ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Climate change  (3)
  • Frontiers Media  (3)
  • Hindawi
  • 2015-2019  (3)
  • 1980-1984
  • 1925-1929
  • 2019  (3)
  • 1926
  • 1
    Publication Date: 2022-10-27
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gewirtzman, J., Tang, J., Melillo, J. M., Werner, W. J., Kurtz, A. C., Fulweiler, R. W., & Carey, J. C. Soil warming accelerates biogeochemical silica cycling in a temperate forest. Frontiers in Plant Science, 10, (2019): 1097, doi:10.3389/fpls.2019.01097.
    Description: Biological cycling of silica plays an important role in terrestrial primary production. Soil warming stemming from climate change can alter the cycling of elements, such as carbon and nitrogen, in forested ecosystems. However, the effects of soil warming on the biogeochemical cycle of silica in forested ecosystems remain unexplored. Here we examine long-term forest silica cycling under ambient and warmed conditions over a 15-year period of experimental soil warming at Harvard Forest (Petersham, MA). Specifically, we measured silica concentrations in organic and mineral soils, and in the foliage and litter of two dominant species (Acer rubrum and Quercus rubra), in a large (30 × 30 m) heated plot and an adjacent control plot (30 × 30 m). In 2016, we also examined effects of heating on dissolved silica in the soil solution, and conducted a litter decomposition experiment using four tree species (Acer rubrum, Quercus rubra, Betula lenta, Tsuga canadensis) to examine effects of warming on the release of biogenic silica (BSi) from plants to soils. We find that tree foliage maintained constant silica concentrations in the control and warmed plots, which, coupled with productivity enhancements under warming, led to an increase in total plant silica uptake. We also find that warming drove an acceleration in the release of silica from decaying litter in three of the four species we examined, and a substantial increase in the silica dissolved in soil solution. However, we observe no changes in soil BSi stocks with warming. Together, our data indicate that warming increases the magnitude of silica uptake by vegetation and accelerates the internal cycling of silica in in temperate forests, with possible, and yet unresolved, effects on the delivery of silica from terrestrial to marine systems.
    Description: This research was supported by the National Science Foundation (NSF PLR-1417763 to JT), the Geological Society of America (Stephen G. Pollock Undergraduate Research Grant to JG), the Institute at Brown for Environment and Society, and the Marine Biological Laboratory. Sample analysis and Fulweiler’s involvement were supported by Boston University and a Bullard Fellowship from Harvard University. The soil warming experiment was supported by the National Science Foundation (DEB-0620443) and Department of Energy (DE-FC02-06-ER641577 and DE-SC0005421).
    Keywords: Silica ; Climate change ; Soil ; Warming ; Phytoliths ; Plants ; Biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Turk, D., Wang, H., Hu, X., Gledhill, D. K., Wang, Z. A., Jiang, L., & Cai, W. Time of Emergence of surface ocean carbon dioxide trends in the North American coastal margins in support of ocean acidification observing system design. Frontiers in Marine Science, 6, (2019):91, doi:10.3389/fmars.2019.00091.
    Description: Time of Emergence (ToE) is the time when a signal emerges from the noise of natural variability. Commonly used in climate science for the detection of anthropogenic forcing, this concept has recently been applied to geochemical variables, to assess the emerging times of anthropogenic ocean acidification (OA), mostly in the open ocean using global climate and Earth System Models. Yet studies of OA variables are scarce within costal margins, due to limited multidecadal time-series observations of carbon parameters. ToE provides important information for decision making regarding the strategic configuration of observing assets, to ensure they are optimally positioned either for signal detection and/or process elicitation and to identify the most suitable variables in discerning OA-related changes. Herein, we present a short overview of ToE estimates on an OA variable, CO2 fugacity f(CO2,sw), in the North American ocean margins, using coastal data from the Surface Ocean CO2 Atlas (SOCAT) V5. ToE suggests an average theoretical timeframe for an OA signal to emerge, of 23(±13) years, but with considerable spatial variability. Most coastal areas are experiencing additional secular and/or multi-decadal forcing(s) that modifies the OA signal, and such forcing may not be sufficiently resolved by current observations. We provide recommendations, which will help scientists and decision makers design and implement OA monitoring systems in the next decade, to address the objectives of OceanObs19 (http://www.oceanobs19.net) in support of the United Nations Decade of Ocean Science for Sustainable Development (2021–2030) (https://en.unesco.org/ocean-decade) and the Sustainable Development Goal (SDG) 14.3 (https://sustainabledevelopment.un.org/sdg14) target to “Minimize and address the impacts of OA.”
    Description: HW was partially supported by an NSF grant (OCE#1654232) while being a research associate at TAMUCC.
    Keywords: Ocean acidification ; CO2 fugacity ; Time of emergence ; Climate change ; Novel statistical approaches ; Observing system optimization ; Decision making tool
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Palmer, M. D., Durack, P. J., Paz Chidichimo, M., Church, J. A., Cravatte, S., Hill, K., Johannessen, J. A., Karstensen, J., Lee, T., Legler, D., Mazloff, M., Oka, E., Purkey, S., Rabe, B., Sallee, J., Sloyan, B. M., Speich, S., von Schuckmann, K., Willis, J., & Wijffels, S. Adequacy of the ocean observation system for quantifying regional heat and freshwater storage and change. Frontiers in Marine Science, 6, (2019): 16, doi: 10.3389/fmars.2019.00416.
    Description: Considerable advances in the global ocean observing system over the last two decades offers an opportunity to provide more quantitative information on changes in heat and freshwater storage. Variations in these storage terms can arise through internal variability and also the response of the ocean to anthropogenic climate change. Disentangling these competing influences on the regional patterns of change and elucidating their governing processes remains an outstanding scientific challenge. This challenge is compounded by instrumental and sampling uncertainties. The combined use of ocean observations and model simulations is the most viable method to assess the forced signal from noise and ascertain the primary drivers of variability and change. Moreover, this approach offers the potential for improved seasonal-to-decadal predictions and the possibility to develop powerful multi-variate constraints on climate model future projections. Regional heat storage changes dominate the steric contribution to sea level rise over most of the ocean and are vital to understanding both global and regional heat budgets. Variations in regional freshwater storage are particularly relevant to our understanding of changes in the hydrological cycle and can potentially be used to verify local ocean mass addition from terrestrial and cryospheric systems associated with contemporary sea level rise. This White Paper will examine the ability of the current ocean observing system to quantify changes in regional heat and freshwater storage. In particular we will seek to answer the question: What time and space scales are currently resolved in different regions of the global oceans? In light of some of the key scientific questions, we will discuss the requirements for measurement accuracy, sampling, and coverage as well as the synergies that can be leveraged by more comprehensively analyzing the multi-variable arrays provided by the integrated observing system.
    Description: MP was supported by the Met Office Hadley Centre Climate Programme funded by the BEIS and Defra, and the European Union’s Horizon 2020 Research and Innovation Program under grant Agreement No. 633211 (AtlantOS). The work of PD was prepared the by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 and is a contribution to the U.S. Department of Energy, Office of Science, Climate and Environmental Sciences Division, Regional and Global Modeling and Analysis Program. LLNL Release number: LLNL-JRNL-761158. BS and JC was partially supported by the Centre for Southern Hemisphere Oceans Research, a joint research center between the QNLM and the CSIRO. BS was also supported by the Australian Government Department of the Environment and CSIRO through the National Environmental Science Program. SC was supported by the IRD and by the French national program LEFE/INSU. SC thanks W. Kessler for suggestions concerning Figure 6. BR was supported by the German Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung (AWI). J-BS was supported by the CNRS/INSU and the Horizon 2020 Research and Innovation Program under Grant Agreement 637770. SS was supported by the French Institutions ENS, LMD, IPSL, and CNRS/INSU. The work of JW was performed in part at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
    Keywords: Heat content ; Freshwater content ; Salinity ; Temperature ; Ocean observing system ; Climate change ; Climate variability ; Observing system design
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...