywords: 06MT41_3; Angola Basin; Calculated from mass/volume; Density, dry bulk; Density, wet bulk; DEPTH, sediment/rock; GeoB; GeoB5134-2; Geosciences, University of Bremen; Gravity corer (Kiel type); M41/3; Meteor (1986); Porosity; SL; Water content, wet mass
    Type: Dataset
    Format: text/tab-separated-values, 192 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...