ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous  (5)
  • Physical properties  (2)
  • Responsibility  (2)
  • Elsevier  (6)
  • Società Geologica Italianai  (1)
  • American Geophysical Union (AGU)
  • American Institute of Physics
  • Annual Reviews
  • Molecular Diversity Preservation International (MDPI)
  • 2020-2023
  • 2015-2019  (7)
  • 1980-1984
  • 1940-1944
  • 1935-1939
  • 2015  (7)
  • 1943
Collection
Years
  • 2020-2023
  • 2015-2019  (7)
  • 1980-1984
  • 1940-1944
  • 1935-1939
Year
  • 2015  (7)
  • 1943
  • 1
    Publication Date: 2017-04-04
    Description: L'associazione Geologia Senza Frontiere onlus (www.gsf.it) è nata nel 2003 dalla volontà di un gruppo di geologi, ambientalisti e naturalisti di dare una prospettiva comune alle competenze conseguite nell'ambito della ricerca universitaria, dell'attività professionale e della cooperazione. Durante l'anno scolastico 2013-2014 Geologia Senza Frontiere ha ideato e realizzato il progetto Terra più Sicura (TpS), volto all'insegnamento dei rischi geologici in scuole secondarie di primo grado di Lazio, Toscana e Veneto. Gli obiettivi del progetto sono stati in particolare l'avvicinamento di studenti ed insegnanti ai problemi della sicurezza del territorio, dei rischi in esso presenti, oltre a come prevenire ed affrontare in maniera consapevole e corretta le emergenze naturali.
    Description: Published
    Description: 13-15
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: N/A or not JCR
    Description: open
    Keywords: educazione ambientale ; pianificazione territoriale ; insegnamento dei rischi geologici ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-24
    Description: The time for a first book on Geoethics has come. The faster, greedier pace of society and globalization demands it. The comfortable life of scholars in the ivory tower is coming to a rude awakening. People demand understandable information on geohazards, judges condemn scientist and engineers for lack of communication, indigenous people rise in anger accusing experts of misleading them, attempts to avoid transparency in developments still exist, the helplessness of technology to deal with nuclear waste becomes more evident everyday and nature exposes shortcuts in constructing critical facilities with her own awesome force.....
    Description: Published
    Description: XXI-XXII
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 4V. Vulcani e ambiente
    Description: 4A. Clima e Oceani
    Description: 5A. Energia e georisorse
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: reserved
    Keywords: Geoethics ; Philosophy ; Geosciences ; Geoscientists ; Ethics ; Earth Sciences ; Sustainability ; Research Integrity ; Professional Ethics ; Geoscience communication ; Responsibility ; Stewardship ; Planet ; Earth ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Key Features. Written by a global group of contributors with backgrounds ranging from philosopher to geo-practitioner, providing a balance of voices. Includes case studies, showing where experts have gone wrong and where key organizations have ignored facts, wanting assessments favorable to their agendas. Provides a much needed basis for discussion to guide scientists to consider their responsibilities and to improve communication with the public. Description. Edited by two experts in the area, Geoethics: Ethical Challenges and Case Studies in Earth Sciences addresses a range of topics surrounding the concept of ethics in geoscience, making it an important reference for any Earth scientist with a growing concern for sustainable development and social responsibility. This book will provide the reader with some obvious and some hidden information you need for understanding where experts have not served the public, what more could have been done to reach and serve the public and the ethical issues surrounding the Earth Sciences, from a global perspective. Table of contents. Section 1: Introduction Section 2: Philosophical reflections Section 3: The ethics of practice Section 4: Man made hazards Section 5: Natural hazards Section 6: Exploitation of resources Section 7: Low income and indigenous communities Section 8: Geoscience community
    Description: Published
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 5T. Sorveglianza sismica e operatività post-terremoto
    Description: 4V. Vulcani e ambiente
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: 4A. Clima e Oceani
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: open
    Keywords: Geoethics ; Philosophy ; Natural hazards ; Man made hazards ; Georesources ; Low income countries ; Geoscience community ; Communication ; Geoeducation ; Natural risks ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous ; 05. General::05.08. Risk::05.08.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    Publication Date: 2017-04-04
    Description: This chapter outlines a framework of the issues addressed by geoethics. Starting from an etymological analysis of the word “geoethics,” we identify the cultural basis on which to expand the debate on geoethics, while also proposing for consideration by the scientific community some questions that may guide the development of future research and practice in geosciences. We attempt to define some fundamental points that, in our opinion, will strengthen geoethics and help its development. The goal of geoethics is to suggest practical solutions and provide useful techniques, and also to promote cultural renewal in how humans perceive and relate to the planet, through greater attention to the protection of life and the richness of the Earth, in all its forms. As each science does, geoethics should also be able to present an image of the world, pointing out the manner in which it can be understood, investigated, designed, and experienced.
    Description: Published
    Description: 3-14
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: 4V. Vulcani e ambiente
    Description: 4A. Clima e Oceani
    Description: 5A. Energia e georisorse
    Description: 6A. Monitoraggio ambientale, sicurezza e territorio
    Description: reserved
    Keywords: Etymological analysis ; Geoethics ; Geoscientists oath ; Responsibility ; Society ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Marine and Petroleum Geology 66 (2015): 434-450, doi:10.1016/j.marpetgeo.2015.02.033.
    Description: Natural hydrate-bearing sediments from the Nankai Trough, offshore Japan, were studied using the Pressure Core Characterization Tools (PCCTs) to obtain geomechanical, hydrological, electrical, and biological properties under in situ pressure, temperature, and restored effective stress conditions. Measurement results, combined with index-property data and analytical physics-based models, provide unique insight into hydrate-bearing sediments in situ. Tested cores contain some silty-sands, but are predominantly sandy- and clayey-silts. Hydrate saturations Sh range from 0.15 to 0.74, with significant concentrations in the silty-sands. Wave velocity and flexible-wall permeameter measurements on never-depressurized pressure-core sediments suggest hydrates in the coarser-grained zones, the silty-sands where Sh exceeds 0.4, contribute to soil-skeletal stability and are load-bearing. In the sandy- and clayey-silts, where Sh 〈 0.4, the state of effective stress and stress history are significant factors determining sediment stiffness. Controlled depressurization tests show that hydrate dissociation occurs too quickly to maintain thermodynamic equilibrium, and pressure–temperature conditions track the hydrate stability boundary in pure-water, rather than that in seawater, in spite of both the in situ pore water and the water used to maintain specimen pore pressure prior to dissociation being saline. Hydrate dissociation accompanied with fines migration caused up to 2.4% vertical strain contraction. The first-ever direct shear measurements on never-depressurized pressure-core specimens show hydrate-bearing sediments have higher sediment strength and peak friction angle than post-dissociation sediments, but the residual friction angle remains the same in both cases. Permeability measurements made before and after hydrate dissociation demonstrate that water permeability increases after dissociation, but the gain is limited by the transition from hydrate saturation before dissociation to gas saturation after dissociation. In a proof-of-concept study, sediment microbial communities were successfully extracted and stored under high-pressure, anoxic conditions. Depressurized samples of these extractions were incubated in air, where microbes exhibited temperature-dependent growth rates.
    Description: PCCTs were developed with funding to Georgia Tech from the DOE/Chevron Joint Industry Project (JIP), with additional funds from the Joint Oceanographic Institutions, Inc. The JIP also funded the Georgia Tech participation in Sapporo. USGS participation in Sapporo was funded through a technical assistance agreement with Chevron (TAA-12-2135/CW928359). Some USGS developments on the IPTC were funded under Interagency Agreement DE-FE0002911 with the U.S. Department of Energy, with additional support from the U.S. Geological Survey. Core acquisition and Japanese participation in this study was supported by the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) to carry out Japan's Methane Hydrate R&D Program conducted by the Ministry of Economy, Trade and Industry (METI).
    Keywords: Methane hydrate ; Hydrate-bearing sediment ; Nankai Trough ; Physical properties ; Pressure core
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: In areas of active but dormant volcanoes, people need to know some basic facts: What volcano is going to erupt? What kind of eruption will occur? When and where will it take place? Why will it occur? And, also, what should citizens do to save themselves and their families? Communications travel in a complex network of connections among individuals and groups. If the main stakeholders involved do not work together to deliver coherent and complementary messages, the transmitted message may be contradictory, or inconsistent. Misunderstanding and confusion will take over, increasing rather than mitigating the risk. For this reason, citizens need to turn to scientists and research institutes working in hazardous areas as key interlocutors for matters concerning basic information concerning volcanic hazard. At the same time, scientists in charge of volcano surveillance, together with emergency managers, media, and public officials, have the duty to answer citizens’ need for information, exploring multiple channels and languages to communicate effectively. The present chapter analyzes some systematic studies and multidisciplinary research projects on this topic that have been carried out in recent years. It also points out an analysis of the public use of the Vesuvius Observatory museum, which is a reference information point for people living in the Naples (Italy) area and exposed to volcano hazard.
    Description: Published
    Description: 335 - 349
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: reserved
    Keywords: Vesuvius ; Volcano observatory ; Volcanic hazard communication ; Outreach ; Visitor survey ; museum ; 05. General::05.03. Educational, History of Science, Public Issues::05.03.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Marine and Petroleum Geology 58A (2014): 139-167, doi:10.1016/j.marpetgeo.2014.07.024.
    Description: The sediment characteristics of hydrate-bearing reservoirs profoundly affect the formation, distribution, and morphology of gas hydrate. The presence and type of gas, porewater chemistry, fluid migration, and subbottom temperature may govern the hydrate formation process, but it is the host sediment that commonly dictates final hydrate habit, and whether hydrate may be economically developed. In this paper, the physical properties of hydrate-bearing regions offshore eastern India (Krishna-Godavari and Mahanadi Basins) and the Andaman Islands, determined from Expedition NGHP-01 cores, are compared to each other, well logs, and published results of other hydrate reservoirs. Properties from the hydrate-free Kerala-Konkan basin off the west coast of India are also presented. Coarser-grained reservoirs (permafrost-related and marine) may contain high gas-hydrate-pore saturations, while finer-grained reservoirs may contain low-saturation disseminated or more complex gas-hydrates, including nodules, layers, and high-angle planar and rotational veins. However, even in these fine-grained sediments, gas hydrate preferentially forms in coarser sediment or fractures, when present. The presence of hydrate in conjunction with other geologic processes may be responsible for sediment porosity being nearly uniform for almost 500 m off the Andaman Islands. Properties of individual NGHP-01 wells and regional trends are discussed in detail. However, comparison of marine and permafrost-related Arctic reservoirs provides insight into the inter-relationships and common traits between physical properties and the morphology of gas-hydrate reservoirs regardless of location. Extrapolation of properties from one location to another also enhances our understanding of gas-hydrate reservoir systems. Grain size and porosity effects on permeability are critical, both locally to trap gas and regionally to provide fluid flow to hydrate reservoirs. Index properties corroborate more advanced consolidation and triaxial strength test results and can be used for predicting behavior in other NGHP-01 regions. Pseudo-overconsolidation is present near the seafloor and is underlain by underconsolidation at depth at some NGHP-01 locations.
    Description: This work was supported by the Coastal and Marine Geology, and Energy Programs of the U.S. Geological Survey. Partial support for this research was provided by Interagency Agreement DE-FE0002911 between the USGS Gas Hydrates Project and the U.S. Department of Energy's Methane Hydrates R&D Program.
    Keywords: Physical properties ; Gas hydrate ; Porosity ; Atterberg limits ; Consolidation ; Permeability ; Shear strength ; Scanning electron microscopy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...