ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aircraft Propulsion and Power
  • Deutschland
  • 2020-2023
  • 2015-2019  (40)
  • 1960-1964
  • 1945-1949  (45)
  • 2016  (40)
  • 1948  (45)
  • 1
    Publication Date: 2019-07-13
    Description: The purpose of this article is to explain why the extension of the previously published C = (S/Ho)sqrt(J) scaling for opposed rows of staggered jets wasn't directly successful in the study by Choi et al. (2016). It is not surprising that staggered jets from opposite sides do not pass each other at the expected C value, because Ho/D and sqrt(J) are much larger than the maximum in previous studies. These, and large x/D's, tend to suggest development of 2-dimensional flow. Although there are distinct optima for opposed rows of in-line jets, single-side injection, and opposed rows of staggered jets based on C, opposed rows of staggered jets provide as good or better mixing performance, at any C value, than opposed rows of in-line jets or jets from single-side injection.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN33874 , International Journal of Heat and Mass Transfer (e-ISSN 0017-9310); 102; 435-444
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Acoustic treatment designers have long been able to target specific noise sources inside turbofan engines. Facesheet porosity and cavity depth are key design variables of perforate-over-honeycomb liners that determine levels of noise suppression as well as the frequencies at which suppression occurs. Layers of these structures can be combined to create a robust attenuation spectrum that covers a wide range of frequencies. Looking to the future, rapidly-emerging additive manufacturing technologies are enabling new liners with multiple degrees of freedom, and new adaptive liners with variable impedance are showing promise. More than ever, there is greater flexibility and freedom in liner design. Subject to practical considerations, liner design variables may be manipulated to achieve a target attenuation spectrum. But characteristics of the ideal attenuation spectrum can be difficult to know. Many multidisciplinary system effects govern how engine noise sources contribute to community noise. Given a hardwall fan noise source to be suppressed, and using an analytical certification noise model to compute a community noise measure of merit, the optimal attenuation spectrum can be derived using multidisciplinary systems analysis methods. The subject of this paper is an analytical method that derives the ideal target attenuation spectrum that minimizes noise perceived by observers on the ground.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN31751 , AIAA/CEAS Aeroacoustics Conference; May 30, 2016 - Jun 01, 2016; Lyon; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: A computational fluid dynamic (CFD) model of a rotating detonation engine (RDE) is used to examine the impact of an exhaust throat (i.e. a constriction) on performance. The model simulates an RDE which is premixed, adiabatic, inviscid, and which contains an inlet valve that prevents backflow from the high pressure region directly behind the rotating detonation. Performance is assessed in terms of ideal net specific impulse which is computed on the assumption of lossless expansion of the working fluid to the ambient pressure through a notional diverging nozzle section downstream of the throat. Such a semi-idealized analysis, while not real-world, allows the effect of the throat to be examined in isolation from, rather than coupled to (as it actually is) various loss mechanisms. For the single Mach 1.4 flight condition considered, it is found that the addition of a throat can yield a 9.4 percent increase in specific impulse. However, it is also found that when the exit throat restriction gets too small, an unstable type of operation ensues which eventually leads to the detonation failing. This behavior is found to be somewhat mitigated by the addition of an RDE inlet restriction across which there is an aerodynamic loss. Remarkably, this loss is overcome by the benefits of the further exhaust restrictions allowed. The end result is a configuration with a 10.3 percent improvement in ideal net specific thrust.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN28815 , AIAA Aerospace Sciences Meeting (SciTech 2016); Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2016-218919 , AIAA Paper 2015-3890 , E-19104-1 , GRC-E-DAA-TN26012 , AIAA Propulsion and Energy Forum 2015; Jul 27, 2015 - Jul 29, 2015; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: This presentation will be used to develop a level of partnership that is not within the current NASA program for N+3 engine operations.
    Keywords: Aircraft Propulsion and Power
    Type: DFRC-E-DAA-TN30644 , Aircraft Airworthiness and Sustainment Conference (AA&S 2016); Mar 21, 2016 - Mar 24, 2016; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: This paper presents analytical techniques for aiding system designers in making aircraft engine health management sensor selection decisions. The presented techniques, which are based on linear estimation and probability theory, are tailored for gas turbine engine performance estimation and gas path fault diagnostics applications. They enable quantification of the performance estimation and diagnostic accuracy offered by different candidate sensor suites. For performance estimation, sensor selection metrics are presented for two types of estimators including a Kalman filter and a maximum a posteriori estimator. For each type of performance estimator, sensor selection is based on minimizing the theoretical sum of squared estimation errors in health parameters representing performance deterioration in the major rotating modules of the engine. For gas path fault diagnostics, the sensor selection metric is set up to maximize correct classification rate for a diagnostic strategy that performs fault classification by identifying the fault type that most closely matches the observed measurement signature in a weighted least squares sense. Results from the application of the sensor selection metrics to a linear engine model are presented and discussed. Given a baseline sensor suite and a candidate list of optional sensors, an exhaustive search is performed to determine the optimal sensor suites for performance estimation and fault diagnostics. For any given sensor suite, Monte Carlo simulation results are found to exhibit good agreement with theoretical predictions of estimation and diagnostic accuracies.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2016-218926 , GT2015-43744 , E-19182 , GRC-E-DAA-TN27315 , ASME Turbo Expo 2015; Jun 15, 2015 - Jun 19, 2015; Montreal, Quebec; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: A gas turbine engine includes a spool, a turbine coupled to drive the spool, and a propulsor that is coupled to be driven by the turbine through the spool. A gear assembly is coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extends from the hub. The row includes no more than 20 of the propulsor blades.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: The cost and risk associated with the design and operation of gas turbine engine systems has led to an increasing dependence on mathematical models. In this paper, the fundamentals of engine simulation will be reviewed, an example performance analysis will be performed, and relationships useful for engine control system development will be highlighted. The focus will be on thermodynamic modeling utilizing techniques common in industry, such as: the Brayton cycle, component performance maps, map scaling, and design point criteria generation. In general, these topics will be viewed from the standpoint of an example turbojet engine model; however, demonstrated concepts may be adapted to other gas turbine systems, such as gas generators, marine engines, or high bypass aircraft engines. The purpose of this paper is to provide an example of gas turbine model generation and system performance analysis for educational uses, such as curriculum creation or student reference.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2016-219147 , E-19270 , GRC-E-DAA-TN34474
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and expected advances in mitigation of other noise sources. During on-ground, static-engine acoustic tests, combustor noise is generally sub-dominant to other engine noise sources because of the absence of in-flight effects. Consequently, noise-source separation techniques are needed to extract combustor-noise information from the total noise signature in order to further progress. A novel four-signal source-separation method is applied to data from a static, full-scale engine test and compared to previous methods. The new method is, in a sense, a combination of two- and three-signal techniques and represents an attempt to alleviate some of the weaknesses of each of those approaches. This work is supported by the NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject and the NASA Glenn Faculty Fellowship Program.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2016-219419 , E-19316 , GRC-E-DAA-TN36520
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: The aircraft engine design process seeks to optimize the overall system-level performance, weight, and cost for a given concept. Steady-state simulations and data are used to identify trade-offs that should be balanced to optimize the system in a process known as systems analysis. These systems analysis simulations and data may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic systems analysis provides the capability for assessing the dynamic tradeoffs at an earlier stage of the engine design process. The dynamic systems analysis concept, developed tools, and potential benefit are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed to provide the user with an estimate of the closed-loop performance (response time) and operability (high pressure compressor surge margin) for a given engine design and set of control design requirements. TTECTrA along with engine deterioration information, can be used to develop a more generic relationship between performance and operability that can impact the engine design constraints and potentially lead to a more efficient engine.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2016-219133 , E-19258 , GRC-E-DAA-TN31154
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-18
    Description: Surface infrared thermography, hotwire anemometry, and thermocouple surveys were performed on two new film cooling hole geometries: spiral/rifled holes and fluidic sweeping holes. The spiral holes attempt to induce large-scale vorticity to the film cooling jet as it exits the hole to prevent the formation of the kidney shaped vortices commonly associated with film cooling jets. The fluidic sweeping hole uses a passive in-hole geometry to induce jet sweeping at frequencies that scale with blowing ratios. The spiral hole performance is compared to that of round holes with and without compound angles. The fluidic hole is of the diffusion class of holes and is therefore compared to a 777 hole and Square holes. A patent-pending spiral hole design showed the highest potential of the non-diffusion type hole configurations. Velocity contours and flow temperature were acquired at discreet cross-sections of the downstream flow field. The passive fluidic sweeping hole shows the most uniform cooling distribution but suffers from low span-averaged effectiveness levels due to enhanced mixing. The data was taken at a Reynolds number of 11,000 based on hole diameter and freestream velocity. Infrared thermography was taken for blowing ratios of 1.0, 1.5, 2.0, and 2.5 at a density ratio of 1.05. The flow inside the fluidic sweeping hole was studied using 3D unsteady RANS.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN35549 , Journal of Turbomachinery (ISSN 0889-504X) (e-ISSN 1528-8900); 138; 9
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-08-13
    Description: In 2009 and 2010, Concepts NREC prepared for and performed a series of tests on a 52% scale of a version of the Pratt & Whitney Rocketdyne J-2X Oxidizer Turbopump under a Phase III SBIR with NASA MSFC. The test article was a combined inducer and impeller, tested as a unit. This paper presents an overview of the test rig and facility, instrumentation, signal conditioning, data acquisition systems, testing approach, measurement developments, and lessons learned. Results from these tests were presented in the form of two papers at the previous JANNAF joint propulsion conference, in December of 2011.
    Keywords: Aircraft Propulsion and Power
    Type: M16-5435 , Liquid Propulsion; Dec 05, 2016 - Dec 08, 2016; Phoenix, AZ; United States|Modeling and Simulation; Dec 05, 2016 - Dec 08, 2016; Phoenix, AZ; United States|JANNAF Joint Meeting; Dec 05, 2016 - Dec 08, 2016; Phoenix, AZ; United States|Spacecraft Propulsion; Dec 05, 2016 - Dec 08, 2016; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: Although the primary function of propellers is typically to produce thrust, aircraft equipped with distributed electric propulsion (DEP) may utilize propellers whose main purpose is to act as a form of high-lift device. These \high-lift propellers" can be placed upstream of wing such that, when the higher-velocity ow in the propellers' slipstreams interacts with the wing, the lift is increased. This technique is a main design feature of a new NASA advanced design project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR). The goal of the SCEPTOR project is design, build, and y a DEP aircraft to demonstrate that such an aircraft can be much more ecient than conventional designs. This paper provides details into the high-lift propeller system con guration selection for the SCEPTOR ight demonstrator. The methods used in the high-lift propeller system conceptual design and the tradeo s considered in selecting the number of propellers are discussed.
    Keywords: Aircraft Propulsion and Power
    Type: NF1676L-22853 , AIAA Aviation 2016; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The non-linear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN28335 , AIAA SciTech 2016; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: Emission characteristics of a three-cup P and W Axially Controlled Stoichiometry (ACS) sector combustor are reported in this article. Multiple injection points and fuel staging strategies are used in this combustor design. Pilot-stage injectors are located on the front dome plate of the combustor, and main-stage injectors are positioned on the top and bottom of the combustor liners downstream. Low power configuration uses only pilot-stage injectors. Main-stage injectors are added to high power configuration to help distribute fuel more evenly and achieve overall lean burn yielding very low NOx emissions. Combustion efficiencies at four ICAO LTO conditions were all above 99%. Three EINOx emissions correlation equations were developed based on the experimental data to describe the NOx emission trends of this combustor concept. For the 7% and 30% engine power conditions, NOx emissions are obtained with the low power configuration, and the EINOx values are 6.16 and 6.81. The high power configuration was used to assess 85% and 100% engine power NOx emissions, with measured EINOx values of 4.58 and 7.45, respectively. The overall landing-takeoff cycle NOx emissions are about 12% relative to ICAO CAEP/6 level.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN28388 , AIAA SciTech 2016; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: A baseline configuration for the dual-aircraft platform (DAP) concept is described and evaluated in a physics-based flight dynamics simulations for two month-long missions as a communications relay in the lower stratosphere above central Florida. The DAP features two unmanned aerial vehicles connected via a long adjustable cable which effectively sail back-and-forth using wind velocity gradients and solar energy. Detailed atmospheric profiles in the vicinity of 60,000-ft derived from archived data measured by the 50-Mhz Doppler Radar Wind Profiler at Cape Canaveral are used in the flight simulations. An overview of the novel guidance and flight control strategies are provided. The energy-usage of the baseline configuration during month-long stationkeeping missions (i.e., within 150-mile radius of downtown Orlando) is characterized and compared to that of a pure solar aircraft.
    Keywords: Aircraft Propulsion and Power
    Type: M16-5303 , AIAA Aviation 2016; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2016-218937 , AIAA Paper 2014-3684 , E-19185 , GRC-E-DAA-TN26748 , Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The nonlinear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2016-219066 , E-19199 , GRC-E-DAA-TN29222 , AIAA SciTech 2016; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: NASA has been investing in research efforts to define potential vehicles that use hybrid and turboelectric propulsion to enable savings in fuel burn and carbon usage. This paper overviews the fundamental building blocks that have been derived from those studies and details what key performance parameters have been defined, what key ground and flight tests need to occur, and highlights progress toward each.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN35894 , Electric & Hybrid Aerospace Technology Symposium 2016; Nov 09, 2016 - Nov 10, 2016; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: This paper presents results from tests in a NASA Glenn Research Center (GRC) flame tube facility, where a bio-derived alternate fuel was compared with JP-8 for emissions and general combustion performance. A research version of General Electric Aviation (GE) TAPS injector was used for the tests. Results include 2D, planar laser-based imaging as well as basic flow visualization of the flame. Four conditions were selected that simulate various engine power conditions relevant to NASA Fundamental Aeronautics Supersonics and Environmentally Responsible Aviation Projects were tested.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN34170 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 25, 2016 - Jul 27, 2016; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: An overview of research efforts at NASA Glenn Research Center (GRC) in low-emission combustion technology that have made a significant impact on the nitrogen oxides (NOx) emission reduction in aircraft propulsion is presented. The technology advancements and their impact on aircraft emissions are discussed in the context of NASA's Aeronautics Research Mission Directorate (ARMD) high-level goals in fuel burn, noise and emission reductions. The highlights of the research presented here show how the past and current efforts laid the foundation for the engines that are flying today as well as how the continued technology advancements will significantly influence the next generation of aviation propulsion system designs.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN31913 , ASME TURBO Expo 2016; Jun 13, 2016 - Jun 17, 2016; Seoul; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-13
    Description: The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid-electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid-electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of AC and DC for power transmission. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power generation, transmission, and distribution systems, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of dual-fed induction machines, which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the project along with the system architecture, development status and preliminary results.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN33090 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 25, 2016 - Jul 27, 2016; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: The performance of propulsion engine systems is sensitive to weight and volume considerations. This can severely constrain the configuration and complexity of the control system hardware. Distributed Engine Control technology is a response to these concerns by providing more flexibility in designing the control system, and by extension, more functionality leading to higher performing engine systems. Consequently, there can be a weight benefit to mounting modular electronic hardware on the engine core casing in a high temperature environment. This paper attempts to quantify the in-flight temperature constraints for engine casing mounted electronics. In addition, an attempt is made at studying heat soak back effects. The Commercial Modular Aero Propulsion System Simulation 40k (C-MAPSS40k) software is leveraged with real flight data as the inputs to the simulation. A two-dimensional (2-D) heat transfer model is integrated with the engine simulation to approximate the temperature along the length of the engine casing. This modification to the existing C-MAPSS40k software will provide tools and methodologies to develop a better understanding of the requirements for the embedded electronics hardware in future engine systems. Results of the simulations are presented and their implications on temperature constraints for engine casing mounted electronics is discussed.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN33158 , AIAA Joint Propulsion Conference 2016; Jul 25, 2016 - Jul 27, 2016; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aircraft Propulsion and Power
    Type: NF1676L-23145 , AIAA 2016 SciTech Forum and Exposition; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: An overview of research efforts at NASA Glenn Research Center (GRC) in low-emission combustion technology that have made a significant impact on the nitrogen oxides (NOx) emission reduction in aircraft propulsion is presented. The technology advancements and their impact on aircraft emissions are discussed in the context of NASA's Aeronautics Research Mission Directorate (ARMD) high-level goals in fuel burn, noise and emission reductions. The highlights of the research presented here show how the past and current efforts laid the foundation for the engines that are flying today as well as how the continued technology advancements will significantly influence the next generation of aviation propulsion system designs.
    Keywords: Aircraft Propulsion and Power
    Type: E-19204 , GT2016-56100 , GRC-E-DAA-TN30125 , ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition GT2016; Jun 13, 2016 - Jun 17, 2016; Seoul; Korea, Republic of
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: In this paper, we present the recent enhancement of the Open National Combustion Code (OpenNCC) and apply the OpenNCC to model a realistic combustor configuration (Energy Efficient Engine (E3)). First, we perform a series of validation tests for the newly-implemented advection upstream splitting method (AUSM) and the extended version of the AUSM-family schemes (AUSM+-up). Compared with the analytical/experimental data of the validation tests, we achieved good agreement. In the steady-state E3 cold flow results using the Reynolds-averaged Navier-Stokes(RANS), we find a noticeable difference in the flow fields calculated by the two different numerical schemes, the standard Jameson- Schmidt-Turkel (JST) scheme and the AUSM scheme. The main differences are that the AUSM scheme is less numerical dissipative and it predicts much stronger reverse flow in the recirculation zone. This study indicates that two schemes could show different flame-holding predictions and overall flame structures.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 2016-4651 , GRC-E-DAA-TN34851 , Joint Propulsion Conference; Jul 25, 2016 - Jul 27, 2016; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: In this paper, we present the recent enhancement of the Open National Combustion Code (OpenNCC) and apply the OpenNCC to model a realistic combustor configuration (Energy Efficient Engine (E3)). First, we perform a series of validation tests for the newly-implemented advection upstream splitting method (AUSM) and the extended version of the AUSM-family schemes (AUSM+-up). Compared with the analytical/experimental data of the validation tests, we achieved good agreement. In the steady-state E3 cold flow results using the Reynolds-averaged Navier-Stokes(RANS), we find a noticeable difference in the flow fields calculated by the two different numerical schemes, the standard Jameson- Schmidt-Turkel (JST) scheme and the AUSM scheme. The main differences are that the AUSM scheme is less numerical dissipative and it predicts much stronger reverse flow in the recirculation zone. This study indicates that two schemes could show different flame-holding predictions and overall flame structures.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN34437 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 25, 2016 - Jul 27, 2016; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: The conceptual design of a parallel gas-electric hybrid propulsion system for a conventional single aisle twin engine tube and wing vehicle has been developed. The study baseline vehicle and engine technology are discussed, followed by results of the hybrid propulsion system sizing and performance analysis. The weights analysis for the electric energy storage & conversion system and thermal management system is described. Finally, the potential system benefits are assessed.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN33024 , AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum and Exposition 2016; Jul 25, 2016 - Jul 27, 2016; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: NASA Glenn Research Center is investigating hybrid electric and turboelectric propulsion concepts for future aircraft to reduce fuel burn, emissions, and noise. Systems studies show that the weight and efficiency of the electric system components need to be improved for this concept to be feasible. This effort aims to identify design parameters that affect power density and efficiency for a double-Halbach array permanent-magnet ironless axial flux motor configuration. These parameters include both geometrical and higher-order parameters, including pole count, rotor speed, current density, and geometries of the magnets, windings, and air gap.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN33010 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 25, 2016 - Jul 27, 2016; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: The Commercial Supersonic Technology Project has been developing databases, computational tools, and system models to prepare for a level 1 milestone, the Low Noise Propulsion Tech Challenge, to be delivered Sept 2016. Steps taken to prepare for the final validation test are given, including system analysis, code validation, and risk reduction testing.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN31478 , Acoustics Technical Working Group Meeting (Spring 2016); Apr 19, 2016 - Apr 20, 2016; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: NASA Aeronautics Research Mission Directorate has set strategic research thrusts to address the major drivers of aviation such as growth in demand for high-speed mobility, addressing global climate and capitalizing in the convergence of technological advances. Transitioning aviation to low carbon propulsion is one of the key strategic research thrust and drives the search for alternative and greener propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The Hybrid Gas-Electric Subproject in the Advanced Air Transportation Project is energizing the transport class landscape by accepting the technical challenge of identifying and validating a transport class aircraft with net benefit from hybrid propulsion. This highly integrated aircraft of the future will only happen if airframe expertise from NASA Langley, modeling and simulation expertise from NASA Ames, propulsion expertise from NASA Glenn, and the flight research capabilities from NASA Armstrong are brought together to leverage the rich capabilities of U.S. Industry and Academia.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN30861 , Green Aviation Technical Information Exchange; Mar 29, 2016 - Mar 31, 2016; Hampton, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-08-26
    Description: A gas generator for a reverse core engine propulsion system has a variable cycle intake for the gas generator, which variable cycle intake includes a duct system. The duct system is configured for being selectively disposed in a first position and a second position, wherein free stream air is fed to the gas generator when in the first position, and fan stream air is fed to the gas generator when in the second position.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-08-26
    Description: A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-08-26
    Description: A gas turbine engine has an inlet duct formed to have a shape with a first ellipse in one half and a second ellipse in a second half. The second half has an upstream most end which is smaller than the first ellipse. The inlet duct has a surface defining the second ellipse which curves away from the first ellipse, such that the second ellipse is larger at an intermediate location. The second ellipse is even larger at a downstream end of the inlet duct leading into a fan.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) is investing continually in improving civil aviation. Hybridization of aircraft propulsion is one aspect of a technology suite which will transform future aircraft. In this context, hybrid propulsion is considered a combination of traditional gas turbine propulsion and electric drive enabled propulsion. This technology suite includes elements of propulsion and airframe integration, parallel hybrid shaft power, turbo-electric generation, electric drive systems, component development, materials development and system integration at multiple levels.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN34060 , Aircraft Electric/Hybrid-Electric Power & Propulsion Workshop; Jul 28, 2016; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: Distributed engine control is a hardware technology that radically alters the architecture for aircraft engine control systems. Of its own accord, it does not change the function of control, rather it seeks to address the implementation issues for weight-constrained vehicles that can limit overall system performance and increase life-cycle cost. However, an inherent feature of this technology, digital communication networks, alters the flow of information between critical elements of the closed-loop control. Whereas control information has been available continuously in conventional centralized control architectures through virtue of analog signaling, moving forward, it will be transmitted digitally in serial fashion over the network(s) in distributed control architectures. An underlying effect is that all of the control information arrives asynchronously and may not be available every loop interval of the controller, therefore it must be scheduled. This paper proposes a methodology for modeling the nominal data flow over these networks and examines the resulting impact for an aero turbine engine system simulation.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN33238 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 25, 2016 - Jul 27, 2016; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: The cost and risk associated with the design and operation of gas turbine engine systems has led to an increasing dependence on mathematical models. In this paper, the fundamentals of engine simulation will be reviewed, an example performance analysis will be performed, and relationships useful for engine control system development will be highlighted. The focus will be on thermodynamic modeling utilizing techniques common in industry, such as: the Brayton cycle, component performance maps, map scaling, and design point criteria generation. In general, these topics will be viewed from the standpoint of an example turbojet engine model; however, demonstrated concepts may be adapted to other gas turbine systems, such as gas generators, marine engines, or high bypass aircraft engines. The purpose of this paper is to provide an example of gas turbine model generation and system performance analysis for educational uses, such as curriculum creation or student reference.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN33214 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 25, 2016 - Jul 27, 2016; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: This paper presents results from tests in a flame tube facility, where a bio-derived alternate fuel was compared with JP-8 for emissions and general combustion performance. A research version of General Electric Aviation (GE) TAPS injector was used for the tests. Results include combustion efficiency from gaseous emission measurements, 2D planar laser-based imaging as well as basic flow visualization of the flame. Four inlet test conditions were selected that simulate various engine power conditions relevant to NASA Fundamental Aeronautics Supersonics Project and Environmentally Responsible Aviation Program. One inlet condition was a pilot-only test point. The other three inlet conditions incorporated fuel staging via a split between the pilot and main circuits of either 10%/90% or 20%/80%. For each engine power condition, three fuel mixes were used: 100% JP-8; 100% alternative; and a blend of the two, containing 75% alternative. Results for the inlet cases that have fuel split between pilot and main, indicate that fuel from the pilot appears to be evaporated by the time it reaches the dome exit. Main circuit liquid evaporates within a downstream distance equal to annulus height, no matter the fuel. Some fuel fluorescence images for a 10%/90% fuel staging case show a distinct difference between JP-8 and bio-derived fuel. OH PLIF results indicate that OH forms in a region more centrally-located for the JP-8 case downstream of the pilot, in its central recirculation region (CRZ). For the bio-derived Hydrotreated Renewable Jet (HRJ) fuel, however, we do not see much OH in the CRZ. The OH image structure near the dome exit is similar for the two fuels, but farther downstream the OH in the CRZ is much more apparent for the JP-8 than for the alternate fuel. For all conditions, there was no discernable difference between fuel types in combustion efficiency or emissions.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN33118 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 25, 2016 - Jul 27, 2016; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-13
    Description: A brief review is provided covering the benefits to air breathing and chemical rocket propulsion found from pressure gain combustion in general, and rotating detonation in particular. Challenges are also identified.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN32567 , DARPA RDE Stakeholders Day; May 26, 2016; Arlington, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: The essence of a distributed control system is the modular partitioning of control function across a hardware implementation. This type of control architecture requires embedding electronics in a multitude of control element nodes for the execution of those functions, and their integration as a unified system. As the field of distributed aeropropulsion control moves toward reality, questions about building and validating these systems remain. This paper focuses on the development of hardware-in-the-loop (HIL) test techniques for distributed aero engine control, and the application of HIL testing as it pertains to potential advanced engine control applications that may now be possible due to the intelligent capability embedded in the nodes.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN33270 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 25, 2016 - Jul 27, 2016; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    In:  Wetter und Klima 1; p.316
    Publication Date: 1948
    Description: In einem kleinen allgemeinen Kommentar wird der Zusammenhang zwischen Wind (v.a. Windrichtung) und anderen Wetterbedingungen in Verbindung mit der Ausbreitung des Kartoffelkäfers und des Borkenkäfers genannt. KATASTER-BESCHREIBUNG: KATASTER-DETAIL:
    Keywords: Deutschland ; 1943-46 ; Kartoffeln ; Forst ; Pflanzenschädling ; Hackfrüchte
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  Deutsche Medizinische Wochenschrift 73, 515-518
    Publication Date: 1948
    Description: Anthropogene Veränderungen der Umweltbedingungen von Anophelesmücken KATASTER-BESCHREIBUNG: KATASTER-DETAIL:
    Keywords: Deutschland ; Umweltmedizin ; Infektionskrankheiten
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    In:  Ärztliche Wochenschrift 3, 56-59
    Publication Date: 1948
    Keywords: Deutschland ; Umweltmedizin ; Infektionskrankheiten
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    In:  Nachr.bl. dt. Pfl.schutzdienst N.F.2; p.51-54
    Publication Date: 1948
    Description: Der Autor fast wichtige Beiträge aus der Literatur zum Einfluß des Wetters bzw. Klimas zu unterschiedlichen Schaderregern zusammen, nennt konkrete Beispieluntersuchungen und beurteilt die Thematik generalisierend und zusammenfassend. KATASTER-BESCHREIBUNG: KATASTER-DETAIL:
    Keywords: Deutschland ; 1936-1947
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    In:  Nachr. Bl. Deutscher Pflanzenschutzdienst, p. 133
    Publication Date: 1948
    Description: Verbale Beschreibung zur Verbeitung und zum Jahreszyklus des Rüben-Derbrüsslers KATASTER-BESCHREIBUNG: Zusammenhang zwischen Temperatur und Jahreszyklus des Käfers KATASTER-DETAIL: Delta T: T (Luft)〉 12-14°C, dann Ende der Winterruhe
    Keywords: Deutschland ; 1946-48 ; Zuckerrüben ; Pflanzenschädling ; Temperatur
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    In:  Z. Pflanzenkrankheiten (Pflanzenpathol.) Pflanzenschutz, Nov./Dez., p. 335-341,
    Publication Date: 1948
    Description: Bericht über allgemeine Beobachtungen zum Flug und zu den Wandergewohnheiten des Großen Kohlweißlings KATASTER-BESCHREIBUNG: Einfluss von Wind und Sonnenscheindauer auf den Flug des Kohlweißlings KATASTER-DETAIL: Wind 〉 20km/h, dann kein Flug; Delta Sonn +, dann Flug +;
    Keywords: Deutschland ; 1942-48 ; Pflanzenschädling ; Temperatur ; Sonnenscheindauer ; Kohl
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    In:  Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 42:5-11.
    Publication Date: 1948
    Description: Bedeutung Niederschlag und Ertrag KATASTER-BESCHREIBUNG: KATASTER-DETAIL:
    Keywords: Deutschland ; Ertrag ; Niederschlag
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-06-28
    Description: A theory has been developed for resetting the blade angles of an axial-flow compressor in order to improve the performance at speeds and flows other than the design and thus extend the useful operating range of the compressor. The theory is readily applicable to the resetting of both rotor and stator blades or to the resetting of only the stator blades and is based on adjustment of the blade angles to obtain lift coefficients at which the blades will operate efficiently. Calculations were made for resetting the stator blades of the NACA eight-stage axial-flow compressor for 75 percent of design speed and a series of load coefficients ranging from 0.28 to 0.70 with rotor blades left at the design setting. The NACA compressor was investigated with three different blade settings: (1) the design blade setting, (2) the stator blades reset for 75 percent of design speed and a load coefficient of 0.48, and (3) the stator blades reset for 75 percent of design speed and a load coefficient of 0.65.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TR-915 , NACA-ACR-E6E02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-08-16
    Description: A wind tunnel investigation was conducted to determine the performance of a 4000-pound-thrust axial-flow turbojet engine with a high flow compressor. Pressure altitudes included 5000 to 40000 feet with ram pressure ratios from 1.00 to 1.82. Altitudes included 20000 to 40000 feet and ram pressure ratios from 1.09 to 1.75. A comparison is made between engine performance with high flow and low flow compressors.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8F09b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-08-16
    Description: A wind tunnel investigation was conducted to determine the performance of a turbine operating as an integral part of a turbojet engine. Data was obtained while the engine was running over full operable range of speeds at various altitudes and flight mach numbers, and with four nozzles of different outlet areas.A maximum turbine efficiency of 0.875 was obtained at altitude of 15 thousand feet, Mach number 0.53, and corrected turbine speed of 5900 rpm.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8A23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-08-16
    Description: Temperature and pressure distributions for an original and modified 3000 pound thrust axial flow turbojet engine were investigated. Data are included for a range of simulated altitudes from 5000 to 45000 feet, Mach numbers from 0.24 to 1.08, and corrected engine speeds from 10,550 to 13,359 rpm.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8C17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-11
    Description: This report presents the results of the tests of a power-plant installation to improve the circumferential pressure-recovery distribution at the face of the engine. An underslung "C" cowling was tested with two propellers with full cuffs and with a modification to one set of cuffs. Little improvement was obtained because the base sections of the cuffs were stalled. A set of guide vanes boosted the over-all pressures and helped the pressure recoveries for a few of the cylinders. Making the underslung cowling into a symmetrical "C" cowling evened the pressure distribution; however, no increases in front pressures were obtained. The pressures at the top cylinders remained low and the high pressures at the bottom cylinders were reduced. At higher powers and engine speeds, the symmetrical cowling appeared best from the standpoint of over-all cooling characteristics.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SL7L10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-11
    Description: An investigation was conducted in the Cleveland altitude wind tunnel to determine the operational characteristics of an axial flow-type turbojet engine with a 4000-pound-thrust rating over a range of pressure altitudes from 5,000 to 50,OOO feet, ram pressure ratios from 1.00 to 1.86, and temperatures from 60 deg to -50 deg F. The low-flow (standard) compressor with which the engine was originally equipped was replaced by a high-flow compressor for part of the investigation. The effects of altitude and airspeed on such operating characteristics as operating range, stability of combustion, acceleration, starting, operation of fuel-control systems, and bearing cooling were investigated. With the low-flow compressor, the engine could be operated at full speed without serious burner unbalance at altitudes up to 50,000 feet. Increasing the altitude and airspeed greatly reduced the operable speed range of the engine by raising the minimum operating speed of the engine. In several runs with the high-flow compressor the maximum engine speed was limited to less than 7600 rpm by combustion blow-out, high tail-pipe temperatures, and compressor stall. Acceleration of the engine was relatively slow and the time required for acceleration increased with altitude. At maximum engine speed a sudden reduction in jet-nozzle area resulted in an immediate increase in thrust. The engine started normally and easily below 20,000 feet with each configuration. The use of a high-voltage ignition system made possible starts at a pressure altitude of 40,000 feet; but on these starts the tail-pipe temperatures were very high, a great deal of fuel burned in and behind the tail-pipe, and acceleration was very slow. Operation of the engine was similar with both fuel regulators except that the modified fuel regulator restricted the fuel flow in such a manner that the acceleration above 6000 rpm was very slow. The bearings did not cool properly at high altitudes and high engine speeds with a low-flow compressor, and bearing cooling was even poorer with a high-flow compressor.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8F09a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-11
    Description: The effect of rotor-blade length, inlet angle, and shrouding was investigated with four different nozzles in a single-stage modification of the Mark 25 aerial-torpedo power plant. The results obtained with the five special rotor configurations are compared with those of the standard first-stage rotor with each nozzle. Each nozzle-rotor combination was operated at nominal pressure ratios of 8, 15 (design), and 20 over a range of speeds from 6000 rpm to the design speed of 18,000 rpm. Inlet temperature and pressure conditions of 1OOOo F and 95 pounds per square inch gage, respectively, were maintained constant for all runs.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE9G20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-11
    Description: Flow-metering devices used by the NACA and by the manufacturer of the J33 turbojet engine were calibrated together to determine whether an observed discrepancy in weight flow of approximately 4 percent for the two separate investigations might be due to the different devices used to meter air flow. A commercial adjustable orifice and a square-edge flat-plate orifice used by the NACA and a flow nozzle used by the manufacturer were calibrated against surveys across the throat of the nozzle. It was determined that over a range of weight flows from 18 to 45 pounds per second the average weight flows measured by the metering device used for the compressor test would be 0.70 percent lower than those measured by the metering device used in the engine tests and the probable variation about this mean would be +/- 0.39 percent. The very close agreement of the metering devices shows that the greater part of the discrepancy in weight flow is attributable to the effect of inlet pressure.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8H03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-11
    Description: An investigation was conducted in the NACA Cleveland altitude wind tunnel to evaluate the performance characteristics of the X24C-4B turbojet engine over a range of simulated altitudes from 5000 to 45,000 feet,simulated flight Mach numbers from 0 to 1.08, and engine speeds from 4000 to 12,500 rpm. Performance data are presented to show graphically the effects of altitude at a flight Mach number of 0.25 and of flight Mach number at an altitude of 25,000 feet. The performance data are generalized to show the applicability of methods used to determine performance at any altitude from data obtained at a given altitude. A complete tabulation of performance data, as well as lubrication- and fuel- system data, is presented.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE7L26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-11
    Description: Investigations were made of the turbine from a Mark 25 torpedo to determine the performance of the unit with three different turbine nozzles at various axial nozzle-wheel clearances. Turbine efficiency with a reamed nondivergent nozzle that uses the axial clearance space for gas expansion was little affected by increasing the axial running clearance from 0.030 to 0.150 inch. Turbine efficiency with cast nozzles that expanded the gas inside the nozzle passage was found to be sensitive to increased axial nozzle-wheel clearance. A cast nozzle giving a turbine brake efficiency of 0.525 at an axial running clearance of 0.035 inch gave a brake efficiency of 0.475 when the clearance was increased to 0.095 inch for the same inlet-gas conditions and blade-jet speed ratio. If the basis for computing the isentropic power available to the turbine is the temperature inside the nozzle rather then the temperature in the inlet-gas pipe, an increase in turbine efficiency of about 0.01 is indicated.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8B04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-12
    Description: At the request of the Air Material Command, Arm Air Forces, an investigation was conducted at the NACA Cleveland laboratory to determine the performance characteristics of the XJ-41-V turbojet-engine compressor. The complete compressor was mounted on a collecting chamber having an annular air-flow passage simulating the burner annulus of the engine and was driven by an electric motor. The compressor was extensively instrumented to determine the overall performance of the compressor, the characteristic performance of each of the compressor components, the state of the air stream in the simulated burner annulus, and the operation of the compressor bearings. An initial investigation at an equivalent compressor speed of 8000 rpm was made to determine the performance of the compressor and the collecting chamber and to determine the similarity of the air stream at the entrance to the simulated burner annulus. The mechanical performance of the compressor over a range of actual compressors speeds from 3300 to 8000 rpm is reported.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7A17a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-17
    Description: Measurements on three tubes with flow regulated by suction at the trainling edge of the tube are described. It was possible to vary the mass of air flowing through the tube over a large range. Such tubes could be used for shrouded propellers.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1191 , Zentrale fuer Wissenschaftliches Berichtswesen der Luftfahrtforschung des Generalluftzeugmeisters; 1945
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-08-15
    Description: A preliminary investigation of an axial-flow gas turbine-propeller engine was conduxted. Performance data were obtained for engine speeds from 8000 to 13,000 rpm and altitudes from 5000 to 35,000 feet and compressor inlet ram pressure ratios from 1.00 to 1.17.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8F10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-08-15
    Description: A 19XB-1 combustor was operated under conditions simulating zero-ram operation of the 19XB-1 turbojet engine at various altitudes and engine speeds. The combustion efficiencies and the altitude operational limits were determined; data were also obtained on the character of the combustion, the pressure drop through the combustor, and the combustor-outlet temperature and velocity profiles. At altitudes about 10,000 feet below the operational limits, the flames were yellow and steady and the temperature rise through the combustor increased with fuel-air ratio throughout the range of fuel-air ratios investigated. At altitudes near the operational limits, the flames were blue and flickering and the combustor was sluggish in its response to changes in fuel flow. At these high altitudes, the temperature rise through the combustor increased very slowly as the fuel flow was increased and attained a maximum at a fuel-air ratio much leaner than the over-all stoichiometric; further increases in fuel flow resulted in decreased values of combustor temperature rise and increased resonance until a rich-limit blow-out occurred. The approximate operational ceiling of the engine as determined by the combustor, using AN-F-28, Amendment-3, fuel, was 30,400 feet at a simulated engine speed of 7500 rpm and increased as the engine speed was increased. At an engine speed of 16,000 rpm, the operational ceiling was approximately 48,000 feet. Throughout the range of simulated altitudes and engine speeds investigated, the combustion efficiency increased with increasing engine speed and with decreasing altitude. The combustion efficiency varied from over 99 percent at operating conditions simulating high engine speed and low altitude operation to less than 50 percent at conditions simulating operation at altitudes near the operational limits. The isothermal total pressure drop through the combustor was 1.82 times as great as the inlet dynamic pressure. As expected from theoretical considerations, a straight-line correlation was obtained when the ratio of the combustor total pressure drop to the combustor-inlet dynamic pressure was plotted as a function of the ratio of the combustor-inlet air density to the combustor-outlet gas density. The combustor-outlet temperature profiles were, in general, more uniform for runs in which the temperature rise was low and the combustion efficiency was high. Inspection of the combustor basket after 36 hours of operation showed very little deterioration and no appreciable carbon deposits.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8J29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-08-15
    Description: Operating characteristics of the 11-stage 4000-pound-thrust axial-flow turbojet engine were determined. A standard compressor and a compressor with the blade angles of the rotor and stator blades increased 5 degrees to obtain greater air flow, were investigated.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8F09c
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-08-15
    Description: Combustion chamber performance properties of a 3000-pound-thrust axial-flow turbojet engine were determined. Data are presented for a range of simulated altitudes from 15,000 to 45,0000 feet and a range of Mach numbers from 0.23 to 1.05 for various modifications of the engine.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8B19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-11
    Description: An investigation was conducted in the NACA Cleveland altitude wind tunnel to determine the operational characteristics of the Westinghouse 19B-2, 19B-8, and 19XB-l jet-propulsion engines. The 19B engine is one af the earliest experimental Westinghouse axial flow engines. The 19XB-1 engine is an experimental prototype of the Westinghouse 15 series, having a rated thrust of 1400 pounds. Improvements in performance and operational characteristics have resulted in the 19XB-2B engine with a rated thrust of 1600 pounds. The operational characteristics were determined over a range of simulated altitudes from 5000 to 30,000 feet for the 19B engines and from 5000 to 35000 feet for the 19XB-l engine at airspeed from 20 to 380 miles per hour. The affects of altitude and airspeed on such operating characteristics as operating range, stability of combustion, starting, acceleration, and functioning of the fuel-control system are discussed. Damage to the engines that occurred during the investigation is also briefly discussed. The changes made in the combustion-chamber configuration to improve the operating we are described.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8J28-Pt-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-11
    Description: A theoretical investigation has been made of various methods of thrust augmentation for turbojet engines. The method investigated were tail-pipe burning, water injection at the compressor inlet, a combination of tail-pipe burning and water injection, bleedoff in conjunction with water injection at the compressor inlet, and rocket assist. The effect of ratio of augmented-to-normal total liquid consumption, flight conditions, and design compressor pressure ratio on the augmentation produced by each method were determined. A comparison was also made for a given time of operation of the weight of an augmented engine plus fuel and additional liquids to the weight of a standard engine plus fuel producing the same thrust.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8H11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-11
    Description: The Allison model 400-C6 compressor was operated at an inlet pressure of 12 inches of mercury absolute ana ambient inlet temperature at equivalent impeller speeds of 6000, 7000, and 8500 rpm. Additional runs at an equivalent speed of 7000 rpm and ambient inlet temperature were made at inlet pressures from 7 to 22 inches of mercury absolute. The results of this investigation are compared with those of the 533-A-23 compressors. For the speeds investigated, the Allison model 400-C6 compressor had a maximum adiabatic temperature-rise efficiency of 0.768 at an equivalent speed of 7000 rpm; the corresponding equivalent weight flow was 45.0 pounds per second and the pressure ratio was 1.83. At an equivalent impeller speed of 8500 rpm, the maximum equivalent weight flow was 61.6 pounds per second and the peak pressure ratio of 2.38 occurred at an equivalent weight flow of 52.2 pounds per 1 second and an adiabatic temperature-rise efficiency of 0.714. At an equivalent speed of 7000 rpm, increasing the compressor- inlet pressure increased the maximum equivalent weight flow and the pressure ratio.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8L15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-11
    Description: The production-model 333-A-23 turbojet-engine compressor with a 17-blade impeller was operated at ambient and 0 F inlet temperatures and at inlet pressures of 14 and 5 inches mercury absolute for equivalent impeller speeds from 6000 to 12,750 rpm. The results of this investigation are compared with those of the 533-A-21 compressor. At the design equivalent speed of 11,750 rpm the maximum pressure ratio was 4.39. This occurred at the surge point at which the equivalent weight flow was 80.8 pounds per second, ana the adiabatic temperature-rise efficiency was 0.757. The maximum flow at the design equivalent speed was 88.0 pounds per second. The maximum adiabatic temperature-rise efficiency of 0.799 was obtained at an equivalent speed of 10,000 rpm, and equivalent weight flow of 62.9 pounds per second, and a pressure ratio of 3.20. At the maximum equivalent speed investigated (12,750 rpm), a peak pressure ratio of 4.90 was attained at an equivalent weight flow of 85.4 pounds per second and an efficiency of 0.680.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8F15-Pt-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-11
    Description: In an investigation of the J-33-A-21 and the J-33-A-23 compressors with and without water injection, it was discovered that the compressors reacted differently to water injection although they were physically similar. An analysis of the effect of water injection on compressor performance and the consequent effect on matching of the compressor and turbine components in the turbojet engine was made. The analysis of component matching is based on a turbine flow function defined as the product of the equivalent weight flow and the reciprocal of the compressor pressure ratio.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8A19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-11
    Description: An investigation has been conducted in the NACA Cleveland altitude wind tunnel to evaluate the performance and windmilling drag characteristics of an original and a modified turbojet engine of the same type. Data have been obtained at simulated altitudes from 5000 to 45,000 feet, simulated flight Mach numbers from 0.09 to 1.08, and engine speeds from 4000 to 12,500 rpm. Engine performance data are presented for both engines to show the effects of altitude at a flight Mach number of 0.25 and of flight Mach number at an altitude of 25,000 feet. Performance of the original and modified engines is compared for a range of simulated flight conditions. The performance data are generalized to show the applicability of methods used to estimate performance at any altitude from data obtained at a given altitude. Engine-windmilling-speed and windmilling-drag data are presented for a range of simulated flight conditions.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8B26 , Rept-928
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-11
    Description: An investigation was conducted in an altitude test chamber to determine the effects of inlet airflow distortion on the compressor steady-state and surge characteristics of a high-pressure ratio, axial-flow turbojet engine. Circumferential-type inlet flow distortions were investigated, which covered a range of distortion sector angles from 20 deg to 168 deg and distortion levels up to 22 percent. The presence of inlet airflow distortions at the compressor face resulted in a substantial increase in the local pressure ratio in the distorted region, primarily for the inlet stages. The local pressure ratio in the distorted region for the inlet stages increased as either the distortion sector angle decreased or the percent distortion increased. The average compressor-surge pressure ratio was much more sensitive to inlet airflow distortions at lower engine speeds than at engine speeds near rated. Hence, compressor-surge margin reduction due to inlet airflow distortion was quite severe at the lower engine speeds. Although the average compressor-surge pressure ratio was generally reduced with inlet flow distortion, local pressure ratios across the distorted sector of the compressor were obtained during surge and were significantly greater than the normal compressor-surge pressure ratio. This was a result of increased loading of the inlet stages in the distorted region.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E57L12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-11
    Description: An altitude-test-chamber investigation was conducted to determine the operational characteristics and altitude blow-out limits of a Solar afterburner in a 24C engine. At rated engine speed and maximum permissible turbine-discharge temperature, the altitude limit as determined by combustion blow-out occurred as a band of unstable operation of about 8000 feet altitude in width with maximum altitude limits from 32,000 feet at a Mach number of 0.3 to about 42,000 feet at a Mach number of 1.0. The maximum fuel-air ratio of the afterburner, as limited by maximum permissible turbine-discharge gas temperatures at rated engine speed, varied between 0.0295 and 0.0380 over a range of flight Mach numbers from 0.25 to 1.0 and at altitudes of 20,000 and 30,000 feet. Over this range of operating conditions, the fuel-air ratio at which lean blow-out occurred was from 10 to 19 percent below these maximum fuel-air ratios. Combustion was very smooth and uniform during operation; however, ignition of the burner was very difficult throughout the investigation. A failure of the flame holder after 12 hours and 15 minutes of afterburner operation resulted in termination of the investigation.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8G02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-11
    Description: With the further development of axial blowers into highly loaded flow machines, the influence of the diameter ratio upon air output and efficiency gains in significance. Clarification of this matter is important for single-stage axial compressors, and is of still greater importance for multistage ones, and particularly for aircraft power plants. Tests with a single-stage axial blower gave a decrease in the attainable maximum pressure coefficient and optimum efficiency as the diameter ratio increased. The decrease must be ascribed chiefly to the guide surface of the hub and housing between the blades increasing with the diameter ratio.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-TM-1125
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-11
    Description: As part of an investigation af the application of nuclear energy to various types of power plants for aircraft, calculations have been made to determine the effect of several operating conditions on the performance of condensers for mercury-turbine power plants. The analysis covered 8 range of turbine-outlet pressures from 1 to 200 pounds per square inch absolute, turbine-inlet pressures from 300 to 700 pounds per square inch absolute,and a range of condenser cooling-air pressure drops, airplane flight speeds, and altitudes. The maximum load-carrying capacity (available for the nuclear reactor, working fluid, and cargo) of a mercury-turbine powered aircraft would be about half the gross weight of the airplane at a flight speed of 509 miles per hour and an altitude of 30,000 feet. This maximum is obtained with specific condenser frontal areas of 0.0063 square foot per net thrust horsepower with the condenser in a nacelle and 0.0060 square foot per net thrust horsepower with the condenser submerged in the wings (no external condenser drag) for a turbine-inlet pressure of 500 pounds per square inch absolute, a turbine-outlet pressure of 10 pounds per square inch absolute, and 8 turbine-inlet temperature of 1600 F.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8C23 , Rept-952
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-11
    Description: The J33-A-23 compressor with a 34-blade impeller was operated at ambient inlet temperature and an inlet pressure of 14 inches mercury absolute over a range of equivalent impeller speeds from 6000 to 11,750 rpm. Additional runs at equivalent speeds of 7,000, 10,000, and 11,750 rpm and ambient inlet temperature were made at inlet pressures of 5 and 10 inches mercury absolute. The results of this investigation are compared with those of the J33-A-23 compressor with a 17-blade impeller. At the design equivalent speed of 11,750 rpm the 533-A-23 compressor with a 34-blade impeller had a peak pressure ratio of 4.49 at an equivalent weight flow of 82.4 pounds per second and an adiabatic temperature-rise efficiency of 0.740. The maximum equivalent flow at design speed was 91.8 pounds per second. The peak efficiency at design speed (0.757) occurred at an equivalent weight flow of 85.5 pounds per second. The maximum adiabatic temperature- rise efficiency of 0.773 was obtained at an equivalent impeller speed of 10,000 rpm, an equivalent weight flow of 65.8 pounds per second, and a pressure ratio of 3.27. At equivalent impeller speeds of.l0,000 and 11,75O rpm a decrease in inlet pressure resulted in a decrease in maximum equivalent weight flow, peak pressure ratio, and peak adiabatic temperature- rise efficiency.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8H13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-12
    Description: An investigation of the XJ-41-V turbojet-engine compressor was conducted to determine the performance of the compressor and to obtain fundamental information on the aerodynamic problems associated with large centrifugal-type compressors. The results of the research conducted on the original compressor indicated the compressor would not meet the desired engine-design air-flow requirements because of an air-flow restriction in the vaned collector. The compressor air-flow choking point occurred near the entrance to the vaned-collector passage and was instigated by a poor mass-flow distribution at the vane entrance and from relatively large negative angles of attack of the air stream along the entrance edges of the vanes at the outer passage wall and large positive angles of attack at the inner passage wall. As a result of the analysis, a design change of the vaned collector entrance is recommended for improving the maximum flow capacity of the compressor.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE7L12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-12
    Description: The performance of an annular combustion chamber from a 24C turbojet engine was investigated over a range of simulated altitudes from 20,000 to 55,000 feet and corrected engine rotor speeds from 6000 to 13,000 rpm at a simulated ram-pressure ratio of 1.04. The purpose of the investigation was to determine the effects on the altitude operational limits, combustor-outlet gas temperature distribution, combustion efficiencies, and combustor inlet-to-outlet total-pressure drops of two changes in the 24C-4B basket air-passage arrangements that were designed to improve combustor-outlet temperature distribution. These changes were: (a) replacement of the downstream secondary air holes with large rectangular slots further upstream (rectangular-slot basket), and (b) enlargement of anticoking holes in the rectangular-slot basket (modified rectangular-slot basket). The results indicate that improved outlet-gas temperature distribution of each succeeding combustor basket investigated was attained at a sacrifice in the altitude limit of operation. The altitude limits of operation of the combustor with the original basket ranged from 34,000 feet at a corrected engine speed of 6000 rpm to a maximum of 52,000 feet at 12 ' 500 rpm. The altitude limits of the rectangular-slot basket were about 2000 feet lower throughout the engine speed range than those of the original basket. The altitude limits of the combustor with the modified rectangular-slot basket were about equivalent to those of the other baskets in the corrected-engine-speed range from 12,000 to 12,500 rpm but were about 10,000 feet lower than those of the original basket in the corrected-engine-speed range from 6000 to 9000 rpm. For the same inlet-air conditions, the combustion efficiencies were highest for the original basket and progressively lower for each of the other two baskets. The combustor inlet-to-outlet pressure drops of all three combustor baskets at the same operating conditions were within +/- 10 percent of the pressure drop of the original basket.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8G13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-12
    Description: Compressor operation at low air flows for a given speed is limited by unstable flow conditions, commonly called surge. An investigation of surge in centrifugal compressors (reference 1) showed that the pulsation of pressures and velocities occurred when the slope of the compressor characteristic curve was positive and that the magnitude and frequency, as well as the incidence of surge, depended on the capacity and resistance of the total system. Although the theory presented in reference 1 is applicable to axial-floe compressors, little experimental information is available on the surge characteristics of the individual stages of axial-flow compressors, or on the variation of the surge characteristics with operating conditions. During the investigation to determine the performance of the X24C-2 compressor (references 2 and 3), instrumentation was added to study the surge characteristics and to determine the effect of speed and inlet pressure on the frequency, amplitude, and phase relation of the pressure pulsations behind each stage.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8H06
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-08-15
    Description: Compressor performance properties for two 11-stage compressors of 3000-pound-thrust axial-flow turbojet engines were determined. Data are presented for a range of simulated altitudes and a range of Mach numbers for various modifications of the engine.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8A26a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-08-15
    Description: Wind tunnel investigations were performed to determine the performance properties of an axial-flow gas turbine-propeller engine II. Windmilling characteristics were determined for a range of altitudes from 5000 to 35,000 feet, true airspeeds from 100 to 273 miles per hour, and propeller blade angles from 4 degrees to 46 degrees.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8F10a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-08-16
    Description: A simulated altitude performance of a 25 1/2-inch-diameter annular-type turbojet combustor was performed to determine the effect of the distribution of basket-hole area on the altitude operational limits of the engine as imposed by the combustor.Total pressure drop was recorded, as well as the effect of fuel-nozzle flow capacity,and fuel-nozzle spray angle for one basket configuration. General observations were made for all configurations regarding flames, extent of afterburning, and durability of the baskets.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8A02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-08-16
    Description: An investigation was conducted to evaluate the operational characteristics of a 3000 pound thrust axial flow turbojet engine over a range of simulated altitudes from 2000 to 50,000 feet and simulated flight Mach numbers from 0 to 1.04 throughout the operable range of engine speeds. Engine operating range, acceleration, deceleration, starting, altitude, and flight Mach number compensation of the fuel control system, and operation of the lubrication system at high and low ambient air temperatures were evaluated.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8B19a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-12
    Description: An investigation is being conducted to determine the altitude performance characteristics of the Nene II engine and its components. The present paper presents preliminary results obtained using a jet nozzle of 18.41 inches in diameter, giving an area equal to 96.4 percent of the area of the standard jet nozzle of this engine. The test results presented are for conditions simulating altitudes from seal level to 50,000 feet and ram-pressure ratios from 1.00 to 2.70. The ram pressure ratios correspond to flight Mach numbers between zero and 1.28.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8F14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-12
    Description: At the request of the Air Material Command, Army Air Forces, an investigation was conducted by the NACA Cleveland laboratory to determine the performance characteristics of the compressor of the XJ-41-V turbojet engine. This report is the second in a series presenting the compressor performance and analysis of flow conditions in the compressor. The static-pressure variation in the direction of flow through the compressor and the location and the cause of the maximum flow restriction at an equivalent speed of 8000 rpm are presented. After the initial runs were reported, the leading edges of the impeller blades and the diffuser surfaces were found to have been roughened by steel particles from a minor failure of auxiliary equipment. The leading edges of the impeller blades were refinished and all high spots resulting from scratches in the diffuser and the accessible parts of the vaned collector passages were removed. The initial overall performance and that obtained with the refinished blades are presented.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E7E05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-12
    Description: An extended analysis was made of the previously reported performance investigation of the original compressor from the XJ-41-v turbojet engine and a similar compressor revised a to obtain a 33-percent increase in the geometric passage area at the vaned-collector entrance. This analysis was based on the concept of the vaned-collector entrance as the throat section of a nozzle. Because of nonuniform air distribution at the vaned-collector entrance, approximately 90 percent of the available flow area was utilized in the original compressor and 94percent in the revised com$ressor. The increase in maximum weight flow obtained with the revised compressor was disproportionate to the increased effective critical throat area because. the air density at the revised vaned-collector entrance for maximum flow was lower than that obtained in the original compressor. This reduction in density resulted from the large pressure losses near the impeller inlet of the revised compressor, which is indicative of impending flow choking in the impeller, The.calculated maximum corrected weight-flow capacity of a compressor consisting of the revised vaneless diffuser and vaned collector with a theoretical impeller that combined peak impeller pressure ratio and peak impeller efficiency at the . maximum flow point would be 112 pounds per second for an equivalent impeller speed of 11,500 rpm;
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-SE8C12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-08-16
    Description: Performance properties and operational characteristics of an axial-flow gas turbine-propeller engine were determined. Data are presented for a range of simulated altitudes from 5,000 to 35,0000 feet, compressor inlet- ram pressure ratios from 1.00 to 1.17, and engine speeds from 8000 to 13,000 rpm.
    Keywords: Aircraft Propulsion and Power
    Type: NACA-RM-E8F10b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...