ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Active faults  (2)
  • Elsevier  (2)
  • 2020-2023  (2)
  • 2020-2022
  • 1985-1989
  • 1970-1974
  • 1950-1954
  • 2022  (2)
  • 2022  (2)
  • 1971
  • 1954
Sammlung
Verlag/Herausgeber
  • Elsevier  (2)
Erscheinungszeitraum
  • 2020-2023  (2)
  • 2020-2022
  • 1985-1989
  • 1970-1974
  • 1950-1954
Jahr
  • 2022  (2)
  • 2022  (2)
  • 1971
  • 1954
  • 1
    Publikationsdatum: 2022-02-22
    Beschreibung: The westernmost Mediterranean hosts part of the plate boundary between the European and African tectonic plates. Based on the scattered instrumental seismicity, this boundary has been traditionally interpreted as a wide zone of diffuse deformation. However, recent seismic images and seafloor mapping studies support that most of the plate convergence may be accommodated in a few tectonic structures, rather than in a broad region. Historical earthquakes with magnitudes Mw 〉 6 and historical tsunamis support that the low-to-moderate instrumental seismicity might also have led to underestimation of the seismogenic and tsunamigenic potential of the area. We evaluate the largest active faults of the westernmost Mediterranean: the reverse Alboran Ridge, and the strike-slip Carboneras, Yusuf and Al-Idrissi fault systems. For the first time, we use a dense grid of modern seismic data to characterize the entire dimensions of the main fault systems, accurately describe the geometry of these structures and estimate their seismic source parameters. Tsunami scenarios have been tested based on 3D-surfaces and seismic source parameters, using both uniform and heterogeneous slip distributions. The comparison of our results with previous studies, based on limited information on the fault geometry and kinematics, indicates that accurate fault geometries and heterogeneous slip distributions are needed to properly assess the seismic and tsunamigenic potential in this area. Based on fault scaling relations, the four fault systems have a large seismogenic potential, being able to generate earthquakes with Mw 〉 7. The reverse Alboran Ridge Fault System has the largest tsunamigenic potential, being able to generate a tsunami wave amplitude greater than 3 m in front of the coasts of Southern Spain and Northern Africa.
    Beschreibung: Published
    Beschreibung: 106749
    Beschreibung: 6T. Studi di pericolosità sismica e da maremoto
    Beschreibung: JCR Journal
    Schlagwort(e): Western Mediterranean ; Seismogenic potential ; Tsunamigenic potential ; Numerical modelling ; Active faults ; Active seismic data ; 04.04. Geology ; 04.07. Tectonophysics ; 04.06. Seismology ; 05.08. Risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-02-03
    Beschreibung: This work presents the first 3D geological model of the Rome coastal area that integrates available subsurface geological, stratigraphic and geophysical data with surface geochemical data obtained both from the literature and new surveys. The model provides new insights into the stratigraphic and tectonic setting of the area and the geological factors controlling both natural and human-induced gas emissions. This sector of the Italian Tyrrhenian margin has been historically affected by natural emissions of deep CO2 and thermogenic CH4, stored in permeable layers but with local migration to the surface along buried normal faults. In addition to natural processes, human activities can also cause leakage and serious health risks, such as the abrupt gas release in August 2013, that was triggered by borehole drillings near the Rome international airport. The presented 3D reconstruction unveils the link between faults, stratigraphy, lithology and the distribution of the soil gas anomalies. It provides information about the depth of the reservoir that can potentially trap endogenous gases, and the location and geometry of the main faults along which the gas migrates towards the surface. Furthermore, reconstruction of the distribution and thickness of important clay layers better constrains the low permeable areas that prevent gas escape. The 3D model, coupled with the geochemical information, can serve as a useful tool for the local administration to perform land-use planning and manage the local geological and degassing hazards that affect this highly urbanized area near Rome. Furthermore, we estimate that the large amount of CO2 broadly released in the area also provides a contribution to the budget of natural greenhouse gases in the atmosphere.
    Beschreibung: Published
    Beschreibung: 106527
    Beschreibung: 6A. Geochimica per l'ambiente e geologia medica
    Beschreibung: JCR Journal
    Schlagwort(e): 3D geological model ; Soil gas ; Active faults ; Surface degassing ; Geological hazards ; Tiber delta ; 04.04. Geology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...