ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (54)
  • Protein Structure, Tertiary  (54)
  • American Association for the Advancement of Science (AAAS)  (54)
  • American Physical Society (APS)
  • Copernicus
  • Geological Society of America
  • Nature Publishing Group
  • Springer Nature
  • Taylor & Francis
  • Wiley
  • 2010-2014
  • 2005-2009  (54)
  • 2000-2004
  • 1995-1999
  • 1980-1984
  • 1955-1959
  • 1935-1939
  • 1930-1934
  • 2005  (54)
  • 1932
  • Natural Sciences in General  (54)
  • Geosciences
  • Process Engineering, Biotechnology, Nutrition Technology
Collection
  • Articles  (54)
Publisher
  • American Association for the Advancement of Science (AAAS)  (54)
  • American Physical Society (APS)
  • Copernicus
  • Geological Society of America
  • Nature Publishing Group
  • +
Years
  • 2010-2014
  • 2005-2009  (54)
  • 2000-2004
  • 1995-1999
  • 1980-1984
  • +
Year
Topic
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-11-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martinez Arias, Alfonso -- New York, N.Y. -- Science. 2005 Nov 25;310(5752):1284-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK. ama11@hermes.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16311322" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; Cell Nucleus/metabolism ; Drosophila Proteins/chemistry/*metabolism ; Drosophila melanogaster/genetics/*metabolism ; Endocytosis ; Frizzled Receptors ; Models, Neurological ; Mutation ; Neuromuscular Junction/*metabolism ; Protein Structure, Tertiary ; Proto-Oncogene Proteins/*metabolism ; Receptors, G-Protein-Coupled ; Receptors, Neurotransmitter/chemistry/*metabolism ; *Signal Transduction ; Wnt1 Protein
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-02-01
    Description: Pollen tube guidance precedes the double fertilization of flowering plants. Here, we report the identification of a small maize protein of 94 amino acids involved in short-range signaling required for pollen tube attraction by the female gametophyte. ZmEA1 is exclusively expressed in the egg apparatus, consisting of the egg cell and two synergids. Chimeric ZmEA1 fused to green fluorescent protein (ZmEA1:GFP) was first visible within the filiform apparatus and later was localized to nucellar cell walls below the micropylar opening of the ovule. Transgenic down-regulation of the ZmEA1 gene led to ovule sterility caused by loss of close-range pollen tube guidance to the micropyle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marton, Mihaela L -- Cordts, Simone -- Broadhvest, Jean -- Dresselhaus, Thomas -- New York, N.Y. -- Science. 2005 Jan 28;307(5709):573-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biocenter Klein Flottbek, Developmental Biology and Biotechnology, University of Hamburg, Ohnhorststrasse 18, D-22609 Hamburg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15681383" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antisense Elements (Genetics) ; Crosses, Genetic ; DNA, Complementary ; Flowers/growth & development/*physiology ; Genes, Plant ; Green Fluorescent Proteins/metabolism ; Molecular Sequence Data ; Plant Proteins/chemistry/*genetics/*physiology ; Plants, Genetically Modified ; Promoter Regions, Genetic ; Protein Structure, Tertiary ; RNA Interference ; Recombinant Fusion Proteins/metabolism ; Reproduction ; Seeds/physiology ; Sequence Homology, Nucleic Acid ; Signal Transduction ; Zea mays/*genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-12-17
    Description: Translesion synthesis (TLS) is the major pathway by which mammalian cells replicate across DNA lesions. Upon DNA damage, ubiquitination of proliferating cell nuclear antigen (PCNA) induces bypass of the lesion by directing the replication machinery into the TLS pathway. Yet, how this modification is recognized and interpreted in the cell remains unclear. Here we describe the identification of two ubiquitin (Ub)-binding domains (UBM and UBZ), which are evolutionarily conserved in all Y-family TLS polymerases (pols). These domains are required for binding of poleta and poliota to ubiquitin, their accumulation in replication factories, and their interaction with monoubiquitinated PCNA. Moreover, the UBZ domain of poleta is essential to efficiently restore a normal response to ultraviolet irradiation in xeroderma pigmentosum variant (XP-V) fibroblasts. Our results indicate that Ub-binding domains of Y-family polymerases play crucial regulatory roles in TLS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bienko, Marzena -- Green, Catherine M -- Crosetto, Nicola -- Rudolf, Fabian -- Zapart, Grzegorz -- Coull, Barry -- Kannouche, Patricia -- Wider, Gerhard -- Peter, Matthias -- Lehmann, Alan R -- Hofmann, Kay -- Dikic, Ivan -- New York, N.Y. -- Science. 2005 Dec 16;310(5755):1821-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biochemistry II, Goethe University Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16357261" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Cell Line ; Computational Biology ; DNA/*biosynthesis ; *DNA Damage ; DNA Repair ; DNA Replication ; DNA-Directed DNA Polymerase/*chemistry/genetics/*metabolism ; Humans ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nuclear Magnetic Resonance, Biomolecular ; Point Mutation ; Proliferating Cell Nuclear Antigen/metabolism ; Protein Binding ; Protein Conformation ; Protein Interaction Mapping ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; Transfection ; Ubiquitin/*metabolism ; Xeroderma Pigmentosum/genetics ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-09-17
    Description: The prediction of protein structure from amino acid sequence is a grand challenge of computational molecular biology. By using a combination of improved low- and high-resolution conformational sampling methods, improved atomically detailed potential functions that capture the jigsaw puzzle-like packing of protein cores, and high-performance computing, high-resolution structure prediction (〈1.5 angstroms) can be achieved for small protein domains (〈85 residues). The primary bottleneck to consistent high-resolution prediction appears to be conformational sampling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bradley, Philip -- Misura, Kira M S -- Baker, David -- New York, N.Y. -- Science. 2005 Sep 16;309(5742):1868-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Washington, Department of Biochemistry, and Howard Hughes Medical Institute, Box 357350, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16166519" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chemistry, Physical ; *Computational Biology ; Computer Simulation ; Hydrogen Bonding ; Models, Molecular ; Monte Carlo Method ; Physicochemical Phenomena ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*chemistry ; Sequence Alignment ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-05-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davidson, Amy L -- Chen, Jue -- New York, N.Y. -- Science. 2005 May 13;308(5724):963-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA. davidson@bcm.tmc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15890866" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/*metabolism ; Adenosine Diphosphate/metabolism ; Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Bacterial Proteins/*chemistry/*metabolism ; Cell Membrane/*chemistry ; Crystallography, X-Ray ; Dimerization ; Electron Spin Resonance Spectroscopy ; Escherichia coli/chemistry ; Escherichia coli Proteins/chemistry/metabolism ; Hydrolysis ; Lipid A/metabolism ; Lipid Bilayers ; Models, Molecular ; Protein Conformation ; Protein Folding ; Protein Structure, Tertiary ; Salmonella typhimurium/*chemistry ; Spin Labels ; Vanadates/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2005-02-26
    Description: Apical membrane antigen 1 from Plasmodium is a leading malaria vaccine candidate. The protein is essential for host-cell invasion, but its molecular function is unknown. The crystal structure of the three domains comprising the ectoplasmic region of the antigen from P. vivax, solved at 1.8 angstrom resolution, shows that domains I and II belong to the PAN motif, which defines a superfamily of protein folds implicated in receptor binding. We also mapped the epitope of an invasion-inhibitory monoclonal antibody specific for the P. falciparum ortholog and modeled this to the structure. The location of the epitope and current knowledge on structure-function correlations for PAN domains together suggest a receptor-binding role during invasion in which domain II plays a critical part. These results are likely to aid vaccine and drug design.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pizarro, Juan Carlos -- Vulliez-Le Normand, Brigitte -- Chesne-Seck, Marie-Laure -- Collins, Christine R -- Withers-Martinez, Chrislaine -- Hackett, Fiona -- Blackman, Michael J -- Faber, Bart W -- Remarque, Edmond J -- Kocken, Clemens H M -- Thomas, Alan W -- Bentley, Graham A -- MC_U117532063/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2005 Apr 15;308(5720):408-11. Epub 2005 Feb 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Unite d'Immunologie Structurale, Centre National de la Recherche Scientifique, URA 2185, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15731407" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/immunology ; Antigens, Protozoan/*chemistry/immunology ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Epitope Mapping ; Epitopes ; Heparin/metabolism ; Malaria Vaccines ; Membrane Proteins/*chemistry/immunology ; Models, Molecular ; Molecular Sequence Data ; Plasmodium falciparum/chemistry/immunology ; Plasmodium vivax/chemistry/*immunology ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protozoan Proteins/*chemistry/immunology ; Recombinant Proteins/chemistry ; Sequence Alignment
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-06-18
    Description: Rhizobial bacteria enter a symbiotic interaction with legumes, activating diverse responses in roots through the lipochito oligosaccharide signaling molecule Nod factor. Here, we show that NSP2 from Medicago truncatula encodes a GRAS protein essential for Nod-factor signaling. NSP2 functions downstream of Nod-factor-induced calcium spiking and a calcium/calmodulin-dependent protein kinase. We show that NSP2-GFP expressed from a constitutive promoter is localized to the endoplasmic reticulum/nuclear envelope and relocalizes to the nucleus after Nod-factor elicitation. This work provides evidence that a GRAS protein transduces calcium signals in plants and provides a possible regulator of Nod-factor-inducible gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kalo, Peter -- Gleason, Cynthia -- Edwards, Anne -- Marsh, John -- Mitra, Raka M -- Hirsch, Sibylle -- Jakab, Julia -- Sims, Sarah -- Long, Sharon R -- Rogers, Jane -- Kiss, Gyorgy B -- Downie, J Allan -- Oldroyd, Giles E D -- New York, N.Y. -- Science. 2005 Jun 17;308(5729):1786-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Disease and Stress Biology and Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15961668" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Calcium/metabolism ; Calcium Signaling ; Calcium-Calmodulin-Dependent Protein Kinases/genetics/metabolism ; Cell Nucleus/metabolism ; Cloning, Molecular ; Gene Expression Regulation, Plant ; Genes, Plant ; Lipopolysaccharides/*metabolism ; Medicago/genetics/*metabolism/*microbiology ; Molecular Sequence Data ; Mutation ; Oligonucleotide Array Sequence Analysis ; Peas/genetics/metabolism ; Plant Proteins/chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Sinorhizobium meliloti/*physiology ; Symbiosis ; Transcription Factors/chemistry/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-10-01
    Description: Chlorinated natural products include vancomycin and cryptophycin A. Their biosynthesis involves regioselective chlorination by flavin-dependent halogenases. We report the structural characterization of tryptophan 7-halogenase (PrnA), which regioselectively chlorinates tryptophan. Tryptophan and flavin adenine dinucleotide (FAD) are separated by a 10 angstrom-long tunnel and bound by distinct enzyme modules. The FAD module is conserved in halogenases and is related to flavin-dependent monooxygenases. On the basis of biochemical studies, crystal structures, and by analogy with monooxygenases, we predict that FADH2 reacts with O2 to make peroxyflavin, which is decomposed by Cl-. The resulting HOCl is guided through the tunnel to tryptophan, where it is activated to participate in electrophilic aromatic substitution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315827/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315827/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dong, Changjiang -- Flecks, Silvana -- Unversucht, Susanne -- Haupt, Caroline -- van Pee, Karl-Heinz -- Naismith, James H -- BB/C000080/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/B/14426/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2005 Sep 30;309(5744):2216-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Biomolecular Sciences, EaStchem, University of St. Andrews, St. Andrews KY16 9ST, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16195462" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Chlorides/*metabolism ; Crystallography, X-Ray ; Dimerization ; Flavin-Adenine Dinucleotide/analogs & derivatives/metabolism ; Hydrogen Bonding ; Hypochlorous Acid/metabolism ; Indoles/metabolism ; Models, Molecular ; Molecular Sequence Data ; Oxidation-Reduction ; Oxidoreductases/*chemistry/isolation & purification/metabolism ; Oxygen/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Pseudomonas fluorescens/*enzymology ; Tryptophan/analogs & derivatives/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2005-09-17
    Description: The spike protein (S) of SARS coronavirus (SARS-CoV) attaches the virus to its cellular receptor, angiotensin-converting enzyme 2 (ACE2). A defined receptor-binding domain (RBD) on S mediates this interaction. The crystal structure at 2.9 angstrom resolution of the RBD bound with the peptidase domain of human ACE2 shows that the RBD presents a gently concave surface, which cradles the N-terminal lobe of the peptidase. The atomic details at the interface between the two proteins clarify the importance of residue changes that facilitate efficient cross-species infection and human-to-human transmission. The structure of the RBD suggests ways to make truncated disulfide-stabilized RBD variants for use in the design of coronavirus vaccines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Fang -- Li, Wenhui -- Farzan, Michael -- Harrison, Stephen C -- AI061601/AI/NIAID NIH HHS/ -- CA13202/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2005 Sep 16;309(5742):1864-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Laboratory of Molecular Medicine, 320 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16166518" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Antibodies, Viral/immunology ; Binding Sites ; Carboxypeptidases/*chemistry/metabolism ; Cell Line ; Crystallography, X-Ray ; Disease Outbreaks ; Epitopes ; Glycosylation ; Humans ; Hydrophobic and Hydrophilic Interactions ; Membrane Glycoproteins/*chemistry/genetics/immunology/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Peptidyl-Dipeptidase A ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, Virus/*chemistry/metabolism ; SARS Virus/*chemistry/genetics/physiology ; Severe Acute Respiratory Syndrome/transmission/*virology ; Species Specificity ; Spike Glycoprotein, Coronavirus ; Viral Envelope Proteins/*chemistry/genetics/immunology/*metabolism ; Viral Vaccines ; Viverridae/virology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2005-03-26
    Description: Activators of bacterial sigma54-RNA polymerase holoenzyme are mechanochemical proteins that use adenosine triphosphate (ATP) hydrolysis to activate transcription. We have determined by cryogenic electron microscopy (cryo-EM) a 20 angstrom resolution structure of an activator, phage shock protein F [PspF(1-275)], which is bound to an ATP transition state analog in complex with its basal factor, sigma54. By fitting the crystal structure of PspF(1-275) at 1.75 angstroms into the EM map, we identified two loops involved in binding sigma54. Comparing enhancer-binding structures in different nucleotide states and mutational analysis led us to propose nucleotide-dependent conformational changes that free the loops for association with sigma54.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756573/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756573/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rappas, Mathieu -- Schumacher, Jorg -- Beuron, Fabienne -- Niwa, Hajime -- Bordes, Patricia -- Wigneshweraraj, Sivaramesh -- Keetch, Catherine A -- Robinson, Carol V -- Buck, Martin -- Zhang, Xiaodong -- B17129/Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2005 Mar 25;307(5717):1972-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Imperial College London, London, SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15790859" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Bacterial Proteins/chemistry/metabolism ; Binding Sites ; Cryoelectron Microscopy ; Crystallography, X-Ray ; DNA-Binding Proteins/chemistry/metabolism ; DNA-Directed RNA Polymerases/chemistry/metabolism ; Escherichia coli Proteins/*chemistry/*metabolism ; Hydrolysis ; Hydrophobic and Hydrophilic Interactions ; Models, Molecular ; Molecular Sequence Data ; Mutation ; PII Nitrogen Regulatory Proteins ; *Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; RNA Polymerase Sigma 54 ; Sigma Factor/chemistry/metabolism ; Trans-Activators/*chemistry/*metabolism ; Transcription Factors/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...