ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (59)
  • AMS (American Meteorological Society)  (28)
  • Oxford Univ. Press  (28)
  • Oxford University Press
  • 2015-2019  (59)
  • 1945-1949
  • 1930-1934
  • 2018  (33)
  • 2017  (26)
  • 1949
  • 1948
Collection
Source
Years
  • 2015-2019  (59)
  • 1945-1949
  • 1930-1934
Year
  • 1
    Publication Date: 2020-02-06
    Description: The transition from benthos to plankton requires multiple adaptations, yet so far it remains unclear how these are acquired in the course of the transition. To investigate this process, we analyzed the genetic diversity and distribution patterns of a group of foraminifera of the genus Bolivina with a tychopelagic mode of life (same species occurring both in benthos and plankton). We assembled a global sequence data set for this group from single-cell DNA extractions and occurrences in metabarcodes from pelagic environmental samples. The pelagic sequences all cluster within a single monophyletic clade within Bolivina. This clade harbors three distinct genetic lineages, which are associated with incipient morphological differentiation. All lineages occur in the plankton and benthos, but only one lineage exhibits no limit to offshore dispersal and has been shown to grow in the plankton. These observations indicate that the emergence of buoyancy regulation within the clade preceded the evolution of pelagic feeding and that the evolution of both traits was not channeled into a full transition into the plankton. We infer that in foraminifera, colonization of the planktonic niche may occur by sequential cooptation of independently acquired traits, with holoplanktonic species being recruited from tychopelagic ancestors
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: Arctic sea ice area (SIA) during late summer and early fall decreased substantially over the last four decades, and its decline accelerated beginning in the early 2000s. Statistical analyses of observations show that enhanced poleward moisture transport from the North Pacific to the Arctic Ocean contributed to the accelerated SIA decrease during the most recent period. As a consequence, specific humidity in the Arctic Pacific sector significantly increased along with an increase of downward longwave radiation beginning in 2002, which led to a significant acceleration in the decline of SIA in the Arctic Pacific sector. The resulting sea ice loss led to increased evaporation in the Arctic Ocean, resulting in a further increase of the specific humidity in mid-to-late fall, thus acting as a positive feedback to the sea ice loss. The overall set of processes is also found in a long control simulation of a coupled climate model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Journal of Plankton Research, 39 (6). pp. 943-961.
    Publication Date: 2020-02-06
    Description: The sea surface microlayer (SML) is the uppermost layer of the water column that links the ocean and atmosphere. It accumulates a variety of biogenic surface-active and buoyant substances, including gelatinous material, such as transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP), potentially affecting air–sea exchange processes. Here, we studied the influence of the annual cycle of phytoplankton production on organic matter (OM) accumulation in the SML relative to the subsurface water (SSW). Sampling was performed monthly from April 2012 to November 2013 at the Boknis Eck Time Series Station (Baltic Sea). For SML sampling, we used the Garrett screen, while SSW samples were collected by Niskin bottles at 1 m depth. Samples were analyzed for carbohydrates, amino acids, TEP, CSP, chlorophyll a (SSW only) and bacterial abundance. Our data showed that the SML reflected the SSW during most parts of the year, with changes mainly responding to bloom formation and decay. OM composition during phytoplankton blooms clearly differed from periods of higher bacterial abundance. Of all components investigated, only the enrichment of total carbohydrates in the SML was inversely related to the wind speed indicating that wind-driven mixing also affected the accumulation of OM in the SML during our study.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 30 (22). pp. 9321-9337.
    Publication Date: 2020-08-04
    Description: In the present study, the influence of some major tropical modes of variability on northern hemisphere regional blocking frequency variability during boreal winter is investigated. Reanalysis data and an ensemble experiment with the ECMWF model using relaxation towards the ERA-Interim reanalysis data inside the tropics are used. The tropical modes under investigation are El Niño Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO) and the upper tropospheric equatorial zonal-mean zonal wind . An early (late) MJO phase refers to the part of the MJO cycle when enhanced (suppressed) precipitation occurs over the western Indian Ocean and suppressed (enhanced) precipitation occurs over the Maritime Continent and the western tropical Pacific. Over the North Pacific sector, it is found that enhanced (suppressed) high latitude blocking occurs in association with El Niño (La Niña) events, late (early) MJO phases and westerly (easterly) . Over central to southern Europe and the east Atlantic, it is found that late MJO phases, as well as a suppressed MJO are leading to enhanced blocking frequency. Furthermore, early (late) MJO phases are followed by blocking anomalies over the western North Atlantic region, similar to those associated with a positive (negative) North Atlantic Oscillation. Over northern Europe, the easterly (westerly) phase of is associated with enhanced (suppressed) blocking. These results are largely confirmed by both the reanalysis and the model experiment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-08
    Description: On 25 December 2016, a Mw 7.6 earthquake broke a portion of the Southern Chilean subduction zone south of Chiloé Island, located in the central part of the Mw 9.5 1960 Valdivia earthquake. This region is characterized by repeated earthquakes in 1960 and historical times with very sparse interseismic activity due to the subduction of a young (~15 Ma), and therefore hot, oceanic plate. We estimate the co-seismic slip distribution based on a kinematic finite fault source model, and through joint inversion of teleseismic body waves and strong motion data. The coseismic slip model yields a total seismic moment of 3.94×1020 Nm that occurred over ~30 s, with the rupture propagating mainly downdip, reaching a peak-slip of ~4.2 m. Regional moment tensor inversion of stronger aftershocks reveals thrust type faulting at depths of the plate interface. The fore- and aftershock seismicity is mostly related to the subduction interface with sparse seismicity in the overriding crust. The 2016 Chiloé event broke a region with increased locking and most likely broke an asperity of the 1960 earthquake. The updip limit of the main event, aftershocks, foreshocks and interseismic activity are spatially similar, located ~15 km offshore and parallel to Chiloé Islands west coast. The coseismic slip model of the 2016 Chiloé earthquake suggests a peak slip of 4.2 m that locally exceeds the 3.38 m slip deficit that has accumulated since 1960. Therefore, the 2016 Chiloé earthquake possibly released strain that has built up prior to the 1960 Valdivia earthquake.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-08
    Description: We used a molecular phylogenetic approach to investigate species delimitation and diversification in the northeastern Atlantic and Mediterranean musseldrills of the Ocinebrina aciculata complex, based on molecular data from topotypical material of many of the nominal taxa. The complex is shown to consist of at least five species: Ocinebrina aciculata (Lamarck, 1822) from the Atlantic and western Mediterranean; O. cf. corallina (Scacchi, 1836) from the central Mediterranean Sea; O. reinai Bonomolo & Crocetta, 2012 from the Tyrrhenian Sea; O. corallinoides Pallary, 1912 from the Gulf of Gabès; and O. aegeensis n. sp. currently known from the Aegean Sea only. The new species is differentiated from the other taxa by very subtle morphological diagnostic features, although it is clearly identified by genetic distance and apomorphic DNA-sequence characters. The identity of Murex corallinus Scacchi, 1836 (type species of Ocinebrina Jousseaume, 1880) could not be defined with certainty, pending genetic comparison of specimens of the â €? large Tyrrhenian morphotype' (corresponding to the neotype, but not assayed herein) with the assayed â €? small morphotype'.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 48 (4). pp. 757-771.
    Publication Date: 2021-02-08
    Description: The Eddy Kinetic Energy (EKE) associated with the Subtropical Countercurrent (STCC) in the western subtropical South Pacific is known to exhibit substantial seasonal and decadal variability. Using an eddy-permitting ocean general circulation model, which is able to reproduce the observed, salient features of the seasonal cycles of shear, stratification, baroclinic production and the associated EKE, we investigate the decadal changes of EKE. We show that the STCC region exhibits, uniquely among the subtropical gyres of the world’s oceans, significant, atmospherically forced, decadal EKE variability. The decadal variations are driven by changing vertical shear between the STCC in the upper 300 m and the South Equatorial Current below, predominantly caused by variations in STCC strength associated with a changing meridional density gradient. In the 1970s, an increased meridional density gradient results in EKE twice as large as in later decades in the model. Utilizing sensitivity experiments, decadal variations in the wind field are shown to be the essential driver. Local wind stress curl anomalies associated with the Interdecadal Pacific Oscillation (IPO) lead to up- and downwelling of the thermocline, inducing strengthening or weakening of the STCC and the associated EKE. Additionally, remote wind stress curl anomalies in the eastern subtropical South Pacific, which are not related to the IPO, generate density anomalies that propagate westward as Rossby waves and can account for up to 30–40 % of the density anomalies in the investigated region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-02-08
    Description: Marine sponges are early-branched metazoans known to harbor dense and diverse microbial communities. Yet the role of the so far uncultivable alphaproteobacterial lineages that populate these sessile invertebrates remains unclear. We applied a sequence composition-dependent binning approach to assemble one Rhodospirillaceae genome from the Spongia officinalis microbial metagenome and contrast its functional features with those of closely related sponge-associated and free-living genomes. Both symbiotic and free-living Rhodospirillaceae shared a suite of common features, possessing versatile carbon, nitrogen, sulfur and phosphorus metabolisms. Symbiotic genomes could be distinguished from their free-living counterparts by the lack of chemotaxis and motility traits, enrichment of genes required for the uptake and utilization of organic sulfur compounds—particularly taurine—, higher diversity and abundance of ABC transporters, and a distinct repertoire of genes involved in natural product biosynthesis, plasmid stability, cell detoxification and oxidative stress remediation. These sessile symbionts may more effectively contribute to host fitness via nutrient exchange, and also host detoxification and chemical defense. Considering the worldwide occurrence and high diversity of sponge-associated Rhodospirillaceae verified here using a tailored in silico approach, we suggest that these organisms are not only relevant to holobiont homeostasis but also to nutrient cycling in benthic ecosystems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-06
    Description: The Indian Ocean has sustained robust surface warming in recent decades, but the role of multi-decadal variability remains unclear. Using ocean model hindcasts, characteristics of low-frequency Indian Ocean temperature variations are explored. Simulated upper-ocean temperature changes across the Indian Ocean in the hindcast are consistent with those recorded in observational products and ocean reanalyses. Indian Ocean temperatures exhibit strong warming trends since the 1950s limited to the surface and south of 30°S, while extensive subsurface cooling occurs over much of the tropical Indian Ocean. Previous work focused on diagnosing causes of these long-term trends in the Indian Ocean over the second half of the 20th Century. Instead, the temporal evolution of Indian Ocean subsurface heat content is shown here to reveal distinct multi-decadal variations associated with the Pacific Decadal Oscillation and the long-term trends are thus interpreted to result from aliasing of the low-frequency variability. Transmission of the multi-decadal signal occurs via an oceanic pathway through the Indonesian Throughflow and is manifest across the Indian Ocean centered along 12°S as westward propagating Rossby waves modulating thermocline and subsurface heat content variations. Resulting low-frequency changes in the eastern Indian Ocean thermocline depth are associated with decadal variations in the frequency of Indian Ocean Dipole (IOD) events, with positive IOD events unusually common in the 1960s and 1990s with a relatively shallow thermocline. In contrast, the deeper thermocline depth in the 1970s and 1980s is associated with frequent negative IOD and rare positive IOD events. Changes in Pacific wind forcing in recent decades and associated rapid increases in Indian Ocean subsurface heat content can thus affect the basin’s leading mode of variability, with implications for regional climate and vulnerable societies in surrounding countries.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-02-08
    Description: Continental hyperextension during magma-poor rifting at the Deep Galicia Margin is characterised by a complex pattern of faulting, thin continental fault blocks, and the serpentinisation, with local exhumation, of mantle peridotites along the S-reflector, interpreted as a detachment surface. In order to understand fully the evolution of these features, it is important to image seismically the structure and to model the velocity structure to the greatest resolution possible. Travel-time tomography models have revealed the long-wavelength velocity structure of this hyperextended domain, but are often insufficient to match accurately the short-wavelength structure observed in reflection seismic imaging. Here we demonstrate the application of two-dimensional (2D) time-domain acoustic full-waveform inversion to deep water seismic data collected at the Deep Galicia Margin, in order to attain a high resolution velocity model of continental hyperextension. We have used several quality assurance procedures to assess the velocity model, including comparison of the observed and modelled waveforms, checkerboard tests, testing of parameter and inversion strategy, and comparison with the migrated reflection image. Our final model exhibits an increase in the resolution of subsurface velocities, with particular improvement observed in the westernmost continental fault blocks, with a clear rotation of the velocity field to match steeply dipping reflectors. Across the S-reflector there is a sharpening in the velocity contrast, with lower velocities beneath S indicative of preferential mantle serpentinisation. This study supports the hypothesis that normal faulting acts to hydrate the upper mantle peridotite, observed as a systematic decrease in seismic velocities, consistent with increased serpentinisation. Our results confirm the feasibility of applying the full-waveform inversion method to sparse, deep water crustal datasets.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2020-02-06
    Description: Processes linked with the genesis, evolution and emplacement of silicic complexes in arcs are still poorly constrained. Of particular interest are the depth of magma production, the relative contribution of crystal fractionation versus crustal partial melting and the timescales involved. The Soufrière Volcanic Complex (SVC) on St Lucia is one of the largest silicic centres in the Lesser Antilles arc. Here we present the results of a detailed mineralogical study, including in situ Sr isotopes in plagioclase and in situ δ18O in dated zircons, of both SVC and Pre-SVC volcanic rocks to place constraints on the processes intrinsic to the development and evolution of the silicic complex. These data suggest that the production of silicic magma in the SVC occurs in two stages. The first stage involves differentiation of mafic magma by crustal assimilation and mineral fractionation in the middle–lower crust of the arc to produce magmas with intermediate compositions. These intermediate magmas are water-rich (∼7 wt %) and have high 87Sr/86Sr, Ba, Sr and La/Sm (∼5) compared with Pre-SVC lavas. Near-constant trace element and isotopic compositions throughout the SVC lifespan indicate that the same process was persistent over the last 600 kyr. In the second stage, the intermediate magmas are transferred to a shallower and more differentiated chamber (∼6 km depth). During ascent, any crystals or xenocrysts residual from stage one in the deeper chamber become fully resorbed and the magma crystallizes calcic amphibole microphenocrysts, followed by anorthite-rich plagioclase close to or at the water saturation depth. During mixing upon recharge within the shallow chamber, anorthite-rich plagioclase from the recharging magma is partially resorbed; so are the crystals in equilibrium with the resident differentiated magma. The recharge event probably causes chamber-wide convection. Mixing is thought to trigger eruption of the silicic complex magmas.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-02-08
    Description: The North Atlantic Oscillation (NAO) and the Arctic Oscillation (AO) describe the dominant part of the variability in the Northern Hemisphere extratropical troposphere. Due to the strong connection of these patterns with surface climate, recent years have shown an increased interest and an increasing skill in forecasting them. However, it is unclear what the intrinsic limits of short-term predictability for the NAO and AO patterns are. This study compares the variability and predictability of both patterns, using a range of data and index computation methods for the daily NAO/AO indices. Small deviations from Gaussianity are found and characteristic decorrelation time scales of around one week. In the analysis of the Lyapunov spectrum it is found that predictability is not significantly different between the AO and NAO or between reanalysis products. Differences exist however between the indices based on EOF analysis, which exhibit predictability time scales around 12 - 16 days, and the station-based indices, exhibiting a longer predictability of 18 - 20 days. Both of these time scales indicate predictability beyond that currently obtained in ensemble prediction models for short-term predictability. Additional longer-term predictability for these patterns may be gained through local feedbacks and remote forcing mechanisms for particular atmospheric conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 98 (6). ES139-ES142.
    Publication Date: 2020-07-16
    Description: The 13th European Polar Low Workshop was organized by the European Polar Low Working Group (www.uni-trier.de/index.php?id=20308)and gathered scientists from nine countries focusing on polar mesocyclones in both hemispheres and other mesoscale weather phenomena such as katabatic winds, tip jets, boundary layer fronts, cold air outbreaks, and weather extremes in polar regions. Topics included experimental, climatological, theoretical, modeling, and remote sensing studies. The aim was to bring together scientists and forecasters to present their latest work and recent findings on these topics and to encourage discussions on improving forecasting and understanding of these phenomena.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 30 (22). pp. 8913-8927.
    Publication Date: 2020-02-06
    Description: The regional climate model COSMOin Climate Limited-AreaMode (COSMO-CLM or CCLM) is used with a high resolution of 15km for the entire Arctic for all winters 2002/03–2014/15. The simulations show a high spatial and temporal variability of the recent 2-m air temperature increase in the Arctic. The maximum warming occurs north of Novaya Zemlya in the Kara Sea and Barents Sea between March 2003 and 2012 and is responsible for up to a 208C increase. Land-based observations confirm the increase but do not cover the maximum regions that are located over the ocean and sea ice.Also, the 30-km version of theArctic SystemReanalysis (ASR) is used to verify the CCLM for the overlapping time period 2002/03–2011/12. The differences between CCLM and ASR 2-m air temperatures vary slightly within 18C for the ocean and sea ice area. Thus,ASR captures the extreme warming as well. The monthly 2-m air temperatures of observations and ERA-Interim data show a large variability for the winters 1979–2016. Nevertheless, the air temperature rise since the beginning of the twenty-first century is up to 8 times higher than in the decades before. The sea ice decrease is identified as the likely reason for the warming. The vertical temperature profiles show that the warming has a maximum near the surface, but a 0.58Cyr21 increase is found up to 2 km. CCLM, ASR, and also the coarser resolved ERA-Interim data show that February and March are the months with the highest 2-m air temperature increases, averaged over the ocean and sea ice area north of 708N; for CCLM the warming amounts to an average of almost 58C for 2002/03–2011/12.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of the Atmospheric Sciences, 75 (8). pp. 2815-2826.
    Publication Date: 2021-02-08
    Description: The formation of secondary ice in clouds, i.e. ice particles that are created at temperatures above the limit for homogeneous freezing without the direct involvement of a heterogeneous ice nucleus is one of the longest standing puzzles in cloud physics. Here we present comprehensive laboratory investigations on the formation of small ice particles upon the freezing of drizzle-sized cloud droplets levitated in an electrodynamic balance. Four different categories of secondary ice formation (bubble bursting, jetting, cracking, breakup) could be detected and their respective frequencies of occurrence as a function of temperature and droplet size are given. We find that bubble bursting occurs more often than droplet splitting. While we do not observe the shattering of droplets into many large fragments, we find that the average number of small secondary ice particles released during freezing is strongly droplet-size dependent and may well exceed unity for droplets larger than 300 μm in diameter. This leaves droplet fragmentation an important secondary ice process effective at temperatures around -10 °C in clouds where large drizzle droplets are present.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2020-02-06
    Description: Eukaryotic phytoplankton exhibit an enormous species richness, displaying a range of phylogenetic, morphological and physiological diversity. Yet, until recently, very little was known about the diversity, genetic variation and evolutionary processes within species and populations. An approach to explore this diversity and to understand evolution of phytoplankton is to use population genetics as a conceptual framework and methodology. Here, we discuss the patterns, processes and questions that population genetic studies have revealed in eukaryotic phytoplankton. First, we describe the main biological processes generating genetic variation. We specifically discuss the importance of life-cycle complexity for genetic and phenotypic diversity and consider how such diversity can be maintained during blooms when rapid asexual proliferation dominates. Next, we explore how genetic diversity is partitioned over time and space, with a focus on the processes shaping this structure, in particular selection and genetic exchange. Our aim is also to show how population genetics can be used to make inferences about realized dispersal and sexual recombination, as these processes are so difficult to study directly. Finally, we highlight important open questions and suggest promising avenues for future studies that will be made possible by new sequencing technologies
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  ICES Journal of Marine Science, 74 (1). pp. 102-111.
    Publication Date: 2020-02-06
    Description: Marine spatial planning (MSP) is considered a valuable tool in the ecosystem-based management of marine areas. Predictive modelling may be applied in the MSP framework to obtain spatially explicit information about biodiversity patterns. The growing number of statistical approaches used for this purpose implies the urgent need for comparisons between different predictive techniques. In this study, we evaluated the performance of selected machine learning and regression-based methods that were applied for modelling fish community indices. We hypothesized that habitat features can influence fish assemblage and investigated the effect of environmental gradients on demersal fish diversity (species richness and Shannon–Weaver Index). We used fish data from the Baltic International Trawl Surveys (2001–2014) and maps of six potential predictors: bottom salinity, depth, seabed slope, growth season bottom temperature, seabed sediments and annual mean bottom current velocity. We compared the performance of six alternative modelling approaches: generalized linear models, generalized additive models, multivariate adaptive regression splines, support vector machines, boosted regression trees and random forests. We applied repeated 10-fold cross-validation, using accuracy as the measure of model quality. Finally, we selected random forest as the best performing algorithm and implemented it for the spatial prediction of fish diversity from the Baltic Proper to the Kattegat. To obtain information on the data reliability and confidence of the developed models, which are essential for MSP, we estimated the uncertainty of predictions with standard deviation of predictions obtained from all the trees in the ensemble random forest method. We showed how state-of-the-art predictive techniques, based on easily available data and simple Geographic Information System tools, can be used to obtain reliable spatial information about fish diversity. Our comparative work highlighted the potential of machine learning method to reduce prediction error in modelling of demersal fish diversity in the framework of MSP.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Geophysical Journal International, 208 (1). pp. 449-467.
    Publication Date: 2020-02-06
    Description: The Mozambique Ridge, a prominent basement high in the southwestern Indian Ocean, consists of four major geomorphological segments associated with numerous phases of volcanic activity in the Lower Cretaceous. The nature and origin of the Mozambique Ridge have been intensely debated with one hypothesis suggesting a Large Igneous Province origin. High-resolution seismic reflection data reveal a large number of extrusion centres with a random distribution throughout the southern Mozambique Ridge and the nearby Transkei Rise. Intrabasement reflections emerge from the extrusion centres and are interpreted to represent massive lava flow sequences. Such lava flow sequences are characteristic of eruptions leading to the formation of continental and oceanic flood basalt provinces, hence supporting a Large Igneous Province origin of the Mozambique Ridge. We observe evidence for widespread post-sedimentary magmatic activity that we correlate with a southward propagation of the East African Rift System. Based on our volumetric analysis of the southern Mozambique Ridge we infer a rapid sequential emplacement between ∼131 and ∼125 Ma, which is similar to the short formation periods of other Large Igneous Provinces like the Agulhas Plateau.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2020-02-06
    Description: The Nifonea submarine volcano rises 1000 m above the seafloor of the Vate Trough back-arc basin behind the New Hebrides island arc. This large volcanic edifice has a caldera of ∼8 km diameter and is connected to two ∼20 km long volcanic rift zones in the back-arc basin. We present new chemical and isotope data for volcanic glasses and whole-rocks from both the volcano and its rift zones. Lavas from Nifonea volcano show an evolution towards more incompatible element enrichment, with the most enriched lavas being the youngest eruption products on the caldera floor. These are products of significant fractional crystallization, show minor contamination by hydrothermal fluids (〈0·3%) and reflect mixing of melts derived from depleted upper mantle and melts from an enriched source similar to those occurring in the North Fiji Basin. The enrichment in Nb of these lavas is comparable with that of some lavas from the New Hebrides island arc (e.g. Mota Lava island), where these coexist with typical island arc basalts. The lavas erupted along the rift zones in the Vate Trough back-arc basin are relatively depleted in incompatible elements, indicating melting of depleted upper mantle with a minor addition of a sediment-derived fluid. Our observations suggest that the mantle beneath Vate Trough is heterogeneous on a small scale (〈20 km) and that the occurrence of these enriched and fertile mantle portions has a stronger control on melting processes than the influx from the subducting slab, as all samples were recovered at a similar distance from the trench.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 30 (8). pp. 2921-2935.
    Publication Date: 2020-02-06
    Description: The ratio of global mean surface air temperature change to cumulative CO2 emissions, referred to as transient climate response to cumulative CO2 emissions (TCRE), has been shown to be approximately constant on centennial time scales. The mechanisms behind this constancy are not well understood, but previous studies suggest that compensating effects of ocean heat and carbon fluxes, which are governed by the same ocean mixing processes, could be one cause for this approximate constancy. This hypothesis is investigated by forcing different versions of the University of Victoria Earth System Climate Model, which differ in the ocean mixing parameterization, with an idealized scenario of 1% annually increasing atmospheric CO2 until quadrupling of the preindustrial CO2 concentration and constant concentration thereafter. The relationship between surface air warming and cumulative emissions remains close to linear, but the TCRE varies between model versions, spanning the range of 1.2°–2.1°C EgC−1 at the time of CO2 doubling. For all model versions, the TCRE is not constant over time while atmospheric CO2 concentrations increase. It is constant after atmospheric CO2 stabilizes at 1120 ppm, because of compensating changes in temperature sensitivity (temperature change per unit radiative forcing) and cumulative airborne fraction. The TCRE remains approximately constant over time even if temperature sensitivity, determined by ocean heat flux, and cumulative airborne fraction, determined by ocean carbon flux, are taken from different model versions with different ocean mixing settings. This can partially be explained with temperature sensitivity and cumulative airborne fraction following similar trajectories, which suggests ocean heat and carbon fluxes scale approximately linearly with changes in vertical mixing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Journal of Plankton Research, 39 (5). pp. 772-780.
    Publication Date: 2020-02-06
    Description: The influence of winter on the selection of dominant taxa for the phytoplankton spring bloom was studied in batch culture experiments. Different natural phytoplankton assemblages from different phases of the temperate zone winter were exposed to varying periods of darkness (0, 6/7, 13 and 19 weeks) followed by a re-exposure to saturating light intensity for 14 days to experimentally simulate the onset of spring. The results showed that dark incubation has a strong effect on shaping the phytoplankton community composition. Many taxa disappeared in the absolute darkness. Dark survival ability might be an important contributing factor for the success of diatoms in spring. Different phytoplankton starting assemblages were dominated by the same bloom-forming diatoms, Skeletonema marinoi and Thalassosira spp., after dark incubation for only 6 weeks, irrespective of the high dissimilarities between phytoplankton communities. The growth capacity of surviving phytoplankton is almost unimpaired by darkness. Similar growth rates as that before darkness could be resumed for the surviving taxa with a potential lag time of 1–7 days dependent on taxon and the duration of darkness.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: image
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2020-02-06
    Description: The Weddell Sea polynya is a large opening in the open-ocean sea ice cover associated with intense deep convection in the ocean. A necessary condition to form and maintain a polynya is the presence of a strong subsurface heat reservoir. This study investigates the processes that control the stratification and hence the buildup of the subsurface heat reservoir in the Weddell Sea. To do so, a climate model run for 200 years under preindustrial forcing with two eddying resolutions in the ocean (0.25° CM2.5 and 0.10° CM2.6) is investigated. Over the course of the simulation, CM2.6 develops two polynyas in the Weddell Sea, while CM2.5 exhibits quasi-continuous deep convection but no polynyas, exemplifying that deep convection is not a sufficient condition for a polynya to occur. CM2.5 features a weaker subsurface heat reservoir than CM2.6 owing to weak stratification associated with episodes of gravitational instability and enhanced vertical mixing of heat, resulting in an erosion of the reservoir. In contrast, in CM2.6, the water column is more stably stratified, allowing the subsurface heat reservoir to build up. The enhanced stratification in CM2.6 arises from its refined horizontal grid spacing and resolution of topography, which allows, in particular, a better representation of the restratifying effect by transient mesoscale eddies and of the overflows of dense waters along the continental slope.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  ICES Journal of Marine Science, 74 (7). pp. 1855-1864.
    Publication Date: 2020-02-06
    Description: The general positive effect of warmer winters on the abundance of small-sized zooplankton in the following spring and early summer has been reported from different parts of the Baltic Sea, but the mechanism of this link is not clear. Although causal links cannot be deduced with confidence from observational data, sufficiently detailed analyses can nevertheless provide insights to the potential mechanisms. We present an example of such an analysis, scrutinizing the effects of winter and spring hydroclimate on the abundance of small-sized dominant calanoid copepods (Eurytemora affinis and Acartia spp.), using data from 2080 zooplankton samples collected over 55 years (1957–2012) from a shallow coastal habitat (Pärnu Bay, Gulf of Riga) in the Baltic Sea. Our results indicated that the milder winters brought about higher abundances, and reduced seasonality of small-sized copepods, whereas ambient sea surface temperature (SST) mostly affected the relative abundance of adult stages. The sliding window correlation tests revealed temporal shifts in the effects of controlling variables: with the continuous increase in SST, the effect of winter temperature on the abundance of Acartia spp. weakened. In contrast, E. affinis was consistently affected by SST, but the effect of winter temperature was more pronounced during the period of on average colder winters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-02-08
    Description: Overfishing and rapid environmental shifts pose severe challenges to the resilience and viability of marine fish populations. To develop and implement measures that enhance species’ adaptive potential to cope with those pressures while, at the same time, ensuring sustainable exploitation rates is part of the central goal of fisheries management. Here, we argue that a combination of biophysical modelling and population genomic assessments offer ideal management tools to define stocks, their physical connectivity and ultimately, their short-term adaptive potential. To date, biophysical modelling has often been confined to fisheries ecology whereas evolutionary hypotheses remain rarely considered. When identified, connectivity patterns are seldom explored to understand the evolution and distribution of adaptive genetic variation, a proxy for species’ evolutionary potential. Here, we describe a framework that expands on the conventional seascape genetics approach by using biophysical modelling and population genomics. The goals are to identify connectivity patterns and selective pressures, as well as putative adaptive variants directly responding to the selective pressures and, ultimately, link both to define testable hypotheses over species response to shifting ecological conditions and overexploitation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-02-08
    Description: This study presents a new method (LBB) for the analysis of length frequency data from commercial catches. LBB works for species that grow throughout their lives, such as most commercially-important fish and invertebrates, and requires no input in addition to length frequency data. It estimates asymptotic length, length at first capture, relative natural mortality, and relative fishing mortality. Standard fisheries equations can then be used to approximate current exploited biomass relative to unexploited biomass. In addition, these parameters allow the estimation of length at first capture that would maximize catch and biomass for a given fishing effort, and estimation of a proxy for the relative biomass capable of producing maximum sustainable yields. Relative biomass estimates of LBB were not significantly different from the “true” values in simulated data and were similar to independent estimates from full stock assessments. LBB also presents a new indicator for assessing whether an observed size structure is indicative of a healthy stock. LBB results will obviously be misleading if the length frequency data do not represent the size composition of the exploited size range of the stock or if length frequencies resulting from the interplay of growth and mortality are masked by strong recruitment pulses.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Format: archive
    Format: archive
    Format: text
    Format: text
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-02-08
    Description: We present high-resolution resistivity imaging of gas hydrate pipe-like structures, as derived from marine controlled-source electromagnetic (CSEM) inversions that combine towed and ocean-bottom electric field receiver data, acquired from the Nyegga region, offshore Norway. Two-dimensional CSEM inversions applied to the towed receiver data detected four new prominent vertical resistive features that are likely gas hydrate structures, located in proximity to a major gas hydrate pipe-like structure, known as the CNE03 pockmark. The resistivity model resulting from the CSEM data inversion resolved the CNE03 hydrate structure in high resolution, as inferred by comparison to seismically constrained inversions. Our results indicate that shallow gas hydrate vertical features can be delineated effectively by inverting both ocean-bottom and towed receiver CSEM data simultaneously. The approach applied here can be utilised to map and monitor seafloor mineralisation, freshwater reservoirs, CO2 sequestration sites and near-surface geothermal systems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Physical Oceanography, 47 (7). pp. 1685-1699.
    Publication Date: 2020-02-06
    Description: Seasonal variability in pathways of warm water masses toward the Kangerdlugssuaq Fjord-Glacier system (KF/KG), southeast Greenland, is investigated by backtracking Lagrangian particles seeded at the fjord mouth in a high-resolution regional ocean model simulation in the ice-free and the ice-covered seasons. The waters at KF are a mixture of Atlantic-origin water advected from the Irminger Basin (FF for Faxaflói), the deep waters from the Denmark Strait and the waters from the Arctic Ocean, both represented by the Kögur section (KO). Below 200m depth, the warm water is a mixture of FF and KO water masses, and is warmer in winter than in summer. We find that seasonal differences in pathways double the fraction of FF particles in winter, causing the seasonal warming and salinification. Seasonal temperature variations at the upstream sections (FF and KO) have a negligible impact on temperature variations near the fjord. Successful monitoring of heat flux to the fjord therefore needs to take place close to the fjord, and cannot be inferred from upstream conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2020-02-06
    Description: Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different extraction and amplification methodologies to target the microbial communities of a limited number of sponge species, severely limiting comparative analyses of sponge microbial diversity and structure. Here, we provide an extensive and standardised dataset that will facilitate sponge microbiome comparisons across large spatial, temporal and environmental scales. Samples from marine sponges (n = 3569 specimens), seawater (n = 370), marine sediments (n = 65) and other environments (n = 29) were collected from different locations across the globe. This dataset incorporates at least 269 different sponge species, including several yet unidentified taxa. The V4 region of the 16S rRNA gene was amplified and sequenced from extracted DNA using standardised procedures. Raw sequences (total of 1.1 billion sequences) were processed and clustered with a) a standard protocol using QIIME closed-reference picking resulting in 39,543 Operational Taxonomic Units (OTU) at 97% sequence identity, b) a de novo protocol using Mothur resulting in 518,246 OTUs, and c) a new high-resolution Deblur protocol resulting in 83,908 unique bacterial sequences. Abundance tables, representative sequences, taxonomic classifications and metadata are provided. This dataset represents a comprehensive resource of sponge-associated microbial communities based on 16S rRNA gene sequences that can be used to address overarching hypotheses regarding host-associated prokaryotes, including host-specificity, convergent evolution, environmental drivers of microbiome structure and the sponge-associated rare biosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Geophysical Journal International, 212 (1). pp. 333-344.
    Publication Date: 2021-02-08
    Description: In this study, the complex frequency-shifted perfectly matched layer (CFS-PML) in stretching Cartesian coordinates, is successfully applied to three-dimensional (3D) frequency-domain marine controlled-source electromagnetic (CSEM) field modelling. The Dirichlet boundary, which is usually used within the traditional framework of EM modeling algorithms, assumes the electric or magnetic field values are zero at the boundaries. This requires the boundaries be sufficiently far away from the sources in the area of interest. To mitigate the boundary artifacts, a large modelling area may be necessary even though cell sizes are allowed to grow toward the boundaries due to the diffusion of the electromagnetic wave propagation. Compared with the conventional Dirichlet boundary, the PML boundary is preferred as the modelling area of interest could be restricted to the target region and only a few absorbing layers surrounding can effectively depress the artificial boundary effect without losing the numerical accuracy. Furthermore, for joint inversion of seismic and marine CSEM data, if we used the PML for CSEM field simulation instead of the conventional Dirichlet, the modeling area for these two different geophysical data collected from the same survey area could the same, which is convenient for joint inversion grid matching. We apply the CFS-PML boundary to 3D marine CSEM modelling by using the staggered finite-difference (SFD) discretization. Numerical test indicates that the modeling algorithm using the CFS-PML also shows good accuracy compared to the Dirichlet. Furthermore, the modeling algorithm using the CFS-PML shows advantages in computational time and memory saving than that using the Dirichlet boundary. For the 3D example in this study, the memory saving using the PML is nearly 42 % and the time saving is around 48% compared to using the Dirichlet.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Oxford University Press
    In:  In: Marine Plankton: A practical guide to ecology, methodology, and taxonomy. , ed. by Castellani, C. and Edwards, M. Oxford University Press, Oxford, UK, pp. 538-550. ISBN 978-0-19-923326-7
    Publication Date: 2020-03-03
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-02-08
    Description: Pseudovibrio is a marine bacterial genus members of which are predominantly isolated from sessile marine animals, and particularly sponges. It has been hypothesised that Pseudovibrio spp. form mutualistic relationships with their hosts. Here, we studied Pseudovibrio phylogeny and genetic adaptations that may play a role in host colonization by comparative genomics of 31 Pseudovibrio strains, including 25 sponge isolates. All genomes were highly similar in terms of encoded core metabolic pathways, albeit with substantial differences in overall gene content. Based on gene composition, Pseudovibrio spp. clustered by geographic region, indicating geographic speciation. Furthermore, the fact that isolates from the Mediterranean Sea clustered by sponge species suggested host-specific adaptation or colonization. Genome analyses suggest that Pseudovibrio hongkongensis UST20140214-015BT is only distantly related to other Pseudovibrio spp., thereby challenging its status as typical Pseudovibrio member. All Pseudovibrio genomes were found to encode numerous proteins with SEL1 and tetratricopeptide repeats, which have been suggested to play a role in host colonization. For evasion of the host immune system, Pseudovibrio spp. may depend on type III, IV and VI secretion systems that can inject effector molecules into eukaryotic cells. Furthermore, Pseudovibrio genomes carry on average seven secondary metabolite biosynthesis clusters, reinforcing the role of Pseudovibrio spp. as potential producers of novel bioactive compounds. Tropodithietic acid, bacteriocin and terpene biosynthesis clusters were highly conserved within the genus, suggesting an essential role in survival e.g. through growth inhibition of bacterial competitors. Taken together, these results support the hypothesis that Pseudovibrio spp. have mutualistic relations with sponges.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Earth Interactions, 22 (1). pp. 1-15.
    Publication Date: 2021-02-08
    Description: Predicting tropical cyclone (TC) activity becomes more important every year while the understanding of what factors impact them continues to be complicated. El Niño–Southern Oscillation (ENSO) is one of the primary factors impacting the activities in both the Pacific and the Atlantic, but an extensive examination of the fluctuation in this system has yet to be studied in its entirety. This article analyzes the ENSO impacts on the Atlantic tropical cyclone activity during the assessed warm and cold years to show the dominant centennial-scale variation impact. This study looks to plausibly link this variation to the Southern Ocean centennial variability, which is rarely mentioned in any factors affecting the Atlantic tropical cyclone activity. This centennial variability could be used to enhance future work related to predicting tropical cyclones.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-02-08
    Description: Downward wave coupling (DWC) is an important process that characterizes the dynamical coupling between the stratosphere and troposphere via planetary wave reflection. A recent modeling study indicated that natural forcing factors, including sea-surface temperature variability and quasi-biennial oscillation, influence DWC and the associated surface impact in the Northern Hemisphere (NH). In light of this, we further investigate how DWC in the NH is affected by anthropogenic forcings, using a fully coupled chemistry-climate model CESM1 (WACCM). The results indicate that the occurrence of DWC is significantly suppressed in the future, starting later in the seasonal cycle, with more events concentrated in late winter (February-March). The future decrease in DWC events is associated with enhanced wave absorption in the stratosphere due to increased greenhouse gases. The enhanced wave absorption is manifest as more absorbing types of stratospheric sudden warmings, with more events concentrated in early winter. This early winter condition leads to a delay in the development of the upper stratospheric reflecting surface, resulting in a shift in the seasonal cycle of DWC towards late winter. The tropospheric responses to DWC events in the future exhibit different spatial patterns compared to those of the past. In the North Atlantic sector, DWC-induced circulation changes are characterized by a poleward shift and an eastward extension of the tropospheric jet, while in the North Pacific sector, the circulation changes are characterized by a weakening of the tropospheric jet. These responses are consistent with a change in the pattern of DWC-induced synoptic-scale eddy-mean flow interaction.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-02-08
    Description: Decadal variabilities in Indian Ocean subsurface ocean heat content (OHC; 50–300 m) since the 1950s are examined using ocean reanalyses. This study elaborates on how Pacific variability modulates the Indian Ocean on decadal time scales through both oceanic and atmospheric pathways. High correlations between OHC and thermocline depth variations across the entire Indian Ocean Basin suggest that OHC variability is primarily driven by thermocline fluctuations. The spatial pattern of the leading mode of decadal Indian Ocean OHC variability closely matches the regression pattern of OHC on the interdecadal Pacific oscillation (IPO), emphasizing the role of the Pacific Ocean in determining Indian Ocean OHC decadal variability. Further analyses identify different mechanisms by which the Pacific influences the eastern and western Indian Ocean. IPO-related anomalies from the Pacific propagate mainly through oceanic pathways in the Maritime Continent to impact the eastern Indian Ocean. By contrast, in the western Indian Ocean, the IPO induces wind-driven Ekman pumping in the central Indian Ocean via the atmospheric bridge, which in turn modifies conditions in the southwestern Indian Ocean via westward-propagating Rossby waves. To confirm this, a linear Rossby wave model is forced with wind stresses and eastern boundary conditions based on reanalyses. This linear model skillfully reproduces observed sea surface height anomalies and highlights both the oceanic connection in the eastern Indian Ocean and the role of wind-driven Ekman pumping in the west. These findings are also reproduced by OGCM hindcast experiments forced by interannual atmospheric boundary conditions applied only over the Pacific and Indian Oceans, respectively.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Journal of Plankton Research, 39 (3). pp. 494-508.
    Publication Date: 2020-02-06
    Description: Phytoplankton cell or colony sizes range from 〈1 µm to several cm, i.e. 4–5 orders of magnitude in linear dimensions, which is roughly equivalent to the log-size span within terrestrial vegetation. It is commonplace to assume that smaller phytoplankton have an advantage in growth related traits while larger ones are more resistant to losses. However, the current state of literature calls for a more differentiated view. It is still controversial, whether smaller phytoplankton have higher maximal growth rates (µmax) or if there is a peak of µmax at intermediate size (102 µm3 cell volume). Smaller phytoplankton have an advantage in nutrient acquisition at low concentrations while larger phytoplankton have an advantage in utilizing nutrient pulses and exploiting vertical gradients. At equal density, larger phytoplankton experience bigger sinking losses. Small phytoplankton (〈5–10 µm) are more affected mostly from grazing by protists and tunicates, while larger phytoplankton are more affected by copepod and krill grazing. Size spectra within the most important higher taxa show some conspicuous differences between marine and lake phytoplankton, e.g. the absence of very large diatoms (〉105 µm3) in lake phytoplankton and the absence of large (〉103 µm3) green algae in marine plankton. Overall, size is one of the most important traits for the performance of phytoplankton, but it is overly simplistic to equate small size with metabolic advantages
    Type: Article , PeerReviewed
    Format: text
    Format: image
    Format: image
    Format: image
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 30 (2). pp. 509-525.
    Publication Date: 2020-10-22
    Description: By performing two sets of high-resolution atmospheric general circulation model (AGCM) experiments, we find that the atmospheric response to a sea surface temperature (SST) anomaly in the extratropical North Pacific is sensitive to decadal variations of the background SST on which the SST anomaly is superimposed. The response in the first set of experiments, in which the SST anomaly is superimposed on the observed daily SST of 1981-1990, strongly differs from the response in the second experiment, in which the same SST anomaly is superimposed on the observed daily SST of 1991-2000. The atmospheric response over the North Pacific during 1981-1990 is eddy-mediated, equivalent barotropic and concentrated in the east. In contrast, the atmospheric response during 1991-2000 is weaker and strongest in the west. The results are discussed in terms of Rossby wave dynamics, with the proposed primary wave source switching from baroclinic eddy vorticity forcing over the eastern North Pacific in 1981-1990 to mean flow divergence over the western North Pacific in 1991-2000. The wave source changes are linked to the decadal reduction of daily SST variability over the eastern North Pacific and strengthening of the Oyashio Extension front over the western North Pacific. Thus, both daily and frontal aspects of the background SST variability in determining the atmospheric response to extratropical North Pacific SST anomalies are emphasized by our AGCM experiments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2020-10-26
    Description: Adaptive radiation is thought to be responsible for the evolution of a great portion of the past and present diversity of life. Instances of adaptive radiation, characterized by the rapid emergence of an array of species as a consequence to their adaptation to distinct ecological niches, are important study systems in evolutionary biology. However, because of the rapid lineage formation in these groups, and occasional gene flow between the participating species, it is often difficult to reconstruct the phylogenetic history of species that underwent an adaptive radiation. In this study, we present a novel approach for species-tree estimation in rapidly diversifying lineages, where introgression is known to occur, and apply it to a multimarker data set containing up to 16 specimens per species for a set of 45 species of East African cichlid fishes (522 individuals in total), with a main focus on the cichlid species flock of Lake Tanganyika. We first identified, using age distributions of most recent common ancestors in individual gene trees, those lineages in our data set that show strong signatures of past introgression. This led us to formulate three hypotheses of introgression between different lineages of Tanganyika cichlids: the ancestor of Boulengerochromini (or of Boulengerochromini and Bathybatini) received genomic material from the derived H-lineage; the common ancestor of Cyprichromini and Perissodini experienced, in turn, introgression from Boulengerochromini and/or Bathybatini; and the Lake Tanganyika Haplochromini and closely related riverine lineages received genetic material from Cyphotilapiini. We then applied the multispecies coalescent model to estimate the species tree of Lake Tanganyika cichlids, but excluded the lineages involved in these introgression events, as the multispecies coalescent model does not incorporate introgression. This resulted in a robust species tree, in which the Lamprologini were placed as sister lineage to the H-lineage (including the Eretmodini), and we identify a series of rapid splitting events at the base of the H-lineage. Divergence ages estimated with the multispecies coalescent model were substantially younger than age estimates based on concatenation, and agree with the geological history of the Great Lakes of East Africa. Finally, we formally tested the three hypotheses of introgression using a likelihood framework, and find strong support for introgression between some of the cichlid tribes of Lake Tanganyika. [Adaptive radiation; Cichlidae; introgression; Lake Tanganyika; species network.]
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2021-02-08
    Description: The BONUS symposium “Science delivery for sustainable use of the Baltic Sea living resources” held in Tallinn, Estonia, in October 2017 was an opportunity for the presentation and discussion of 107 papers that examined the state and dynamics of living resources of the Baltic Sea, and associated management challenges. The symposium included a half-day stakeholder panel discussion that addressed the main challenges related to sustainable management and matching research and policy/management needs. Based on the five symposium papers published in this Special Issue as well as the stakeholder panel discussion, it can be concluded that (i) new observations about the feeding ecology of clupeids supports a more complete understanding of trophic interactions in the pelagic realm and improved calibration of ecosystem models, (ii) to safequard sustainable and diverse fisheries resources, one should take into account the specific local characteristics of the fish community, (iii) to safeguard sustainable use of marine resources and mitigate cross-sectoral and transboundary conflicts, a risk-based approach should be adopted, and (iv) incorporation of scientific advice into management faces several obstacles including the reality that not all readily available knowledge is currently being incorporated into the decision-making process.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-02-08
    Description: Fisheries and marine ecosystem-based management requires a holistic understanding of the dynamics of fish communities and their responses to changes in environmental conditions. Environmental conditions can simultaneously shape the spatial distribution and the temporal dynamics of a population, which together can trigger changes in the functional structure of communities. Here, we developed a comprehensive framework based on complementary multivariate statistical methodologies to simultaneously investigate the effects of environmental conditions on the spatial, temporal and functional dynamics of species assemblages. The framework is tested using survey data collected during more than 4000 fisheries hauls over the Baltic Sea between 2001 and 2016. The approach revealed the Baltic fish community to be structured into three sub-assemblages along a strong and temporally stable salinity gradient decreasing from West to the East. Additionally, we highlight a mismatch between species and functional richness associated with a lower functional redundancy in the Baltic Proper compared with other sub-areas, suggesting an ecosystem more susceptible to external pressures. Based on a large dataset of community data analysed in an innovative and comprehensive way, we could disentangle the effects of environmental changes on the structure of biotic communities-key information for the management and conservation of ecosystems.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Monthly Weather Review, 146 (11). pp. 3589-3604.
    Publication Date: 2021-01-08
    Description: Gap flows and the stable boundary layer were studied in northwest Greenland during the aircraft-based Investigation of Katabatic Winds and Polynyas during Summer (IKAPOS) experiment in June 2010. The measurements were performed using the research aircraft POLAR 5 of Alfred Wegener Institute (AWI; Bremerhaven). Besides navigational and basic meteorological instrumentation, the aircraft was equipped with radiation and surface temperature sensors and a turbulence measurement system. In the area of Smith Sound at the southern end of the Nares Strait, a stable, but fully turbulent, boundary layer with strong winds of up to 22 m s−1 was found during conditions of synoptically induced northerly winds through the Nares Strait. Strong surface inversions were present in the lowest 100–200 m. As a consequence of channeling effects, a well-pronounced low-level jet system was documented for each of four flights. The wind maximum is located at 20–50-km distance from the exit of Smith Sound. The 3D boundary layer structure past this gap is studied in detail. The channeling process is consistent with gap flow theory. The flow through the gap and over the surrounding mountains leads to the lowering of isotropic surfaces and the acceleration of the flow. The orographically channeled flow through Smith Sound plays a key role for the formation of the North Water polynya being the largest ice-producing polynya in the Arctic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 31 (19). pp. 7969-7984.
    Publication Date: 2021-02-08
    Description: This study analyzes the response of the Atlantic meridional overturning circulation (AMOC) to different CO2 concentrations and two ice sheet configurations in simulations with the coupled climate model MPI-ESM. With preindustrial (PI) ice sheets, there are two different AMOC states within the studied CO2 range: one state with a strong and deep upper overturning cell at high CO2 concentrations and one state with a weak and shallow upper cell at low CO2 concentrations. Changes in AMOC variability with decreasing CO2 indicate two stability thresholds. The strong state is stable above the first threshold near 217 ppm, and the weak state is stable below the second threshold near 190 ppm. Between the two thresholds, both states are marginally unstable, and the AMOC oscillates between them on millennial time scales. The weak AMOC state is stable when Antarctic Bottom Water becomes dense and salty enough to replace North Atlantic Deep Water (NADW) in the deep North Atlantic and when the density gain over the North Atlantic becomes too weak to sustain continuous NADW formation. With Last Glacial Maximum (LGM) ice sheets, the density gain over the North Atlantic and the northward salt transport are enhanced with respect to the PI ice sheet case. This enables active NADW formation and a strong AMOC for the entire range of studied CO2 concentrations. The AMOC variability indicates that the simulated AMOC is far away from a stability threshold with LGM ice sheets. The nonlinear relationship among AMOC, CO2, and prescribed ice sheets provides an explanation for the large intermodel spread of AMOC states found in previous coupled LGM simulations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-02-08
    Description: The European and American eels spawn in the subtropical convergence zone (STCZ) in the Sargasso Sea, a dynamic and relatively productive area that is strongly influenced by front and eddy formations and subducted high-saline water masses. To understand how the physical and biological environments may affect the early life history of eels, we conducted a detailed bio-physical investigation of the water column at a site of high eel larvae abundance. Diel measurements and sampling in the upper 300 m revealed strong variations in hydrographic conditions and mean depths of different taxonomic groups; however, characteristics patterns of distribution were apparent. Most species showed diel vertical migrations, ascending about 20-30 m at night, whereas examples of night-time downward migration were also seen. European eel larvae were among the species showing more extensive diel vertical migration: their population mean depth changed from 160 m at day to 100 m at night where abundance peaked at 45 m depth. Distribution and migration of eel larvae corresponded to patterns observed for small hydrozoans, supporting a proposed predator-prey linkage. The study demonstrates the diverse and vertically strongly structured plankton community of STCZ where larvae of eel and other fish find a wide range of potential niches.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-03-19
    Description: An indoor mesocosm experiment was carried out to investigate the combined effects of ocean acidification and warming on the species composition and biogeochemical element cycling during a winter/spring bloom with a natural phytoplankton assemblage from the Kiel fjord, Germany. The experimental setup consisted of a "Control" (ambient temperature of similar to 4.8 degrees C and similar to 535 +/- 25 mu atm pCO(2)), a "High-CO2" treatment (ambient temperature and initially 1020 +/- 45 mu atm pCO(2)) and a "Greenhouse" treatment (similar to 8.5 degrees C and initially 990 +/- 60 mu atm pCO(2)). Nutrient replete conditions prevailed at the beginning of the experiment and light was provided at in situ levels upon reaching pCO(2) target levels. A diatom-dominated bloom developed in all treatments with Skeletonema costatum as the dominant species but with an increased abundance and biomass contribution of larger diatom species in the Greenhouse treatment. Conditions in the Greenhouse treatment accelerated bloom development with faster utilization of inorganic nutrients and an earlier peak in phytoplankton biomass compared to the Control and High CO2 but no difference in maximum concentration of particulate organic matter (POM) between treatments. Loss of POM in the Greenhouse treatment, however, was twice as high as in the Control and High CO2 treatment at the end of the experiment, most likely due to an increased proportion of larger diatom species in that treatment. We hypothesize that the combination of warming and acidification can induce shifts in diatom species composition with potential feedbacks on biogeochemical element cycling.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2021-02-08
    Description: Major sudden stratospheric warmings (SSWs) are extreme events during boreal winter, which not only impact tropospheric weather up to three months but also can influence oceanic variability through wind stress and heat flux anomalies. In the North Atlantic region, SSWs have the potential to modulate deep convection in the Labrador Sea and thereby the strength of the Atlantic meridional overturning circulation. The impact of SSWs on the Northern Hemisphere surface climate is investigated in two coupled climate models: a stratosphere-resolving (high top) and a non-stratosphere-resolving (low top) model. In both configurations, a robust link between SSWs and a negative NAO is detected, which leads to shallower-than-normal North Atlantic mixed layer depth. The frequency of SSWs and the persistence of this link is better captured in the high-top model. Significant differences occur over the Pacific region, where an unrealistically persistent Aleutian low is observed in the low-top configuration. An overrepresentation of SSWs during El Nino conditions in the low-top model is the main cause for this artifact. Our results underline the importance of a proper representation of the stratosphere in a coupled climate model for a consistent surface response in both the atmosphere and the ocean, which, among others, may have implications for oceanic deep convection in the subpolar North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2021-02-08
    Description: Benthic storms are important for both the energy budget of the ocean and for sediment resuspension and transport. Using 30 years of output from a high-resolution model of the North Atlantic, it is found that most of the benthic storms in the model occur near the western boundary in association with the Gulf Stream and the North Atlantic Current, in regions that are generally co-located with the peak near-bottom eddy kinetic energy. A common feature are meander troughs in the near-surface jets that are accompanied by deep low pressure anomalies spinning up deep cyclones with near-bottom velocities of up to more than 0.5 m/s. A case study of one of these events shows the importance of both baroclinic and barotropic instability of the jet, with energy being extracted from the jet in the upstream part of the meander trough and partly returned to the jet in the downstream part of the meander trough. This motivates examining the 30-year time mean of the energy transfer from the (annual mean) background flow into the eddy kinetic energy. This quantity is shown to be co-located well with the region in which benthic storms and large increases in deep cyclonic relative vorticity occur most frequently, suggesting an important role for mixed barotropic-baroclinic instability driven cyclogenesis in generating benthic storms throughout the model simulation. Regions of largest energy transfer and most frequent benthic storms are found to be the Gulf Stream west of the New England Seamounts and the North Atlantic Current near Flemish Cap.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Journal of Plankton Research, 40 (5). pp. 568-579.
    Publication Date: 2021-02-08
    Description: Light and nutrients are essential resources for phytoplankton growth and considered to shape the size structure and other morphometric traits (surface:volume ratio, deviation from spherical shape) of phytoplankton communities. If morphometric traits influence the growth and resource use, shifts by one of the two factors should influence the capability to utilize the other factor. We performed a two-step experiment, where a natural phytoplankton community was first exposed to three different light levels (supposed to be limiting, saturating and slightly inhibiting for the majority of species) and grown until stationary phase. Then, the pre-conditioned communities were split into two nutrient treatments (control and saturating nutrient pulse) and again grown until stationary phase under the medium light intensity. During the experimental light phase, community mean cell-size increased with light, but surface:volume ratio and deviation from spherical shape decreased. Moreover, in response to the following nutrient pulse, the low light pre-conditioned communities showed the highest initial growth rates in response to the nutrient pulse. The high light pre-conditioned communities showed the highest conversion of the nutrient pulse into biomass during the stationary phase. These results demonstrate how the imprint of one environmental factor on trait distribution influences the ability to cope with another.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2021-02-08
    Description: Aurelia aurita (Linneaus, 1758) is a cosmopolitan scyphozoan, probably the most investigated jellyfish in temperate and highly productive coastal ecosystems. Despite a prominent top-down control in plankton food webs, a mechanistic understanding of A. aurita population dynamics and trophic interactions has been barely addressed. Here we develop a food web dynamic model to assess A. aurita role in the seasonal plankton dynamics of the Kiel Fjord, southwestern Baltic Sea. The model couples low trophic level dynamics, based on a classical Nutrient Phytoplankton Zooplankton Detritus (NPZD) model, to a stage-resolved copepod model (referencing Pseudocalanus sp.) and a jellyfish model (A. aurita ephyra and medusa) as consumers and predators, respectively. Simulations showed the relevance of high abundances of A. aurita, which appear related with warm winter temperatures, promoting a shift from a copepod-dominated food web to a ciliate and medusa dominated one. The model captured the intraspecific competition triggered by the medusae abundance and characterized by a negative relationship between population density and individual size/weight. Our results provide a mechanistic understanding of an emergent trait such as size shaping the food web functioning, driving predation rates and population dynamics of A. aurita, driving its sexual reproductive strategy at the end of the pelagic phase.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: image
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-12-17
    Description: Atlantic herring (Clupea harengus) is a benthic spawner, therefore its eggs are prone to encounter different water conditions during embryonic development, with bottom waters often depleted of oxygen and enriched in CO2. Some Atlantic herring spawning grounds are predicted to be highly affected by ongoing Ocean Acidification and Warming with water temperature increasing by up to +3°C and CO2 levels reaching ca. 1000 μatm (RCP 8.5). Although many studies investigated the effects of high levels of CO2 on the embryonic development of Atlantic herring, little is known about the combination of temperature and ecologically relevant levels of CO2. In this study, we investigated the effects of Ocean Acidification and Warming on embryonic metabolic and developmental performance such as mitochondrial function, respiration, hatching success (HS) and growth in Atlantic herring from the Oslo Fjord, one of the spawning grounds predicted to be greatly affected by climate change. Fertilized eggs were incubated under combinations of two PCO2 conditions (400 μatm and 1100 μatm) and three temperatures (6, 10 and 14°C), which correspond to current and end-of-the-century conditions. We analysed HS, oxygen consumption (MO2) and mitochondrial function of embryos as well as larval length at hatch. The capacity of the electron transport system (ETS) increased with temperature, reaching a plateau at 14°C, where the contribution of Complex I to the ETS declined in favour of Complex II. This relative shift was coupled with a dramatic increase in MO2 at 14°C. HS was high under ambient spawning conditions (6–10°C), but decreased at 14°C and hatched larvae at this temperature were smaller. Elevated PCO2 increased larval malformations, indicating sub-lethal effects. These results indicate that energetic limitations due to thermally affected mitochondria and higher energy demand for maintenance occur at the expense of embryonic development and growth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2021-02-08
    Description: The ocean load in glacial isostatic adjustment (GIA) modelling is represented by the so-called sea level equation (SLE). The SLE describes the mass redistribution of water between ice sheets and oceans on a deforming Earth. Despite various teams independently investigating GIA, there has been no systematic intercomparison among the numerical solvers of the SLE through which the methods may be validated. The goal of this paper is to present a series of synthetic examples designed for testing and comparing the numerical implementations of the SLE in GIA modelling. The 10 numerical codes tested combine various temporal and spatial parametrizations. The time-domain or Laplace-domain discretizations are used to solve the SLE through time, while spherical harmonics, finite differences or finite elements parametrize the GIA-related field variables spatially. The surface ice-water load and solid Earth’s topography are represented spatially either on an equiangular grid, a Gauss–Legendre or an equiarea grid with icosahedron-shaped spherical pixels. Comparisons are made in a series of five benchmark examples with an increasing degree of complexity. Due to the complexity of the SLE, there is no analytical solution to it. The accuracy of the numerical implementations is therefore assessed by the differences of the individual solutions with respect to a reference solution. While the benchmark study does not result in GIA predictions for a realistic loading scenario, we establish a set of agreed-upon results that can be extended in the future by including more complex case studies, such as solutions with realistic loading scenarios, the rotational feedback in the linear-momentum equation, and by considering a 3-D viscosity structure of the Earth’s mantle. The test computations performed so far show very good agreement between the individual results and their ability to capture the main features of sea-surface variation and the surface vertical displacement. The differences found can often be attributed to the different approximations inherent in the various algorithms. This shows the accuracy that can be expected from different implementations of the SLE, which helps to assess differences noted in the literature between predictions for realistic loading cases.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 31 (19). pp. 7969-7984.
    Publication Date: 2021-02-08
    Description: This study analyzes the response of the Atlantic meridional overturning circulation (AMOC) to different CO2 concentrations and two ice sheet configurations in simulations with the coupled climate model MPI-ESM. With preindustrial (PI) ice sheets, there are two different AMOC states within the studied CO2 range: one state with a strong and deep upper overturning cell at high CO2 concentrations and one state with a weak and shallow upper cell at low CO2 concentrations. Changes in AMOC variability with decreasing CO2 indicate two stability thresholds. The strong state is stable above the first threshold near 217 ppm, and the weak state is stable below the second threshold near 190 ppm. Between the two thresholds, both states are marginally unstable, and the AMOC oscillates between them on millennial time scales. The weak AMOC state is stable when Antarctic Bottom Water becomes dense and salty enough to replace North Atlantic Deep Water (NADW) in the deep North Atlantic and when the density gain over the North Atlantic becomes too weak to sustain continuous NADW formation. With Last Glacial Maximum (LGM) ice sheets, the density gain over the North Atlantic and the northward salt transport are enhanced with respect to the PI ice sheet case. This enables active NADW formation and a strong AMOC for the entire range of studied CO2 concentrations. The AMOC variability indicates that the simulated AMOC is far away from a stability threshold with LGM ice sheets. The nonlinear relationship among AMOC, CO2, and prescribed ice sheets provides an explanation for the large intermodel spread of AMOC states found in previous coupled LGM simulations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 30 (12). pp. 4337-4350.
    Publication Date: 2020-02-06
    Description: Warm water of open ocean origin on the continental shelf of the Amundsen and Bellingshausen Seas causes the highest basal melt rates reported for Antarctic ice shelves with severe consequences for the ice shelf/ice sheet dynamics. Ice shelves fringing the broad continental shelf in the Weddell and Ross Seas melt at rates orders of magnitude smaller. However, simulations using coupled ice–ocean models forced with the atmospheric output of the HadCM3 SRES-A1B scenario run (CO2 concentration in the atmosphere reaches 700 ppmv by the year 2100 and stays at that level for an additional 100 years) show that the circulation in the southern Weddell Sea changes during the twenty-first century. Derivatives of Circumpolar Deep Water are directed southward underneath the Filchner–Ronne Ice Shelf, warming the cavity and dramatically increasing basal melting. To find out whether the open ocean will always continue to power the melting, the authors extend their simulations, applying twentieth-century atmospheric forcing, both alone and together with prescribed basal mass flux at the end of (or during) the SRES-A1B scenario run. The results identify a tipping point in the southern Weddell Sea: once warm water flushes the ice shelf cavity a positive meltwater feedback enhances the shelf circulation and the onshore transport of open ocean heat. The process is irreversible with a recurrence to twentieth-century atmospheric forcing and can only be halted through prescribing a return to twentieth-century basal melt rates. This finding might have strong implications for the stability of the Antarctic ice sheet.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2021-02-08
    Description: Seafloor massive sulphides (SMSs) are regarded as a potential future resource to satisfy the growing global demand of metals including copper, zinc and gold. Aside from mining and retrieving profitable amounts of massive sulphides from the seafloor, the present challenge is to detect and delineate significant SMS accumulations, which are generally located near mid-ocean ridges and along submarine volcanic arc and backarc spreading centres. Currently, several geophysical technologies are being developed to detect and quantify SMS occurrences that often exhibit measurable contrasts in their physical parameters compared to the surrounding host rock. Here, we use a short, fixed-offset controlled source electromagnetic (CSEM) system and a coincident-loop transient electromagnetic (TEM) system, which in theory allow the detection of SMS in the shallow seafloor due to a significant electrical conductivity contrast to their surroundings. In 2016, CSEM and TEM experiments were carried out at several locations near the Trans- Atlantic Geotraverse hydrothermal field to investigate shallow occurrences of massive sulphides below the seafloor. Measurements were conducted in an area that contains distinct SMS sites located several kilometres off-axis from the Mid-Atlantic ridge, some of which are still connected to hydrothermal activity and others where hydrothermal activity has ceased. Based on the quality of the acquired data, both experiments were operationally successful. However, the data analysis indicates bias caused by three-dimensional (3D) effects of the rough bathymetry in the study area and, thus, data interpretation remains challenging. Therefore, we study the influence of 3D bathymetry for marine CSEM and TEM experiments, focusing on shallow 3D conductors located beneath mound-like structures.We analyse synthetic inversion models for attributes associated with 3D distortions of CSEM and TEM data that are not sufficiently accounted for in conventional 1D (TEM) and 2D (CSEM) interpretation schemes. Before an adequate quantification of SMS in the region is feasible, these 3D effects need to be studied to avoid over/underestimation of SMS using the acquired EM data. The sensitivity of CSEM and TEM to bathymetry is investigated by means of 3D forward modelling, followed by 1D (TEM) and 2D (CSEM) inversion of the synthetic data using realistic error conditions. Subsequently, inversion models of the synthetic 3D data are analysed and compared to models derived from the measured data to illustrate that 3D distortions are evident in the recorded data sets.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2021-05-19
    Description: The eastern boundary region off Angola encompasses a highly productive ecosystem important for the food security of the coastal population. The fish-stock distribution, however, undergoes large variability on intraseasonal, interannual, and longer time scales. These fluctuations are partly associated with large-scale warm anomalies that are often forced remotely from the equatorial Atlantic and propagate southward, reaching the Benguela upwelling off Namibia. Such warm events, named Benguela Niños, occurred in 1995 and in 2011. Here we present results from an underexplored extensive in situ dataset that was analyzed in the framework of a capacity-strengthening effort. The dataset was acquired within the Nansen Programme executed by the Food and Agriculture Organization of the United Nations and funded by the Norwegian government. It consists of hydrographic and velocity data from the Angolan continental margin acquired biannually during the main downwelling and upwelling seasons over more than 20 years. The mean seasonal changes of the Angola Current from 6° to 17°S are presented. During austral summer the southward Angola Current is concentrated in the upper 150 m. It strengthens from north to south, reaching a velocity maximum just north of the Angola Benguela Front. During austral winter the Angola Current is weaker, but deeper reaching. While the southward strengthening of the Angola Current can be related to the wind forcing, its seasonal variability is most likely explained by coastally trapped waves. On interannual time scales, the hydrographic data reveal remarkable variability in subsurface upper-ocean heat content. In particular, the 2011 Benguela Niño was preceded by a strong subsurface warming of about 2 years’ duration.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-02-18
    Description: Besides the zonal flow that dominates the seasonal and long-term variability in the equatorial Atlantic, energetic intraseasonal meridional velocity fluctuations are observed in large parts of the water column. We use 15 years of partly full-depth velocity data from an equatorial mooring at 23°W to investigate intraseasonal variability and specifically the downward propagation of intraseasonal energy from the near-surface into the deep ocean. Between 20 and 50 m, intraseasonal variability at 23°W peaks at periods between 30 and 40 days. It is associated with westward-propagating tropical instability waves, which undergo an annual intensification in August. At deeper levels down to about 2000 m considerable intraseasonal energy is still observed. A frequency–vertical mode decomposition reveals that meridional velocity fluctuations are more energetic than the zonal ones for periods 〈 50 days. The energy peak at 30–40 days and at vertical modes 2–5 excludes equatorial Rossby waves and suggests Yanai waves to be associated with the observed intraseasonal energy. Yanai waves that are considered to be generated by tropical instability waves propagate their energy from the near-surface west of 23°W downward and eastward to eventually reach the mooring location. The distribution of intraseasonal energy at the mooring position depends largely on the dominant frequency and the time, depth, and longitude of excitation, while the dominant vertical mode of the Yanai waves plays only a minor role. Observations also show the presence of weaker intraseasonal variability at 23°W below 2000 m that cannot be associated with tropical instability waves.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-02-18
    Description: Multi-year moored velocity observations of the Angola Current near 11°S reveal a weak southward mean flow superimposed by substantial intraseasonal to seasonal variability, including annual and semiannual cycles with distinct baroclinic structures. In the equatorial Atlantic these oscillations are associated with basin-mode resonances of the fourth and second baroclinic modes, respectively. Here, the role of basin-mode resonance and local forcing for the Angola Current seasonality are investigated. A suite of linear shallow-water models for the tropical Atlantic is employed, each model representing a single baroclinic mode forced at a specific period. The annually and semiannually oscillating forcing is given by 1) an idealized zonally uniform zonal forcing restricted to the equatorial band corresponding to a remote equatorial forcing or 2) realistic, spatially-varying Fourier components of wind stress data that include local forcing off Angola, particularly alongshore winds. Model-computed modal amplitudes are scaled to match moored velocity observations from the equatorial Atlantic. The observed annual cycle of alongshore velocity at 11°S is well reproduced by the remote equatorial forcing. Including local forcing slightly improves the agreement between observed and simulated semiannual oscillations at 11°S compared to the purely equatorial forcing. However, the model-computed semiannual cycle lacks amplitude at mid-depth. This could be the result of either underestimating the strength of the second equatorial basin-mode of the fourth baroclinic mode or other processes not accounted for in the shallow-water models. Overall, our findings underline the importance of large-scale linear equatorial wave dynamics for the seasonal variability of the boundary circulation off Angola.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2023-01-03
    Description: Kretzschmar et al., in a comment in 2017, use the spread in the output of aerosol–climate models to argue that the models refute the hypothesis (presented in a paper by Stevens in 2015) that for the mid-twentieth-century warming to be consistent with observations, then the present-day aerosol forcing, must be less negative than −1 W m−2. The main point of contention is the nature of the relationship between global SO2 emissions and In contrast to the concave (log-linear) relationship used by Stevens and in earlier studies, whereby becomes progressively less sensitive to SO2 emissions, some models suggest a convex relationship, which would imply a less negative lower bound. The model that best exemplifies this difference, and that is most clearly in conflict with the hypothesis of Stevens, does so because of an implausible aerosol response to the initial rise in anthropogenic aerosol precursor emissions in East and South Asia—already in 1975 this model’s clear-sky reflectance from anthropogenic aerosol over the North Pacific exceeds present-day estimates of the clear-sky reflectance by the total aerosol. The authors perform experiments using a new (observationally constrained) climatology of anthropogenic aerosols to further show that the effects of changing patterns of aerosol and aerosol precursor emissions during the late twentieth century have, for the same global emissions, relatively little effect on These findings suggest that the behavior Kretzschmar et al. identify as being in conflict with the lower bound in Stevens arises from an implausible relationship between SO2 emissions and and thus provides little basis for revising this lower bound.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2023-01-31
    Description: The Lagrangian analysis of sets of particles advected with the flow fields of ocean models are used to study connectivity, i.e. exchange pathways, timescales and volume transports, between distinct oceanic regions. One important factor influencing the dispersion of fluid particles and hence connectivity is the Lagrangian eddy diffusivity, which quantifies the influence of turbulent processes on the rate of particle dispersal. Due to spatial and temporal discretization, turbulence is not fully resolved in modelled velocities, and the concept of eddy diffusivity is used to parametrize the impact of unresolved processes. However, the relations between observational- and model-based Lagrangian eddy diffusivity estimates as well as eddy parameterizations are not clear. This study presents an analysis of the spatially variable near-surface lateral eddy diffusivity estimates obtained from Lagrangian trajectories simulated with 5-day mean velocities from an eddy-resolving ocean model (INALT01) for the Agulhas system. INALT01 features diffusive regimes for dynamically different regions, some of which exhibit strong suppression of eddy mixing by mean flow, and is consistent with the pattern and magnitude of drifter-based eddy diffusivity estimates. Using monthly-mean velocities decreases the estimated diffusivities less than eddy kinetic energy, supporting the idea that large and persistent eddy features dominate eddy diffusivities. For a non-eddying ocean model (ORCA05), Lagrangian eddy diffusivities are greatly reduced, in particular when the Gent and McWilliams parameterization of mesoscale eddies is employed.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2023-11-08
    Description: This article investigates the dynamics and temporal evolution of the Atlantic Multidecadal Variability (AMV) in a coupled climate model. The model contains a correction to the North Atlantic flow field to improve the path of the North Atlantic Current, thereby alleviating the surface cold bias, a common problem with climate models, and offering a unique opportunity to study the AMV in a model. Changes in greenhouse gas forcing or aerosol loading are not considered. A striking feature of our results is the contrast between the western and eastern sides of the subpolar gyre in the model. On the western side, heat supply from the ocean plays a major role, with most of this heat being given up to the atmosphere in the warm phase, largely symmetrically about the time of the AMV maximum. By contrast, on the eastern side, the ocean gains heat from the atmosphere, with relatively little role for ocean heat supply in the years before the AMV maximum. Thereafter, the balance changes with heat now being removed from the eastern side by the ocean leading to a reducing ocean heat content, behavior we associate with the establishment of an intergyre gyre at the time of the AMV maximum. In the warm phase, melting sea-ice leads to a freshening of surface waters northeast of Greenland which travel southward into the Irminger and Labrador Sea, shutting down convection and terminating the AMV warm phase.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2024-04-08
    Description: For decades oceanographers have understood the Atlantic meridional overturning circulation (AMOC) to be primarily driven by changes in the production of deep-water formation in the subpolar and subarctic North Atlantic. Indeed, current Intergovernmental Panel on Climate Change (IPCC) projections of an AMOC slowdown in the twenty-first century based on climate models are attributed to the inhibition of deep convection in the North Atlantic. However, observational evidence for this linkage has been elusive: there has been no clear demonstration of AMOC variability in response to changes in deep-water formation. The motivation for understanding this linkage is compelling, since the overturning circulation has been shown to sequester heat and anthropogenic carbon in the deep ocean. Furthermore, AMOC variability is expected to impact this sequestration as well as have consequences for regional and global climates through its effect on the poleward transport of warm water. Motivated by the need for a mechanistic understanding of the AMOC, an international community has assembled an observing system, Overturning in the Subpolar North Atlantic Program (OSNAP), to provide a continuous record of the transbasin fluxes of heat, mass, and freshwater, and to link that record to convective activity and water mass transformation at high latitudes. OSNAP, in conjunction with the Rapid Climate Change–Meridional Overturning Circulation and Heatflux Array (RAPID–MOCHA) at 26°N and other observational elements, will provide a comprehensive measure of the three-dimensional AMOC and an understanding of what drives its variability. The OSNAP observing system was fully deployed in the summer of 2014, and the first OSNAP data products are expected in the fall of 2017.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...