ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (327)
  • Rats  (244)
  • Crystallography, X-Ray  (87)
  • American Association for the Advancement of Science (AAAS)  (327)
  • American Association for the Advancement of Science
  • American Geophysical Union
  • American Meteorological Society
  • American Physical Society (APS)
  • Elsevier
  • Springer Nature
  • 2010-2014  (59)
  • 1995-1999  (108)
  • 1980-1984  (160)
  • 1955-1959
  • 1945-1949
  • 1935-1939
  • 1930-1934
  • 2014  (59)
  • 1995  (108)
  • 1981  (160)
  • 1930
  • Natural Sciences in General  (327)
  • Geosciences
Collection
  • Articles  (327)
Publisher
  • American Association for the Advancement of Science (AAAS)  (327)
  • American Association for the Advancement of Science
  • American Geophysical Union
  • American Meteorological Society
  • American Physical Society (APS)
  • +
Years
  • 2010-2014  (59)
  • 1995-1999  (108)
  • 1980-1984  (160)
  • 1955-1959
  • 1945-1949
  • +
Year
Topic
  • 1
    Publication Date: 2014-05-31
    Description: Synaptic vesicle recycling has long served as a model for the general mechanisms of cellular trafficking. We used an integrative approach, combining quantitative immunoblotting and mass spectrometry to determine protein numbers; electron microscopy to measure organelle numbers, sizes, and positions; and super-resolution fluorescence microscopy to localize the proteins. Using these data, we generated a three-dimensional model of an "average" synapse, displaying 300,000 proteins in atomic detail. The copy numbers of proteins involved in the same step of synaptic vesicle recycling correlated closely. In contrast, copy numbers varied over more than three orders of magnitude between steps, from about 150 copies for the endosomal fusion proteins to more than 20,000 for the exocytotic ones.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilhelm, Benjamin G -- Mandad, Sunit -- Truckenbrodt, Sven -- Krohnert, Katharina -- Schafer, Christina -- Rammner, Burkhard -- Koo, Seong Joo -- Classen, Gala A -- Krauss, Michael -- Haucke, Volker -- Urlaub, Henning -- Rizzoli, Silvio O -- New York, N.Y. -- Science. 2014 May 30;344(6187):1023-8. doi: 10.1126/science.1252884.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuro- and Sensory Physiology, University of Gottingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Gottingen, Germany. International Max Planck Research School Neurosciences, 37077 Gottingen, Germany. ; Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Biophysical Chemistry, 37077 Gottingen, Germany. ; Department of Neuro- and Sensory Physiology, University of Gottingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Gottingen, Germany. International Max Planck Research School Molecular Biology, 37077 Gottingen, Germany. ; Department of Neuro- and Sensory Physiology, University of Gottingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Gottingen, Germany. ; Leibniz Institut fur Molekulare Pharmakologie, Department of Molecular Pharmacology and Cell Biology, Robert-Rossle-Strasse 10, 13125 Berlin, Germany. ; Bioanalytical Mass Spectrometry Group, Max-Planck-Institute for Biophysical Chemistry, 37077 Gottingen, Germany. Bioanalytics, Department of Clinical Chemistry, University Medical Center Gottingen, 37075 Gottingen, Germany. ; Department of Neuro- and Sensory Physiology, University of Gottingen Medical Center, European Neuroscience Institute, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Gottingen, Germany. srizzol@gwdg.de.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24876496" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*metabolism/ultrastructure ; Exocytosis ; Imaging, Three-Dimensional ; Immunoblotting/methods ; Mass Spectrometry/methods ; Microscopy, Electron/methods ; Models, Neurological ; Presynaptic Terminals/chemistry/*metabolism/ultrastructure ; Protein Transport ; Rats ; Rats, Wistar ; Synaptic Vesicles/chemistry/*metabolism ; Synaptosomes/chemistry/*metabolism/ultrastructure ; Vesicular Transport Proteins/analysis/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-03-29
    Description: The field of optogenetics uses channelrhodopsins (ChRs) for light-induced neuronal activation. However, optimized tools for cellular inhibition at moderate light levels are lacking. We found that replacement of E90 in the central gate of ChR with positively charged residues produces chloride-conducting ChRs (ChloCs) with only negligible cation conductance. Molecular dynamics modeling unveiled that a high-affinity Cl(-)-binding site had been generated near the gate. Stabilizing the open state dramatically increased the operational light sensitivity of expressing cells (slow ChloC). In CA1 pyramidal cells, ChloCs completely inhibited action potentials triggered by depolarizing current injections or synaptic stimulation. Thus, by inverting the charge of the selectivity filter, we have created a class of directly light-gated anion channels that can be used to block neuronal output in a fully reversible fashion.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wietek, Jonas -- Wiegert, J Simon -- Adeishvili, Nona -- Schneider, Franziska -- Watanabe, Hiroshi -- Tsunoda, Satoshi P -- Vogt, Arend -- Elstner, Marcus -- Oertner, Thomas G -- Hegemann, Peter -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):409-12. doi: 10.1126/science.1249375. Epub 2014 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Biology, Experimental Biophysics, Humboldt Universitat zu Berlin, D-10115 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24674867" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Binding Sites ; CA1 Region, Hippocampal/cytology ; Chloride Channels/*chemistry/*metabolism ; Chlorides/*metabolism ; HEK293 Cells ; Humans ; Hydrogen Bonding ; Ion Channel Gating ; Light ; Models, Molecular ; Molecular Dynamics Simulation ; Mutation ; Patch-Clamp Techniques ; Protein Conformation ; Protein Engineering ; Pyramidal Cells/metabolism ; Rats ; Recombinant Fusion Proteins/chemistry ; Rhodopsin/*chemistry/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-04-26
    Description: Using light to silence electrical activity in targeted cells is a major goal of optogenetics. Available optogenetic proteins that directly move ions to achieve silencing are inefficient, pumping only a single ion per photon across the cell membrane rather than allowing many ions per photon to flow through a channel pore. Building on high-resolution crystal-structure analysis, pore vestibule modeling, and structure-guided protein engineering, we designed and characterized a class of channelrhodopsins (originally cation-conducting) converted into chloride-conducting anion channels. These tools enable fast optical inhibition of action potentials and can be engineered to display step-function kinetics for stable inhibition, outlasting light pulses and for orders-of-magnitude-greater light sensitivity of inhibited cells. The resulting family of proteins defines an approach to more physiological, efficient, and sensitive optogenetic inhibition.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096039/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096039/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berndt, Andre -- Lee, Soo Yeun -- Ramakrishnan, Charu -- Deisseroth, Karl -- R01 DA020794/DA/NIDA NIH HHS/ -- R01 MH075957/MH/NIMH NIH HHS/ -- R01 MH086373/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):420-4. doi: 10.1126/science.1252367.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24763591" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Amino Acid Sequence ; Animals ; CA1 Region, Hippocampal/cytology ; CA3 Region, Hippocampal/cytology ; Chloride Channels/*chemistry/*metabolism ; Chlorides/*metabolism ; HEK293 Cells ; Humans ; Light ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Neurons/*physiology ; Optogenetics ; Patch-Clamp Techniques ; Protein Engineering ; Rats ; Rats, Sprague-Dawley ; Recombinant Fusion Proteins/chemistry/metabolism ; Rhodopsin/*chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-03-08
    Description: The excitatory neurotransmitter glutamate induces modulatory actions via the metabotropic glutamate receptors (mGlus), which are class C G protein-coupled receptors (GPCRs). We determined the structure of the human mGlu1 receptor seven-transmembrane (7TM) domain bound to a negative allosteric modulator, FITM, at a resolution of 2.8 angstroms. The modulator binding site partially overlaps with the orthosteric binding sites of class A GPCRs but is more restricted than most other GPCRs. We observed a parallel 7TM dimer mediated by cholesterols, which suggests that signaling initiated by glutamate's interaction with the extracellular domain might be mediated via 7TM interactions within the full-length receptor dimer. A combination of crystallography, structure-activity relationships, mutagenesis, and full-length dimer modeling provides insights about the allosteric modulation and activation mechanism of class C GPCRs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991565/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3991565/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Huixian -- Wang, Chong -- Gregory, Karen J -- Han, Gye Won -- Cho, Hyekyung P -- Xia, Yan -- Niswender, Colleen M -- Katritch, Vsevolod -- Meiler, Jens -- Cherezov, Vadim -- Conn, P Jeffrey -- Stevens, Raymond C -- P50 GM073197/GM/NIGMS NIH HHS/ -- R01 DK097376/DK/NIDDK NIH HHS/ -- R01 GM080403/GM/NIGMS NIH HHS/ -- R01 GM099842/GM/NIGMS NIH HHS/ -- R01 MH062646/MH/NIMH NIH HHS/ -- R01 MH090192/MH/NIMH NIH HHS/ -- R01 NS031373/NS/NINDS NIH HHS/ -- R21 NS078262/NS/NINDS NIH HHS/ -- R37 NS031373/NS/NINDS NIH HHS/ -- U54 GM094618/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Apr 4;344(6179):58-64. doi: 10.1126/science.1249489. Epub 2014 Mar 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24603153" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Allosteric Site ; Amino Acid Sequence ; Benzamides/*chemistry/*metabolism ; Binding Sites ; Cholesterol ; Crystallography, X-Ray ; Humans ; Hydrophobic and Hydrophilic Interactions ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Multimerization ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Metabotropic Glutamate/*chemistry/*metabolism ; Structure-Activity Relationship ; Thiazoles/*chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2014-01-18
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pennisi, Elizabeth -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):239. doi: 10.1126/science.343.6168.239.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24436399" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ants/*microbiology/physiology ; Brain/metabolism/microbiology ; Fat Body/virology ; Female ; Gryllidae/physiology/*virology ; Guanidines/analysis/metabolism ; *Host-Pathogen Interactions ; Hypocreales/*physiology ; Insect Viruses/*physiology ; Lizards/virology ; Male ; Rats ; Sexual Behavior, Animal/*physiology ; Sphingosine/analysis/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-18
    Description: When polypeptide chains fold into a protein, hydrophobic groups are compacted in the center with exclusion of water. We report the crystal structure of an alanine-rich antifreeze protein that retains ~400 waters in its core. The putative ice-binding residues of this dimeric, four-helix bundle protein point inwards and coordinate the interior waters into two intersecting polypentagonal networks. The bundle makes minimal protein contacts between helices, but is stabilized by anchoring to the semi-clathrate water monolayers through backbone carbonyl groups in the protein interior. The ordered waters extend outwards to the protein surface and likely are involved in ice binding. This protein fold supports both the anchored-clathrate water mechanism of antifreeze protein adsorption to ice and the water-expulsion mechanism of protein folding.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sun, Tianjun -- Lin, Feng-Hsu -- Campbell, Robert L -- Allingham, John S -- Davies, Peter L -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2014 Feb 14;343(6172):795-8. doi: 10.1126/science.1247407.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24531972" target="_blank"〉PubMed〈/a〉
    Keywords: Alanine/chemistry ; Animals ; Antifreeze Proteins, Type I/*chemistry ; Crystallography, X-Ray ; Fish Proteins/*chemistry ; Flounder ; Ice ; *Protein Folding ; Protein Structure, Secondary ; Water/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-03-01
    Description: One of the hallmark mechanisms activated by type I interferons (IFNs) in human tissues involves cleavage of intracellular RNA by the kinase homology endoribonuclease RNase L. We report 2.8 and 2.1 angstrom crystal structures of human RNase L in complexes with synthetic and natural ligands and a fragment of an RNA substrate. RNase L forms a crossed homodimer stabilized by ankyrin (ANK) and kinase homology (KH) domains, which positions two kinase extension nuclease (KEN) domains for asymmetric RNA recognition. One KEN protomer recognizes an identity nucleotide (U), whereas the other protomer cleaves RNA between nucleotides +1 and +2. The coordinated action of the ANK, KH, and KEN domains thereby provides regulated, sequence-specific cleavage of viral and host RNA targets by RNase L.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731867/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731867/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Han, Yuchen -- Donovan, Jesse -- Rath, Sneha -- Whitney, Gena -- Chitrakar, Alisha -- Korennykh, Alexei -- R01 GM110161/GM/NIGMS NIH HHS/ -- T32 GM007388/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Mar 14;343(6176):1244-8. doi: 10.1126/science.1249845. Epub 2014 Feb 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Princeton University, 216 Schultz Laboratory, Princeton, NJ 08540, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24578532" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Endoribonucleases/*chemistry/metabolism ; HeLa Cells ; Hepatitis B virus/genetics ; Humans ; Interferon Type I/pharmacology/*physiology ; Protein Multimerization ; Protein Structure, Tertiary ; *RNA Cleavage ; *RNA Stability ; RNA, Viral/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-09-27
    Description: The mechanism of nitrogenase remains enigmatic, with a major unresolved issue concerning how inhibitors and substrates bind to the active site. We report a crystal structure of carbon monoxide (CO)-inhibited nitrogenase molybdenum-iron (MoFe)-protein at 1.50 angstrom resolution, which reveals a CO molecule bridging Fe2 and Fe6 of the FeMo-cofactor. The mu2 binding geometry is achieved by replacing a belt-sulfur atom (S2B) and highlights the generation of a reactive iron species uncovered by the displacement of sulfur. The CO inhibition is fully reversible as established by regain of enzyme activity and reappearance of S2B in the 1.43 angstrom resolution structure of the reactivated enzyme. The substantial and reversible reorganization of the FeMo-cofactor accompanying CO binding was unanticipated and provides insights into a catalytically competent state of nitrogenase.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205161/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205161/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spatzal, Thomas -- Perez, Kathryn A -- Einsle, Oliver -- Howard, James B -- Rees, Douglas C -- GM45162/GM/NIGMS NIH HHS/ -- P41GM103393/GM/NIGMS NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R01 GM045162/GM/NIGMS NIH HHS/ -- R37 GM045162/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2014 Sep 26;345(6204):1620-3. doi: 10.1126/science.1256679.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, MailCode 114-96, California Institute of Technology, Pasadena, CA 91125, USA. spatzal@caltech.edu dcrees@caltech.edu. ; Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, MailCode 114-96, California Institute of Technology, Pasadena, CA 91125, USA. ; Institut fur Biochemie, Albert-Ludwigs-Universitat Freiburg, 79104 Freiburg, Germany. BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universitat Freiburg, 79104 Freiburg, Germany. ; Howard Hughes Medical Institute and Division of Chemistry and Chemical Engineering, MailCode 114-96, California Institute of Technology, Pasadena, CA 91125, USA. Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25258081" target="_blank"〉PubMed〈/a〉
    Keywords: Carbon Monoxide/*chemistry ; Catalytic Domain ; Crystallography, X-Ray ; Enzyme Activation ; Ligands ; Molybdoferredoxin/antagonists & inhibitors/*chemistry ; *Nitrogen Fixation ; Protein Binding ; Sulfur/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-07-26
    Description: Proteins that cap the ends of the actin filament are essential regulators of cytoskeleton dynamics. Whereas several proteins cap the rapidly growing barbed end, tropomodulin (Tmod) is the only protein known to cap the slowly growing pointed end. The lack of structural information severely limits our understanding of Tmod's capping mechanism. We describe crystal structures of actin complexes with the unstructured amino-terminal and the leucine-rich repeat carboxy-terminal domains of Tmod. The structures and biochemical analysis of structure-inspired mutants showed that one Tmod molecule interacts with three actin subunits at the pointed end, while also contacting two tropomyosin molecules on each side of the filament. We found that Tmod achieves high-affinity binding through several discrete low-affinity interactions, which suggests a mechanism for controlled subunit exchange at the pointed end.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367809/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4367809/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rao, Jampani Nageswara -- Madasu, Yadaiah -- Dominguez, Roberto -- GM-0080/GM/NIGMS NIH HHS/ -- R01 GM073791/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2014 Jul 25;345(6195):463-7. doi: 10.1126/science.1256159.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. droberto@mail.med.upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25061212" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/*chemistry ; Actins/*chemistry ; Amino Acid Sequence ; Animals ; Crystallography, X-Ray ; Humans ; Molecular Sequence Data ; Mutation ; Protein Binding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rabbits ; Tropomodulin/*chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-05-24
    Description: Cushing's syndrome is caused by excess cortisol production from the adrenocortical gland. In corticotropin-independent Cushing's syndrome, the excess cortisol production is primarily attributed to an adrenocortical adenoma, in which the underlying molecular pathogenesis has been poorly understood. We report a hotspot mutation (L206R) in PRKACA, which encodes the catalytic subunit of cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), in more than 50% of cases with adrenocortical adenomas associated with corticotropin-independent Cushing's syndrome. The L206R PRKACA mutant abolished its binding to the regulatory subunit of PKA (PRKAR1A) that inhibits catalytic activity of PRKACA, leading to constitutive, cAMP-independent PKA activation. These results highlight the major role of cAMP-independent activation of cAMP/PKA signaling by somatic mutations in corticotropin-independent Cushing's syndrome, providing insights into the diagnosis and therapeutics of this syndrome.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sato, Yusuke -- Maekawa, Shigekatsu -- Ishii, Ryohei -- Sanada, Masashi -- Morikawa, Teppei -- Shiraishi, Yuichi -- Yoshida, Kenichi -- Nagata, Yasunobu -- Sato-Otsubo, Aiko -- Yoshizato, Tetsuichi -- Suzuki, Hiromichi -- Shiozawa, Yusuke -- Kataoka, Keisuke -- Kon, Ayana -- Aoki, Kosuke -- Chiba, Kenichi -- Tanaka, Hiroko -- Kume, Haruki -- Miyano, Satoru -- Fukayama, Masashi -- Nureki, Osamu -- Homma, Yukio -- Ogawa, Seishi -- New York, N.Y. -- Science. 2014 May 23;344(6186):917-20. doi: 10.1126/science.1252328.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. ; Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. ; Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan. ; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. ; Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. ; Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan. ; Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan. ; Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan. Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan. ; Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. sogawa-tky@umin.ac.jp homma-uro@umin.ac.jp. ; Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. sogawa-tky@umin.ac.jp homma-uro@umin.ac.jp.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24855271" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenal Cortex Neoplasms/*genetics ; Adrenocortical Adenoma/*genetics ; Adrenocorticotropic Hormone/metabolism ; Animals ; Catalytic Domain/genetics ; Cushing Syndrome/*genetics/metabolism ; Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/*genetics/metabolism ; DNA Mutational Analysis ; GTP-Binding Protein alpha Subunits/genetics ; HEK293 Cells ; Humans ; Mice ; Mutation ; NIH 3T3 Cells ; PC12 Cells ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...