ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (21)
  • Springer  (16)
  • Blackwell Publishing Ltd  (4)
  • Frontiers Media S.A.
  • Nature Publishing Group
  • Wiley
  • 2020-2023  (21)
  • 2005-2009
  • 1945-1949
  • 2022  (21)
  • 1949
  • 1
    Publication Date: 2022-09-27
    Description: Little research attention has been given to validating clusters obtained from the groundwater geochemistry of the waterworks' capture zone with a prevailing lake‐groundwater exchange. To address this knowledge gap, we proposed a new scheme whereby Gaussian finite mixture modeling (GFMM) and Spike‐and‐Slab Bayesian (SSB) algorithms were utilized to cluster the groundwater geochemistry while quantifying the probability of the resulting cluster membership against each other. We applied GFMM and SSB to 13 geochemical parameters collected during different sampling periods at 13 observation points across the Barnim Highlands plateau located in the northeast of Berlin, Germany; this included 10 observation wells, two lakes, and a gallery of drinking production wells. The cluster analysis of GFMM yielded nine clusters, either with a probability ≥0.8, while the SSB produced three hierarchical clusters with a probability of cluster membership varying from 〈0.2 to 〉0.8. The findings demonstrated that the clustering results of GFMM were in good agreement with the classification as per the principal component analysis and Piper diagram. By superimposing the parameter clustering onto the observation clustering, we could identify discrepancies that exist among the parameters of a certain cluster. This enables the identification of different factors that may control the geochemistry of a certain cluster, although parameters of that cluster share a strong similarity. The GFMM results have shown that from 2002, there has been active groundwater inflow from the lakes towards the capture zone. This means that it is necessary to adopt appropriate measures to reverse the inflow towards the lakes.
    Description: Article impact statement: The probability of cluster membership quantified using an algorithm should be validated against another probabilistic‐based classifier.
    Description: Federal Ministry of Education and Research http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:551.9 ; ddc:551.49
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-01
    Description: Copper (Cu) is an essential element for plants and microorganisms and at larger concentrations a toxic pollutant. A number of factors controlling Cu dynamics have been reported, but information on quantitative relationships is scarce. We aimed to (i) quantitatively describe and predict soil Cu concentrations (CuAR) in aqua regia considering site‐specific effects and effects of pH, soil organic carbon (SOC) and cation exchange capacity (CEC), and (ii) study the suitability of mixed‐effects modelling and rule‐based models for the analysis of long‐term soil monitoring data. Thirteen uncontaminated long‐term monitoring soil profiles in southern Germany were analysed. Since there was no measurable trend of increasing CuAR concentrations with time in the respective depth ranges of the sites, data from different sampling dates were combined and horizon‐specific regression analyses including model simplifications were carried out for 10 horizons. Fixed‐ and mixed‐effects models with the site as a random effect were useful for the different horizons and significant contributions (either of main effects or interactions) of SOC, CEC and pH were present for 9, 8 and 7 horizons, respectively. Horizon‐specific rule‐based cubist models described the CuAR data similarly well. Validations of cubist models and mixed‐effects models for the CuAR concentrations in A horizons were successful for the given population after random splitting into calibration and validation samples, but not after independent validations with random splitting according to sites. Overall, site, CEC, SOC and pH provide important information for a description of CuAR concentrations using the different regression approaches. Highlights: Information on quantitative relationships for factors controlling Cu dynamics is scarce. Site, CEC, SOC and pH provide important information for a description of Cu concentrations. Validations of cubist models and mixed‐effects models for A horizons were successful for a closed population of sites.
    Description: Bavarian State Ministry of the Environment and Consumer Protection http://dx.doi.org/10.13039/501100010219
    Description: Ministry of Agriculture and Environment Mecklenburg‐Western Pomerania
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-04
    Description: Soil aeration is a critical factor for oxygen‐limited subsoil processes, as transport by diffusion and advection is restricted by the long distance to the free atmosphere. Oxygen transport into the soil matrix is highly dependent on its connectivity to larger pore channels like earthworm and root colonised biopores. Here we hypothesize that the soil matrix around biopores represents different connectivity depending on biopore genesis and actual coloniser. We analysed the soil pore system of undisturbed soil core samples around biopores generated or colonised by roots and earthworms and compared them with the pore system of soil, not in the immediacy of a biopore. Oxygen partial pressure profiles and gas relative diffusion was measured in the rhizosphere and drilosphere from the biopore wall into the bulk soil with microelectrodes. The measurements were linked with structural features such as porosity and connectivity obtained from X‐ray tomography and image analysis. Aeration was enhanced in the soil matrix surrounding biopores in comparison to the bulk soil, shown by higher oxygen concentrations and higher relative diffusion coefficients. Biopores colonised by roots presented more connected lateral pores than earthworm colonised ones, which resulted in enhanced aeration of the rhizosphere compared to the drilosphere. This has influenced biotic processes (microbial turnover/mineralization or root respiration) at biopore interfaces and highlights the importance of microstructural features for soil processes and their dependency on the biopore's coloniser.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-07-26
    Description: Application of farmyard manure (FYM) is common practice to improve physical and chemical properties of arable soil and crop yields. However, studies on effects of FYM application mainly focussed on topsoils, whereas subsoils have rarely been addressed so far. We, therefore, investigated the effects of 36‐year FYM application with different rates of annual organic carbon (OC) addition (0, 469, 938 and 1875 g C m−2 a−1) on OC contents of a Chernozem in 0–30 cm (topsoil) and 35–45 cm (subsoil) depth. We also investigated its effects on soil structure and hydraulic properties in subsoil. X‐ray computed tomography was used to analyse the response of the subsoil macropore system (≥19 μm) and the distribution of particulate organic matter (POM) to different FYM applications, which were related to contents in total OC (TOC) and water‐extractable OC (WEOC). We show that FYM‐C application of 469 g C m−2 a−1 caused increases in TOC and WEOC contents only in the topsoil, whereas rates of ≥938 g C m−2 a−1 were necessary for TOC enrichment also in the subsoil. At this depth, the subdivision of TOC into different OC sources shows that most of the increase was due to fresh POM, likely by the stimulation of root growth and bioturbation. The increase in subsoil TOC went along with increases in macroporosity and macropore connectivity. We neither observed increases in plant‐available water capacity nor in unsaturated hydraulic conductivity. In conclusion, only very high application of FYM over long periods can increase OC content of subsoil at our study site, but this increase is largely based on fresh, easily degradable POM and likely accompanied by high C losses when considering the discrepancy between OC addition rate by FYM and TOC response in soil. Highlights A new image processing procedure to distinguish fresh and decomposed POM. The increase of subsoil C stock based to a large extend on fresh, labile POM. Potential of arable subsoils for long‐term C storage by large FYM application rates is limited. The increase in TOC has no effect on hydraulic properties of the subsoil.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:631.4
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Springer
    In:  In: World Atlas of Submarine Gas Hydrates in Continental Margins. , ed. by Mienert, J., Berndt, C. 〈https://orcid.org/0000-0001-5055-0180〉, Tréhu, A. M., Camerlenghi, A. and Liu, C. S. Springer, Cham, pp. 451-461.
    Publication Date: 2022-01-06
    Description: The Black Sea has undergone several limnic and marine stages due to fluctuations in the global sea level. The exchange of saline water from the Mediterranean Sea to the Black Sea through the Bosporus Strait was interrupted when the sea level dropped below the Bosporus sill. This induced limnic conditions, while marine conditions were established after the reconnection to saline Mediterranean seawater. Extended river fan systems developed during sea level low-stands, providing large amounts of organic material being buried by rapid sedimentation on the slopes of the Black Sea margins. The biogenic degradation of this material produces most of the methane gas expelled into the anoxic water column today. This largely happens by ubiquitous cold vents at ~700 m water depth (i.e. at the stability boundary of methane hydrates) and by mud volcanoes in ~2000 m water depth. A significant amount of gas is expected to accumulate in the sediment within the methane hydrate stability zone. However, bottom-simulating reflectors, the seismic indicator for gas hydrates, are not found everywhere along the margin. Recent analyses of the Danube and Dniepr fans have revealed a discontinuous gas hydrate formation in an area with no active seeps, while areas of active seepage located in the vicinity of BSR reflections held no gas hydrates. In addition, the ongoing diffusion of salt into the uppermost Black Sea sediment pore space since the last glacial maximum further reduces the volume of the gas hydrate stability zone. Estimates of the total amount of gas stored in gas hydrates therefore require a detailed structural analysis prior to regional- or basin-scale modelling attempts.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Springer
    In:  In: World Atlas of Submarine Gas Hydrates in Continental Margins. , ed. by Mienert, J., Berndt, C. 〈https://orcid.org/0000-0001-5055-0180〉, Tréhu, A. M., Camerlenghi, A. and Liu, C. S. Springer, Cham, pp. 73-85.
    Publication Date: 2022-01-20
    Description: Marine electromagnetic methods provide useful and independent measures for the identification and quantification of submarine gas hydrates. The resistivity of seafloor sediments, drawn from area-wide electromagnetic data, mainly depends on the sediment porosity and the nature of the pore fluid. Gas hydrates and free gas are both electrically resistive. The replacement of saline water, thus conductive pore water with resistive gas hydrate or free gas, increases the sediment resistivity and can be used to provide accurate saturation estimates if the background lithology is known. While seismic methods are predominantly used to study the distribution of submarine gas hydrates, a growing number of global field studies have demonstrated that the joint interpretation of marine seismic and electromagnetic methods improves the evaluation of submarine gas hydrate targets. This article discusses the relationship between resistivity and free gas/gas hydrate saturation levels, how the resistivity of the sediment may be measured and summarizes the status and results of current and past field studies.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-04-29
    Description: Every year, vast quantities of plastic debris arrive at the ocean surface. Nevertheless, our understanding of plastic movements is largely incomplete and many of the processes involved with the horizontal and vertical displacement of plastics in the ocean are still basically unknown. In this chapter we review the dynamics associated with the transport of plastics and other pollutants at oceanic fronts. Fronts had been historically defined as simple barriers to exchange, but here we show that the role of these structures in influencing the transport of plastics is more complex. The tools used to investigate the occurrence of frontal structures at various spatial scales are reviewed in detail, with a particular focus on their potential applications to the study of plastic pollution. Three selected case studies are presented to better describe the role of fronts in favoring or preventing plastic exchanges: the large-scale Antarctic Circumpolar Current, a Mediterranean mesoscale front, and the submesoscale fronts in the Gulf of Mexico. Lastly, some aspects related to the vertical subduction of plastic particles at oceanic fronts are discussed as one of the most promising frontiers for future research. The accumulation of floating debris at the sea surface is mainly affected by the horizontal components of frontal dynamics. At the same time, vertical components can be relevant for the export of neutrally buoyant particles from the surface into the deep sea. Based on these evidences, we propose that submesoscale processes can provide a fast and efficient route of plastic transport within the mixed layer, while mesoscale instabilities and associated vertical velocities might be the dominant mechanism to penetrate the deeper ocean on slower but broader scales. We conclude that given the ubiquitous presence of fronts in the world’s ocean, their contribution to the global plastic cycle is probably not negligible and the role of these processes in vertically displacing neutrally buoyant microplastics should be investigated in more detail.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-20
    Description: The Barents Sea, located close to the Arctic Ocean, is a petroleum province featuring an extensive occurrence of gas hydrates and shallow gas in compacted sediments. Glacial erosion and uplift have contributed to the migration of gas originating from deeper rocks to the shallow sediments of this region, resulting in hydrates with higher-order hydrocarbons in addition to methane. This article documents reported gas hydrate indications and major controls on hydrate stability in the Barents Sea.
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Since global navigation satellite systems (GNSS) for determining the absolute geolocation do not reach into the ocean, underwater robots typically obtain a GNSS position at the water surface and then use a combination of different sensors for estimating their pose while diving, including inertial navigation, acoustic doppler velocity logs, ultra short baseline localization systems and pressure sensors. When re-navigating to the same seafloor location after several days, months or years, e.g. for coastal monitoring, the absolute uncertainty of such systems can be in the range of meters for shallow water, and tens of meters for deeper waters in practice. To enable absolute relocalization in marine data science applications that require absolute seafloor positions in the range of centimeter precision, in this contribution we suggest to equip the monitoring area with visual markers that can be detected reliably even in case they are partially overgrown or partially buried by sediment, which can happen quickly in coastal waters. Inspired by patterns successful in camera calibration, we create robust markers that exhibit features at different scales, in order to allow detection, identification and pose estimation from different cameras and various altitudes as visibility (and therefore the maximum possible survey altitude) in coastal waters can vary significantly across seasons, tides and weather. The low frequency content of the marker resembles a human-readable digit, in order to allow easy identification by scientists. We present early results including promising initial tests in coastal waters.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-06-02
    Description: While offshore groundwater has been utilized by coastal communities as far back as 1000 BC, only in the past 10 years has the global volume of fresh-to-brackish water hosted in offshore aquifers been truly appreciated. There are vast quantities (~300–500 × 103 km3) of offshore freshened groundwater sequestered in continental shelf sediments under water depths of less than 60 m within 110 km of the coastline. New marine geophysical methods now make it possible to map and quantify low salinity offshore groundwater bodies. To date, these offshore resources have not been developed. Offshore freshened groundwater could be produced if wells are located close to the shoreline and coastal desalination plants.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...