ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (469)
  • Astrophysics  (201)
  • Aerospace Medicine  (139)
  • Electronics and Electrical Engineering  (129)
  • 2015-2019  (469)
  • 1980-1984
  • 1960-1964
  • 1925-1929
  • 2017  (469)
  • 1926
Collection
Years
  • 2015-2019  (469)
  • 1980-1984
  • 1960-1964
  • 1925-1929
Year
  • 1
    Publication Date: 2017-08-25
    Description: Current human space travel consists primarily of long-duration missions onboard the International Space Station (ISS), but in the future may include exploration-class missions to nearby asteroids, Mars, or its moons. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative stress and inflammation can accelerate the development of atherosclerosis.
    Keywords: Aerospace Medicine
    Type: JSC-CN-38038 , NASA Human Research Program Investigators' Workshop (HRP IWS 2017); 23-26 Jan. 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-05-02
    Description: We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 keV from a simultaneous NuSTAR-Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swift BAT All-Sky Hard X-Ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observations have identified a single X-ray source from 0.5 to 50 keV as the counterpart for the first time. In the 0.5-10 keV band, the source had been classified as an X-ray Binary candidate in various Chandra and XMM-Newton studies; however, since it was not clearly associated with Swift J0042.6+4112, the previous E is less than 10keVobservations did not generate much attention. This source has a spectrum with a soft X-ray excess (kT approximately equal to 0.2 keV) plus a hard spectrum with a power law of gamma approximately equal to 1 and a cutoff around 15-20 keV, typical of the spectral characteristics of accreting pulsars. Unfortunately, any potential pulsation was undetected in the NuSTAR data, possibly due to insufficient photon statistics. The existing deep HST (Hubble Space Telescope) images exclude high-mass (greater than 3 times the radius of the moon) donors at the location of this source. The best interpretation for the nature of this source is an X-ray pulsar with an intermediate-mass (less than 3 times the radius of the moon M) companion or a symbiotic X-ray binary. We discuss other possibilities in more detail.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN41428 , The Astrophysical Journal (ISSN 0004-637X; e-ISSN 1538-4357); Volume 838; No. 1; 47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-07-20
    Description: Hot dust-obscured galaxies (hot DOGs), selected from Wide-Field Infrared Survey Explorer's all-sky infrared survey, host some of the most powerful active galactic nuclei known and may represent an important stage in the evolution of galaxies. Most known hot DOGs are located at z 〉 1.5, due in part to a strong bias against identifying them at lower redshift related to the selection criteria. We present a new selection method that identifies 153 hot DOG candidates at z approx. 1, where they are significantly brighter and easier to study. We validate this approach by measuring a redshift z = 1.009 and finding a spectral energy distribution similar to that of higher-redshift hot DOGs for one of these objects, WISE J1036+0449 (L(sub BOL) approx. = 8 x 10(exp 46) erg/s). We find evidence of a broadened component in Mg II, which would imply a black hole mass of M(BH) approx. = 2 x 10(exp 8) Stellar Mass and an Eddington ratio of lambda(sub Edd) approx. = 2.7. WISE J1036+0449 is the first hot DOG detected by the Nuclear Spectroscopic Telescope Array, and observations show that the source is heavily obscured, with a column density of N(sub H) approx. = (2-15) x 10(exp 23)/sq cm. The source has an intrinsic 2-10 keV luminosity of approx. 6 x 10(exp 44) erg/s, a value significantly lower than that expected from the mid-infrared X-ray correlation. We also find that other hot DOGs observed by X-ray facilities show a similar deficiency of X-ray flux. We discuss the origin of the X-ray weakness and the absorption properties of hot DOGs. Hot DOGs at z 〈 or approx. 1 could be excellent laboratories to probe the characteristics of the accretion flow and of the X-ray emitting plasma at extreme values of the Eddington ratio.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN43991 , The Astrophysical Journal (ISSN ISSN 0004-637X; e-ISSN 1538-4357); Volume 835; No. 1; 105
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-05-24
    Description: We report the discovery of a binary composed of two brown dwarfs, based on the analysis of the micro lensing event OGLE-2016-BLG-1469. Thanks to the detection of both finite-source and micro lens-parallax effects, we are able to measure both the masses M(sub 1) ~ 0.05 Solar Mass and M(sub 2) ~ 0.01 Solar Mass, and the distance D(sub L) ~ 4.5 kpc, as well as the projected separation a(sub perpendicular) ~ 0.33 au. This is the third brown-dwarf binary detected using the micro lensing method, demonstrating the usefulness of micro lensing in detecting field brown-dwarf binaries with separations of less than 1 au.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN64792 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 843; 1; 59
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-12
    Description: We present the result of microlensing event MOA-2016-BLG-290, which received observations from the two-wheel Kepler (K2), Spitzer, as well as ground-based observatories. A joint analysis of data from K2 and the ground leads to two degenerate solutions of the lens mass and distance. This degeneracy is effectively broken once the (partial) Spitzer light curve is included. Altogether, the lens is found to be an extremely low-mass star or brown dwarf (77(sup +34)(sub -23) M(sub J)) located in the Galactic bulge (6.8 0.4 kpc). MOA-2016-BLG-290 is the first microlensing event for which we have signals from three well-separated (~1 au) locations. It demonstrates the power of two-satellite microlensing experiment in reducing the ambiguity of lens properties, as pointed out independently by S. Refsdal and A. Gould several decades ago.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN64721 , Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 849; 2; L31
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-08
    Description: Lithium-oxygen (Li-O2) batteries have the highest theoretical energy density of all the Li-based energy storage systems, but many challenges prevent them from practical use. A major obstacle is the sluggish performance of the air cathode, where both oxygen reduction (discharge) and oxygen evolution (charge) reactions occur. Recently there have been significant advances in the development of graphene-based air cathode materials with a large surface area and high catalytic activity for both oxygen reduction and evolution reactions. However, most studies reported so far have examined air cathodes with a limited areal mass loading rarely exceeding 1 mg/cm2. Despite the high gravimetric capacity values achieved, therefore, the actual (areal) capacities of those batteries were far from sufficient for practical applications. Here, we present the fabrication, performance, and mechanistic investigations of high mass loading (up to 10 mg/cm2) graphene-based air electrodes for high-performance Li-O2 batteries. Such air electrodes could be easily prepared within minutes under solvent-free and binder-free conditions by compression molding holey graphene because of the unique dry compressibility of this graphene structural derivative with in-plane holes. High mass loading Li-O2 batteries prepared in this manner exhibited excellent gravimetric capacity and thus ultrahigh areal capacity (as high as ~40 mAh/cm2). The batteries were also cycled at a high curtailing areal capacity (2 mAh/cm2), with ultrathick cathodes showing a better stability during cycling than thinner ones. Detailed postmortem analyses of the electrodes clearly revealed the battery failure mechanisms under both primary and secondary modes, which were the oxygen diffusion blockage and the catalytic site deactivation, respectively. The results strongly suggest that the dry-pressed holey graphene electrodes are a highly viable architectural platform for high capacity, high performance air cathodes in Li-O2 batteries of practical significance.
    Keywords: Electronics and Electrical Engineering
    Type: NF1676L-26541 , Nano Letters (ISSN 1530-6984) (e-ISSN 1530-6992); 17; 5; 3252-3260
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-25
    Description: Common Modular Avionics System for Nanolaunchers Offering Affordable Access to Space Small satellites are becoming ever more capable of performing valuable missions for both government and commercial customers. However, currently these satellites can be launched affordably only as secondary payloads. This makes it difficult for the small satellite mission to launch when needed, to the desired orbit, and with acceptable risk. What is needed is a class of low-cost launchers, so that launch costs to low-Earth orbit (LEO) are commensurate with payload costs. Several private and government-sponsored launch vehicle developers are working toward just thatthe ability to affordably insert small payloads into LEO. But until now, cost of the complex avionics remained disproportionately high. AVA solves this problem. Significant contributors to the cost of launching nanosatellites to orbit are the avionics and software systems that steer and control the launch vehicles, sequence stage separation, deploy payloads, and telemeter data. The high costs of these guidance, navigation and control (GNC) avionics systems are due in part to the current practice of developing unique, single use hardware and software for each launch. High-performance, high-reliability inertial sensors components with heritage from legacy launchers also contribute to costsbut can low-cost commercial inertial sensors work just as well?
    Keywords: Electronics and Electrical Engineering
    Type: ARC-E-DAA-TN47159
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: Future exploration missions will be the first time humanity travels beyond Low Earth Orbit (LEO) since the Apollo program, taking us to cis-lunar space, interplanetary space, and Mars. These long-duration missions will cover vast distances, severely constraining opportunities for emergency evacuation to Earth and cargo resupply opportunities. Communication delays and blackouts between the crew and Mission Control will eliminate reliable, real-time telemedicine consultations. As a result, compared to current LEO operations onboard the International Space Station, exploration mission medical care requires an integrated medical system that provides additional in-situ capabilities and a significant increase in crew autonomy. The Medical System Concept of Operations for Mars Exploration Missions illustrates how a future NASA Mars program could ensure appropriate medical care for the crew of this highly autonomous mission. This Concept of Operations document, when complete, will document all mission phases through a series of mission use case scenarios that illustrate required medical capabilities, enabling the NASA Human Research Program (HRP) Exploration Medical Capability (ExMC) Element to plan, design, and prototype an integrated medical system to support human exploration to Mars.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37894 , Human Research Program Investigators'' Workshop (HRP IWS 2017 ); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: Congestion is commonly reported during spaceflight, and most crewmembers have reported using medications for congestion during International Space Station (ISS) missions. Although congestion has been attributed to fluid shifts during spaceflight, fluid status reaches equilibrium during the first week after launch while congestion continues to be reported throughout long duration missions. Congestion complaints have anecdotally been reported in relation to ISS CO2 levels; this evaluation was undertaken to determine whether or not an association exists. METHODS: Reported headaches, congestion symptoms, and CO2 levels were obtained for ISS expeditions 2-31, and time-weighted means and single-point maxima were determined for 24-hour (24hr) and 7-day (7d) periods prior to each weekly private medical conference. Multiple imputation addressed missing data, and logistic regression modeled the relationship between probability of reported event of congestion or headache and CO2 levels, adjusted for possible confounding covariates. The first seven days of spaceflight were not included to control for fluid shifts. Data were evaluated to determine the concentration of CO2 required to maintain the risk of congestion below 1% to allow for direct comparison with a previously published evaluation of CO2 concentrations and headache. RESULTS: This study confirmed a previously identified significant association between CO2 and headache and also found a significant association between CO2 and congestion. For each 1-mm Hg increase in CO2, the odds of a crew member reporting congestion doubled. The average 7-day CO2 would need to be maintained below 1.5 mmHg to keep the risk of congestion below 1%. The predicted probability curves of ISS headache and congestion curves appear parallel when plotted against ppCO2 levels with congestion occurring at approximately 1mmHg lower than a headache would be reported. DISCUSSION: While the cause of congestion is multifactorial, this study showed congestion is associated with CO2 levels on ISS. Data from additional expeditions could be incorporated to further assess this finding. CO2 levels are also associated with reports of headaches on ISS. While it may be expected for astronauts with congestion to also complain of headaches, these two symptoms are commonly mutually exclusive. Furthermore, it is unknown if a temporal CO2 relationship exists between congestion and headache on ISS. CO2 levels were time-weighted for 24hr and 7d, and thus the time course of congestion leading to headache was not assessed; however, congestion could be an early CO2-related symptom when compared to headache. Future studies evaluating the association of CO2-related congestion leading to headache would be difficult due to the relatively stable daily CO2 levels on ISS currently, but a systematic study could be implemented on-orbit if desired.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37736 , Aerospace Medical Association Meeting; Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: This panel presents recent updates to and a comprehensive overview of the operational medical support provided to ISS crewmembers in Star City, Russia and Kazakhstan as part of UTMB/KBRwyle's Human Health & Performance contract. With the current Soyuz training flow, physician support is required for nominal training evolutions involving pressure changes or other potential physical risks detailed in this presentation. In addition, full-time physician presence in Star City helps to address the disparity in access to health care in these relatively remote practice areas, while also developing and maintaining relationships with host nation resources. A unique part of standard training in Russia also involves survival training in both winter and water environments; logistic details and medical impacts of each of these training scenarios will be discussed. Following support of a successful training flow, UTMB/KBRwyle's Star City Medical Support Group (SCMSG) is also responsible for configuring medical packs in support of Soyuz launches and landings; we will present the rationale for current pack contents within the context of specific operational needs. With respect to contingency events, the group will describe their preparedness to respond appropriately by activating both local and global resources as necessary, detailing a specialized subset of the group who continually work and update these assets, given changes in international infrastructure and other impacts.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37623 , AsMA Annual Scientific Meeting; Apr 29, 2017 - May 04, 2017; Denvor, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-19
    Description: Management guidelines were created to screen and manage asymptomatic renal stones in U.S. astronauts. The true risk for renal stone formation in astronauts due to the space flight environment is unknown. Proper management of this condition is crucial to mitigate health and mission risks. The NASA Flight Medicine Clinic electronic medical record and the Lifetime Surveillance of Astronaut Health databases were reviewed. An extensive review of the literature and current aeromedical standards for the monitoring and management of renal stones was also done. This work was used to develop a screening and management protocol for renal stones in astronauts that is relevant to the spaceflight operational environment. In the proposed guidelines all astronauts receive a yearly screening and post-flight renal ultrasound using a novel ultrasound protocol. The ultrasound protocol uses a combination of factors, including: size, position, shadow, twinkle and dispersion properties to confirm the presence of a renal calcification. For mission-assigned astronauts, any positive ultrasound study is followed by a low-dose renal computed tomography scan and urologic consult. Other specific guidelines were also created. A small asymptomatic renal stone within the renal collecting system may become symptomatic at any time, and therefore affect launch and flight schedules, or cause incapacitation during a mission. Astronauts in need of definitive care can be evacuated from the International Space Station, but for deep space missions evacuation is impossible. The new screening and management algorithm has been implemented and the initial round of screening ultrasounds is under way. Data from these exams will better define the incidence of renal stones in U.S. astronauts, and will be used to inform risk mitigation for both short and long duration spaceflights.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37560 , Aerospace Medical Association Scientific Meeting (AsMA); Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-19
    Description: The neural correlates of spaceflight-induced sensorimotor impairments are unknown. Head down-tilt bed rest (HDBR) serves as a microgravity analog because it mimics the headward fluid shift and limb unloading of spaceflight. We investigated focal brain white matter (WM) changes and fluid shifts during 70 days of 6 deg HDBR in 16 subjects who were assessed pre (2x), during (3x), and post-HDBR (2x). Changes over time were compared to those in control subjects (n=12) assessed four times over 90 days. Diffusion MRI was used to assess WM microstructure and fluid shifts. Free-Water Imaging, derived from diffusion MRI, was used to quantify the distribution of intracranial extracellular free water (FW). Additionally, we tested whether WM and FW changes correlated with changes in functional mobility and balance measures. HDBR resulted in FW increases in fronto-temporal regions and decreases in posterior-parietal regions that largely recovered by two weeks post-HDBR. WM microstructure was unaffected by HDBR. FW decreased in the post-central gyrus and precuneus. We previously reported that gray matter increases in these regions were associated with less HDBR-induced balance impairment, suggesting adaptive structural neuroplasticity. Future studies are warranted to determine causality and underlying mechanisms.
    Keywords: Aerospace Medicine
    Type: JSC-CN-38506 , Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-19
    Description: PURPOSE: Exploration space missions pose several challenges to providing a comprehensive medication formulary designed to accommodate the size and space limitations of the spacecraft; while addressing the individual medications needs and preferences of the Crew; the negative outcome of a degrading inventory over time, the inability to resupply before expiration dates; and the need to properly forecast the best possible medication candidates to treat conditions that will occur in the future. METHODS: The Pharmacotherapeutics Discipline has partnered with the Exploration Medical Capabilities (ExMC) Element to develop and propose a research pathway that is comprehensively focused on evidence-based models and theories, as well as on new diagnostic tools and treatments or preventive measures aimed at closure of the Med02 Pharmacy Gap; defined in the Human Research Programs (HRP) risk-based research strategy. The Med02 Gap promotes the challenge to identify a strategy to ensure that medications used to treat medical conditions during exploration space missions are available, safe, and effective. It is abundantly clear that pharmaceutical intervention is an essential component of risk management planning for astronaut healthcare during exploration space. However, the quandary still remains of how to assemble a formulary that is comprehensive enough to prevent or treat anticipated medical events; and is also chemically stable, safe, and robust enough to have sufficient potency to last for the duration of an exploration space mission. In cases where that is not possible, addressing this Gap requires exploration of novel drug development techniques, dosage forms, and dosage delivery platforms that enhance chemical stability as well as therapeutic effectiveness. RESULTS: The proposed research pathway outlines the steps, processes, procedures, and a research portfolio aimed at identifying a capability that will provide a safe and effective pharmacy for any specific exploration Design Reference Mission (DRM). The proposed approach to building this research portfolio is to seek research projects that concentrate on four major focus areas; (1) Formulary selection, (2) Formulary potency and shelf life, (3) Formulary safety and toxicity, and (4) Novel technology and innovation such as portable real-time chemical analysis innovative drug therapies and dosage and delivery platforms. CONCLUSION: The research pathway has been completed and presented to the HRP. In spring 2017, it is scheduled to be reviewed by a panel of pharmaceutical and clinical experts that will evaluate the scientific merit and operational feasibility of the research pathway, as well as make suggestions for any warranted additions or improvements. Once finalized, the ExMC Element will proceed with the execution of this research pathway with the goal of gathering as much data, and learning as much as possible, to provide a safe and effective pharmaceutical formulary for use during exploration missions.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37907 , Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-19
    Description: INTRODUCTION: Among otherwise healthy astronauts undertaking deep space missions, the risks for acute appendicitis (AA) and cholecystitis (AC) are not zero. If these conditions were to occur during spaceflight they may require surgery for definitive care. The proposed study quantifies and compares the risks of developing de novo AA and AC in-flight to the surgical risks of prophylactic laparoscopic appendectomy (LA) and cholecystectomy (LC) using NASA's Integrated Medical Model (IMM). METHODS: The IMM is a Monte Carlo simulation that forecasts medical events during spaceflight missions and estimates the impact of these medical events on crew health. In this study, four Design Reference Missions (DRMs) were created to assess the probability of an astronaut developing in-flight small-bowel obstruction (SBO) following prophylactic 1) LA, 2) LC, 3) LA and LC, or 4) neither surgery (SR# S-20160407-351). Model inputs were drawn from a large, population-based 2011 Swedish study that examined the incidence and risks of post-operative SBO over a 5-year follow-up period. The study group included 1,152 patients who underwent LA, and 16,371 who underwent LC. RESULTS: Preliminary results indicate that prophylactic LA may yield higher mission risks than the control DRM. Complete analyses are pending and will be subsequently available. DISCUSSION: The risk versus benefits of prophylactic surgery in astronauts to decrease the probability of acute surgical events during spaceflight has only been qualitatively examined in prior studies. Within the assumptions and limitations of the IMM, this work provides the first quantitative guidance that has previously been lacking to this important question for future deep space exploration missions.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37914 , Annual Scientific Meeting of the Aerospace Medical Association; Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-19
    Description: Background: Carotid Intima Media Thickness (CIMT) has been demonstrated to be predictive of future cardiovascular events. Within various populations, radiation exposure, stress, and physical confinement have all been linked to an increased CIMT. Recent research discovered CIMT was significantly increased in ten long duration astronauts from pre-flight to four days post flight. The relationship between spaceflight and CIMT is not understood and trends in CIMT within the larger astronaut population are unknown. Methods: In 2010, CIMT was offered as part of the astronaut annual exam at the JSC Flight Medicine Clinic using a standardized CIMT screening protocol and professional sonographers. Between 2010 and 2016, CIMT measurements were collected on 213 NASA astronauts and payload specialists. The values used in this retrospective chart review are the mean of the CIMT from the right and left. Spaceflight exposure was categorized based on the total number of days spent in space at the time of the ground-based ultrasound (0, 1-29, 30-100, 101-200, 200). Linear regression with generalized estimating equations were used to estimate the association between spaceflight exposures and CIMT. Results: 530 studies were completed among 213 astronauts with a mean of 2.5 studies (range 1-6) per astronaut over the six year period. As in other populations, CIMT was significantly associated with age; however, gender was not. While there was no significant direct correlation between total spaceflight exposure and CIMT found, astronauts with 30-100 spaceflight days and astronauts with greater than 100 spaceflight days had significantly increased CIMT over astronauts who had never flown (p=0.002 and p=〈0.0001 respectively) after adjustment for age. Conclusion: Further work is needed to fully understand CIMT and its association to spaceflight. Current occupational surveillance activities are under way to study CIMT values in conjunction with other cardiovascular risk factors among astronauts as compared to the general population.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37929 , Annual Scientific Meeting of the Aerospace Medical Association; Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-19
    Description: Introduction. This joint European Space Agency/NASA pre- and post-flight study investigates the influence of exposure to microgravity on the subjective straight ahead (SSA) in crewmembers returning from long-duration expeditions to the International Space Station (ISS). The SSA is a measure of the internal representation of body orientation and to be influenced by stimulation of sensory systems involved in postural control. The use of a vibrotactile sensory aid to correct the representation of body tilted relative to gravity is also tested as a countermeasure. This study addresses the sensorimotor research gap to "determine the changes in sensorimotor function over the course of a mission and during recovery after landing." Research Plans. The ISS study will involve eight crewmembers who will participate in three pre-flight sessions (between 120 and 60 days before launch) and then three post-flight sessions on R plus 0/1 day, R plus 4 days, and R plus 8 days. Sixteen control subjects were also tested during three sessions to evaluate the effects of repeated testing and to establish normative values. The experimental protocol includes measurements of gaze and arm movements during the following tasks: (1) Near & Far Fixation: The subject is asked to look at actual targets in the true straight-ahead direction or to imagine these targets in the dark. Targets are located at near distance (arm's length) and far distance (beyond 2 meters). This task is successively performed with the subject's body aligned with the gravitational vertical, and with the subject's body tilted in pitch relative to the gravitational vertical using a tilt chair. Measures are then compared with and without a vibrotactile sensory aid that indicates how far one has tilted relative to the vertical; (2) Eye and Arm Movements: The subject is asked to look and point in the SSA direction in darkness and then make horizontal and vertical eye or arm movements, relative to Earth coordinates (allocentric) and to the subject's head/body reference (egocentric). This task is successively performed with the subject's body aligned with the gravitational vertical, and with subject's body tilted in roll using a tilt chair; (3) Linear Vestibulo-Ocular Reflex: The subject is asked to fixate actual visual targets at near and far distances in the true straight-ahead direction, and to evaluate the distance of these targets. The subject is asked to continue fixating the same imagined targets in darkness while he/she is passively accelerated up and down on a spring-loaded vertical linear accelerator. Results. In the control subject population, the perceived tilt angles, translations, and distances were remarkably close to the actual values. The pointing tasks indicated that the orientation of arm saccades was influenced by both the gravitational vertical and the body idiotropic vector. Repeating the testing did not reveal any significant changes. Preliminary results obtained in three crewmembers before and after flight will also be presented. Applications. A change in an individual's egocentric reference might have negative consequences on evaluating the direction of an approaching object or on the accuracy of reaching movements or locomotion. Consequently, investigating how microgravity affects the target location will have theoretical, operational, and even clinical implications for future space exploration missions. The use of vibrotactile feedback as a sensorimotor countermeasure is applicable to balance therapy applications for patients with vestibular loss and the elderly to mitigate risks due to loss of spatial orientation.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37991 , 2017 NASA Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-19
    Description: Upon return from spaceflight, a majority of crewmembers experience motion sickness (MS) symptoms. The interactions between crewmembers' adaptation to a gravitational transition, the performance decrements resulting from MS and/or use of promethazine (PMZ), and the constraints imposed by mission task demands could significantly challenge and limit an astronaut's ability to perform functional tasks during gravitational transitions. No operational countermeasure currently exists to mitigate the risks associated with these sensorimotor disturbances. Stochastic resonance (SR) can be thought of simply as "noise benefit" or an increase in information transfer by a system when in the presence of a non-zero level of noise. We have shown that low levels of stochastic vestibular stimulation (SVS) improve balance and locomotor performance due to SR (Goel et al. 2015, Mulavara et al. 2011, 2015). Additionally, a study in a 6-hydroxydopamine (6-OHDA) hemi-lesioned rat model of Parkinson's disease demonstrated improvements in locomotor activity after low-level SVS delivery possibly due to an increase in nigral gamma-aminobutyric acid (GABA) release in a dopamine independent way (Samoudi et al. 2012). SVS specifically increased GABA release on the lesioned, but not the intact side. These results suggest that SVS can cause targeted alterations of GABA release to affect performance of functional tasks. Activation of the GABA pathway is important in modulating MS and promoting adaptability (Cohen 2008). Magnusson et al. (2000) supported this finding by showing that the administration of a GABAB agonist caused a reversal of the symptoms that is normally seen after unilateral labyrinthectomy. Thus, GABA could play a significant role in reducing MS and promoting adaptability. We have taken advantage of the SR mechanism as a modulator of neurotransmitters to develop a unique SVS countermeasure system to mitigate MS symptoms and improve functional performance after landing. Healthy subjects (n=20) participated in two test sessions, one in which they received +/-400 microA of SVS and one where they received no stimulation (0 microA); the study design was counterbalanced. Subjects began by performing a series of four functional tasks 3-5 times as baseline measurements of task performance. Then, to induce MS, subjects walked an obstacle course with up-down reversing prisms. If they completed the course before achieving our pre-determined level of MS, they were asked to read a poster while making large up-down head movements to a metronome while still wearing the reversing prism goggles. Subjects were stopped every two minutes and asked to report their MS symptoms. Using the Pensacola Scale for motion sickness, test operators evaluated the level of MS of each subject. Once a subject reached an 8 on this scale, which is equivalent to mild malaise, or 30 minutes had passed since the start of the MS induction, this protocol was stopped. Finally, immediately after MS induction, subjects were asked to complete the four functional tasks again. Although, 100% of our subjects experienced at least one MS symptom, only 55% of our subjects experienced stomach awareness to any degree. Without SVS, only 40% of subjects lasted the full 30-minute MS induction protocol, while 65% of subjects lasted the full 30 minutes with SVS, which is nearly a significant increase (p=0.056). In addition, subjects showed significant improvement from baseline when performing a tandem walk and a prone-to-stand test immediately after the MS induction protocol was stopped but the stimulation level was continued. The results are promising and future work includes comparing MS progression between PMZ and SVS directly in subjects that are provoked to a minimum of nausea. Low levels of SVS stimulation may serve as a non-pharmacological countermeasure to replace or reduce the PMZ dosage requirements and concurrently improve functional performance during transitions to new gravitational environments after spaceflight.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37996 , Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-19
    Description: Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid pulsatility); (5) ocular measures (optical coherence tomography; intraocular pressure; 2-dimensional ultrasound including optic nerve sheath diameter, globe flattening, and retina-choroid thickness; Doppler ultrasound of ophthalmic and retinal arteries and veins); (6) cardiac variables by ultrasound (inferior vena cava, tricuspid flow and tissue Doppler, pulmonic valve, stroke volume, right heart dimensions and function, four-chamber views); and (7) ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight, acute head-down tilt will induce cephalad fluid shifts, whereas lower body negative pressure will oppose these shifts. Controlled Mueller maneuvers will manipulate cardiovascular variables. Through interventions applied before, during, and after flight, we intend to fully evaluate the relationship between fluid shifts and the VIIP syndrome. Discussion. Ten subjects have consented to participate in this experiment, including the recent One-Year Mission crewmembers, who have recently completed R plus180 testing; all other subjects have completed pre-flight testing. Preliminary results from the One-Year Mission crewmembers will be presented, including measures of ocular structure and function, vascular dimensions, fluid distribution, and non-invasive estimates of intracranial pressure.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37997 , 2017 NASA Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-20
    Description: A large variety of organic compounds of astrobiological and prebiotic interest have been detected in carbonaceous meteorites. These include amino acids, carboxylic acids, amphiphiles, functionalized nitrogen heterocycles such as nucleobases, functionalized polycylic aromatic hydrocarbons such as quinones, and sugar derivatives. The sugar derivatives identified in the Murchison and Murray meteorites are mainly sugar alcohols and sugar acids, and only the smallest sugar (dihydroxyacetone) has been detected. The presence of such a variety of organics in meteorites strongly suggests that molecules essential to life can form abiotically under astrophysical conditions. This hypothesis is further supported by laboratory studies in which astrophysical ice analogs (mixtures of H2O, CO, CO2, CH3OH, CH4, NH3, etc.) are subjected to ultraviolet (UV) irradiation at low temperature (〈15 K) to simulate cold interstellar environments. These studies show that the organic residues recovered at room temperature after irradiation contain amino acids, amphiphiles, nucleobases, sugar derivatives, as well as other complex organic compounds. The finding of such compounds under plausible interstellar conditions is consistent with the presence of organic compounds in meteorites. Until very recently, no systematic search for the presence of sugar derivatives in laboratory residues had been carried out. The detection of ribose, the sugar constituent of RNA in all living systems, as well as other sugars, sugar alcohols, and sugar acids have been recently reported in one organic residue produced from the UV irradiation of an H2O:CH3OH:NH3 (10:3.5:1) ice mixture at 80 K. In this work, we present a detailed study of organic residues produced from the UV irradiation ice mixtures of several starting compositions (containing H2O, CH3OH, CO, CO2, and/or NH3) at 〈15 K for their sugar derivative content. Our results confirm the presence of all 3C5C sugar alcohols, several 3C5C sugars, and all 3C4C sugar acids (in decreasing order of abundances) in the residues. The higher abundances of sugar alcohols in these residues suggest a pathway in which sugar alcohols are formed first, while the formation of sugars and sugar acids require more steps. Finally, our results are compared with the detection of sugars derivatives in primitive meteorites.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN37318 , 253rd ACS National Meeting and Exposition; Apr 02, 2017 - Apr 06, 2017; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-12
    Description: Given that spaceflight may induce adverse changes in bone ultimate strength with respect to mechanical loads during and post-mission, there is a possibility a fracture may occur for activities otherwise unlikely to induce fracture prior to initiating spaceflight.
    Keywords: Aerospace Medicine
    Type: JSC-CN-39591
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-12
    Description: A tunable mass damper incorporates a frame and a voice coil supported in the frame. A magnet concentric with the voice coil is movable relative to the housing via the voice coil. A plurality of flexures having a first end extending from the magnet and an arm releasably coupled to the frame are adjustable to an effective length for a desired frequency of reciprocation of the magnet.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: JSC-CN-39157
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-12
    Description: A circuit and method for controlling when a load may be fully energized includes directing electrical current through a current limiting resistor that has a first terminal connected to a source terminal of a field effect transistor (FET), and a second terminal connected to a drain terminal of the FET. The gate voltage magnitude on a gate terminal of the FET is varied, whereby current flow through the FET is increased while current flow through the current limiting resistor is simultaneously decreased. A determination is made as to when the gate voltage magnitude on the gate terminal is equal to or exceeds a predetermined reference voltage magnitude, and the load is enabled to be fully energized when the gate voltage magnitude is equal to or exceeds the predetermined reference voltage magnitude.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-12
    Description: Gravitational wave searches to date have largely focused on non-precessing systems. Including precession effects greatly increases the number of templates to be searched over. This leads to a corresponding increase in the computational cost and can increase the false alarm rate of a realistic search. On the other hand, there might be astrophysical systems that are entirely missed by non-precessing searches. In this paper we consider the problem of constructing a template bank using stochastic methods for neutron star-black hole binaries allowing for precession, but with the restrictions that the total angular momentum of the binary is pointing toward the detector and that the neutron star spin is negligible relative to that of the black hole. We quantify the number of templates required for the search, and we explicitly construct the template bank. We show that despite the large number of templates, stochastic methods can be adapted to solve the problem. We quantify the parameter space region over which the non-precessing search might miss signals.
    Keywords: Astrophysics
    Type: LIGO-P1600330 , GSFC-E-DAA-TN40321 , American Physical Society
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-12
    Description: This presentation is a Guide to Evaluating Risks Due to High-Z Materials in Active EEE Parts. EEE Parts, Evaluating Risks, High-Z Materials.
    Keywords: Electronics and Electrical Engineering
    Type: GSFC-E-DAA-TN35465
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-12
    Description: Highly Accelerated Life Testing (HALT) testing holds promise for affordable efficient acceptance testing of multi-layer ceramic chip capacitors (MLCCs) especially for commercial off the shelf (COTS).
    Keywords: Electronics and Electrical Engineering
    Type: GSFC-E-DAA-TN64740 , GSFC-E-DAA-TN39091
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-12
    Description: The use of the electride form of 12CaO-7Al2O3, or C12A7, as a low work function electron emitter in a hollow cathode discharge apparatus is described. No heater is required to initiate operation of the present cathode, as is necessary for traditional hollow cathode devices. Because C12A7 has a fully oxidized lattice structure, exposure to oxygen does not degrade the electride. The electride was surrounded by a graphite liner since it was found that the C12A7 electride converts to it's eutectic (CA+C3A) form when heated (through natural hollow cathode operation) in a metal tube.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-12
    Description: As spaceflight durations have increased over the last four decades, the effects of weightlessness on the human body are far better understood, as are the countermeasures. A combination of aerobic and resistive exercise devices contribute to countering the losses in muscle strength, aerobic fitness, and bone strength of today's astronauts and cosmonauts that occur during their missions on the International Space Station. Creation of these systems has been a dynamically educational experience for designers and engineers. The ropes and cables in particular have experienced a wide range of challenges, providing a full set of lessons learned that have already enabled improvements in on-orbit reliability by initiating system design improvements. This paper examines the on-orbit experience of ropes and cables in several exercise devices and discusses the lessons learned from these hardware items, with the goal of informing future system design.
    Keywords: Aerospace Medicine
    Type: JETS-JE11-15-SAIP-DOC-0080 , JSC-CN-37635
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-12
    Description: NASA has identified a potential risk of spatial disorientation to future astronauts during re-entry of the proposed Orion spacecraft. The purpose of this study was to determine if a 6-hour physiological training procedure, Autogenic-Feedback Training Exercise (AFTE), can mitigate these effects. Twenty subjects were assigned to two groups (AFTE and Control) matched for motion sickness susceptibility and gender. All subjects received a standard rotating chair test to determine motion sickness susceptibility; three training sessions on a manual performance task; and four exposures to a simulated Orion re-entry test in the rotating chair. Treatment subjects were given two hours of AFTE training before each Orion test. A diagnostic scale was used to evaluate motion sickness symptom severity. Results showed that 2 hours of AFTE significantly reduced motion sickness symptoms during the second Orion test. AFTE subjects were able to maintain lower heart rates and skin conductance levels and other responses than the control group subjects during subsequent tests. Trends show that performance was less degraded for AFTE subjects. The results of this study indicate that astronauts could benefit from receiving at least 2 hours of preflight AFTE. In addition, flight crews could benefit further by practicing physiologic self-regulation using mobile devices.
    Keywords: Aerospace Medicine
    Type: NASA/TM-2017-219511 , ARC-E-DAA-TN41100
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: NASA/TM-2017-219290 , JSC-E-DAA-TN60454 , JSC-CN-39515
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-12
    Description: This is a Total Ionizing Dose (TID) test report for the Analog Devices AD9364 RF Transceiver.
    Keywords: Electronics and Electrical Engineering
    Type: GSFC-E-DAA-TN39591
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-12
    Description: This is a Total Ionizing Dose (TID) test report for the Fujitsu Semiconductor MB85AS4MT Resistive Random Access Memory (ReRAM).
    Keywords: Electronics and Electrical Engineering
    Type: GSFC-E-DAA-TN39593
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-12
    Description: The present invention includes compositions and methods for the use of an encapsulation additive having between about 0.1 to about 30 percent isolated and purified vitelline protein B to provide for mixed and extended release formulations.
    Keywords: Aerospace Medicine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-12
    Description: The Q1Q17 DR25 TCERT Vetting Reports are a collection of plots and diagnostics used by the Threshold Crossing Event Review Team (TCERT) to evaluate threshold crossing events (TCEs). While designation of Kepler Objects of Interest (KOIs) and classification of them as Planet Candidates (PCs) or False Positives (FPs) is completely automated via a robotic vetting procedure (the Robovetter) for the Q1Q17 DR25 planet catalog, as described in Thompson et al. (2017), these reports help to visualize the metrics used by the Robovetter and evaluate those robotic decisions for individual objects. For each Q1Q17 DR25 TCE, these reports include the following products: (a) the DV one-page summary, (b) selected pertinent diagnostics and plots from the full DV report, and (c) additional plots and diagnostics not included in the full DV report, including an alternate means of data detrending.
    Keywords: Astrophysics
    Type: KSCI-19105-001 , ARC-E-DAA-TN44464
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-12
    Description: We report the discovery and the analysis of the planetary microlensing event, OGLE-2013-BLG-1761. There are some degenerate solutions in this event because the planetary anomaly is only sparsely sampled. However, the detailed light curve analysis ruled out all stellar binary models and shows the lens to be a planetary system. There is the so-called close wide degeneracy in the solutions with the planet host mass ratio of q approx.(7.0+/-2.0) x 10(exp -3) and q approx.(8.1+/-2.6) x 10(exp -3) with the projected separation in Einstein radius units of s = 0.95 (close) and s = 1.18(wide), respectively. The microlens parallax effect is not detected, but the finite source effect is detected. Our Bayesian analysis indicates that the lens system is located -D(sub L) = 6.9(+ 1.0 -1.2)kpc away from us and the host star is an M/K dwarf with amass of M(sub L) = 0.33(+ 0.32- 1.9)Stellar Mass orbited by a super-Jupiter mass planet with a mass of m(sub p) = 2.7(+ 2.5 - 1.5) M(sub Jup) at the projected separation of a(sub l) = 1.8(+ 0.5 -0.5)au. The preference of the large lens distance in the Bayesian analysis is due to the relatively large observed source star radius. The distance and other physical parameters may be constrained by the future high-resolution imaging by large ground telescopes or HST. If the estimated lens distance is correct, then this planet provides another sample for testing the claimed deficit of planets in the Galactic bulge.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN45581 , GSFC-E-DAA-TN64725 , The Astronomical Journal (ISSN 0004-6256) (e-ISSN 1538-3881); 154; 1; 1-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-12
    Description: NASA has concerns regarding the incidence and clinical significance of cardiac arrhythmias that could occur during long-term exposure to the spaceflight environment, such as on the International Space Station (ISS) or during a prolonged (e.g., up to 3 years) sojourn to Mars or on the Moon. There have been some anecdotal reports and a few documented cases of cardiac arrhythmias in space, including one documented episode of non-sustained ventricular tachycardia. The potential catastrophic nature of a sudden cardiac death in the remote space environment has led to concerns from the early days of the space program that spaceflight might be arrhythmogenic. Indeed, there are known and well-defined changes in the cardiovascular system with spaceflight: a) plasma volume is reduced, b) left ventricular mass is decreased, and c) the autonomic nervous system adapts to the weightless environment. Combined, these physiologic adaptations suggest that changes in cardiac structure and neuro-humoral environment during spaceflight could alter electrical conduction, although the evidence supporting this contention consists mostly of minor changes in QT interval (the time between the start of the Q wave and the end of the T wave on an electrocardiogram tracing) in a small number of astronauts after long-duration spaceflight. Concurrent with efforts by NASA Medical Operations to refine and improve screening techniques relevant to arrhythmias and cardiovascular disease, as NASA enters the era of exploration-class missions it will be critical to determine with the highest degree of certainty whether spaceflight by itself alters cardiac structure and function sufficiently to increase the risk of arrhythmias.
    Keywords: Aerospace Medicine
    Type: JSC-CN-39745
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-12
    Description: A subset of astronauts develop neuro-ocular structural and functional changes during prolonged periods of spaceflight that may lead to additional neurologic and ocular consequences upon return to Earth.
    Keywords: Aerospace Medicine
    Type: JSC-E-DAA-TN49801
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-12
    Description: The purpose of this test was to characterize the flight lot of Texas Instruments' LM193 (flight part number is 5962-9452601Q2A) for total dose response. This test served as the radiation lot acceptance test (RLAT) for the lot date code (LDC) tested. Low dose rate (LDR) irradiations were performed in this test so that the device susceptibility to enhanced low dose rate sensitivity (ELDRS) was determined.
    Keywords: Electronics and Electrical Engineering
    Type: GSFC-E-DAA-TN50586
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-12
    Description: Testing high voltage (HV) electronic parts (greater than 300 V) for sudden event effects (SEE) caused by cosmic rays in the space environment, consisting of energetic heavy-ions, and neutron radiation in the upper atmosphere is a crucial step towards using these parts in spacecraft and aircraft. Due to the nature of cosmic radiation and neutrons, electronic parts are tested for SEE without any packaging and/or shielding over the top of the device. In the case of commercial HV parts, the top of the packaging is etched off and then a thin dielectric coating is placed over the part in order to avoid electrical arcing between the device surface and wire bonds and other components. Even though the effects of the thin dielectric layer on SEE testing can be accounted for, the dielectric layer significantly hinders post testing failure analysis. Replicating the test capability of state-of-the-art packaging while eliminating the need for post radiation test processing of the die surface (that obscures failure analysis) is the goal. To that end, a new packaging concept for HV parts has been developed that requires no dielectric coating over the part. Testing of prototype packages used with Schottky diodes (rated at 1200V) has shown no electrical arcing during testing and leakage currents during reverse bias testing are within the manufactures specifications.
    Keywords: Electronics and Electrical Engineering
    Type: NASA/TM-2017-219572 , E-19418 , GRC-E-DAA-TN46239
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-19
    Description: NASA medical care standards establish requirements for providing health and medical programs for crewmembers during all phases of a mission. These requirements are intended to prevent or mitigate negative health consequences of long-duration spaceflight, thereby optimizing crew health and performance over the course of the mission. Current standards are documented in the two volumes of the NASA-STD-3001 Space Flight Human-System Standard document, established by the Office of the Chief Health and Medical Officer. Its purpose is to provide uniform technical standards for the design, selection, and application of medical hardware, software, processes, procedures, practices, and methods for human-rated systems. NASA-STD-3001 Vol. 1 identifies five levels of care for human spaceflight. These levels of care are accompanied by several components that illustrate the type of medical care expected for each. The Exploration Medical Capability (ExMC) of the Human Research Program has expanded the context of these provided levels of care and components. This supplemental information includes definitions for each component of care and example actions that describe the type of capabilities that coincide with the definition. This interpretation is necessary in order to fully and systematically define the capabilities required for each level of care in order to define the medical requirements and plan for infrastructure needed for medical systems of future exploration missions, such as one to Mars.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37868 , 2017 NASA Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-19
    Description: Ultrasound (US) specifically looking for asymptomatic renal calcifications that may be renal stones is typically not done in the terrestrial setting. Standard abdominal US without a renal focus may discover incidental, mineralized renal material (MRM); however punctate solid areas of MRM is less than 3 mm are usually considered subclinical. Detecting these early calcifications before they become symptomatic renal stones is critical to prevent adverse medical and mission outcomes during spaceflight.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37661 , Aerospace Medical Association Scientific Meeting; Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-19
    Description: While Ocular Coherence Tomography (OCT) is not a first-line modality to evaluate anterior eye structures terrestrially, it is a resource already available on the International Space Station (ISS) that can be used in medical contingencies that involve the anterior eye. With remote guidance and subject matter expert (SME) support from the ground, a minimally trained crewmember can now use OCT to evaluate anterior eye pathologies on orbit. OCT utilizes low-coherence interferometry to produce detailed cross-sectional and 3D images of the eye in real time. Terrestrially, it has been used to evaluate macular pathologies and glaucoma. Since 2013, OCT has been used onboard the ISS as one part of a suite of hardware to evaluate the Visual Impairment/Intracranial Pressure risk faced by astronauts, specifically assessing changes in the retina and choroid during space flight. The Anterior Segment Module (ASM), an add-on lens, was also flown for research studies, providing an opportunity to evaluate the anterior eye in real time if clinically indicated. Anterior eye pathologies that could be evaluated using OCT were identified. These included corneal abrasions and ulcers, scleritis, and acute angle closure glaucoma. A remote guider script was written to provide ground specialists with step-by-step instructions to guide ISS crewmembers, who do not get trained on the ASM, to evaluate the anterior eye. The instructions were tested on novice subjects and/or operators, whose feedback was incorporated iteratively. The final remote guider script was reviewed by SME optometrists and NASA flight surgeons. The novel application of OCT technology to space flight allows for the acquisition of objective data to diagnose anterior eye pathologies when other modalities are not available. This demonstrates the versatility of OCT and highlights the advantages of using existing hardware and remote guidance skills to expand clinical capabilities in space flight.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37608 , Aerospace Medical Association Scientific Meeting (AsMA); Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-19
    Description: Long duration spaceflight has a negative effect on the human body, and exercise countermeasures are used on-board the International Space Station (ISS) to minimize bone and muscle loss, combatting these effects. Given the importance of these hardware systems to the health of the crew, this equipment must continue to be readily available. Designing spaceflight exercise hardware to meet high reliability and availability standards has proven to be challenging throughout the time the crewmembers have been living on ISS beginning in 2000. Furthermore, restoring operational capability after a failure is clearly time-critical, but can be problematic given the challenges of troubleshooting the problem from 220 miles away. Several best-practices have been leveraged in seeking to maximize availability of these exercise systems, including designing for robustness, implementing diagnostic instrumentation, relying on user feedback, and providing ample maintenance and sparing. These factors have enhanced the reliability of hardware systems, and therefore have contributed to keeping the crewmembers healthy upon return to Earth. This paper will review the failure history for three spaceflight exercise countermeasure systems identifying lessons learned that can help improve future systems. Specifically, the Treadmill with Vibration Isolation and Stabilization System (TVIS), Cycle Ergometer with Vibration Isolation and Stabilization System (CEVIS), and the Advanced Resistive Exercise Device (ARED) will be reviewed, analyzed, and conclusions identified so as to provide guidance for improving future exercise hardware designs. These lessons learned, paired with thorough testing, offer a path towards reduced system down-time.
    Keywords: Aerospace Medicine
    Type: JSC-CN-36579 , 2017 IEEE Aerospace Conference; Mar 04, 2017 - Mar 11, 2017; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-19
    Description: Radiation induced cancer risks are driven by genetic instability. It is not well understood how different radiation sources induce genetic instability in cells with different genetic background. Here we report our studies on genetic instability, particularly chromosome instability using fluorescence in situ hybridization (FISH), in human primary lymphocytes, normal human fibroblasts, and transformed human mammary epithelial cells in a temporal manner after exposure to high energy protons and Fe ions. The chromosome spread was prepared 48 hours, 1 week, 2 week, and 1 month after radiation exposure. Chromosome aberrations were analyzed with whole chromosome specific probes (chr. 3 and chr. 6). After exposure to protons and Fe ions of similar cumulative energy (??), Fe ions induced more chromosomal aberrations at early time point (48 hours) in all three types of cells. Over time (after 1 month), more chromosome aberrations were observed in cells exposed to Fe ions than in the same type of cells exposed to protons. While the mammary epithelial cells have higher intrinsic genetic instability and higher rate of initial chromosome aberrations than the fibroblasts, the fibroblasts retained more chromosomal aberration after long term cell culture (1 month) in comparison to their initial frequency of chromosome aberration. In lymphocytes, the chromosome aberration frequency at 1 month after exposure to Fe ions was close to unexposed background, and the chromosome aberration frequency at 1 month after exposure to proton was much higher. In addition to human cells, mouse bone marrow cells isolated from strains CBA/CaH and C57BL/6 were irradiated with proton or Fe ions and were analyzed for chromosome aberration at different time points. Cells from CBA mice showed similar frequency of chromosome aberration at early and late time points, while cells from C57 mice showed very different chromosome aberration rate at early and late time points. Our results suggest that relative biological effectiveness (RBE) of radiation are different for different radiation sources, for different cell types, and for the same cell type with different genetic background at different times after radiation exposure. Caution must be taken in using RBE value to estimate biological effects from radiation exposure.
    Keywords: Aerospace Medicine
    Type: JSC-CN-38026 , Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-19
    Description: Introduction: Microgravity exposure may alter the likelihood that astronauts will experience renal stones. The potential risk includes both acute and chronic health issues, with the potential for significant impact on mission objectives. Methods: To understand the role of the NASA's Human Research Program (HRP) research agenda in both preventing and addressing renal stones in spaceflight, current astronaut epidemiologic data and a summary of programmatic considerations are reviewed. Results: Although there has never been a symptomatic renal stone event in a U.S. crewmember during spaceflight, urine chemistry has been altered - likely due to induced changes in renal physiology as a result of exposure to microgravity. This may predispose astronauts to stone formation, leading the HRP to conduct and sponsor research to: 1) understand the risk of stone formation in space; 2) prevent stones from forming; and 3) address stones that may form by providing novel diagnostic and therapeutic approaches. Discussion: The development of a renal stone during spaceflight is a significant medical concern that requires the HRP to minimize this risk by providing the ability to prevent, diagnose, monitor and treat the condition during spaceflight. A discussion of the risk as NASA understands it is followed by an overview of the multiple mitigations currently under study, including novel ultrasound techniques for stone detection and manipulation, and how they may function as part of a larger exploration medical system.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37866 , Aerospace Medical Association (AsMA) Annual Scientific Meeting; Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-19
    Description: The Exploration Medical Capability (ExMC) Element systems engineering goals include defining the technical system needed to implement exploration medical capabilities for Mars. This past year, scenarios captured in the medical system concept of operations laid the foundation for systems engineering technical development work. The systems engineering team analyzed scenario content to identify interactions between the medical system, crewmembers, the exploration vehicle, and the ground system. This enabled the definition of functions the medical system must provide and interfaces to crewmembers and other systems. These analyses additionally lead to the development of a conceptual medical system architecture. The work supports the ExMC community-wide understanding of the functional exploration needs to be met by the medical system, the subsequent development of medical system requirements, and the system verification and validation approach utilizing terrestrial analogs and precursor exploration missions.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37826 , Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-19
    Description: Medical support of spaceflight training operations across international lines is a unique circumstance with potential applications to other aerospace medicine support scenarios. KBRwyle's Star City Medical Support Group (SCMSG) has fulfilled this role since the Mir-Shuttle era, with extensive experience and updates to share with the greater AsMA community. OVERVIEW: The current Soyuz training flow for assigned ISS crewmembers takes place in Star City, Russia. Soyuz training flow involves numerous activities that pose potential physical and occupational risks to crewmembers, including centrifuge runs and pressurized suit simulations at ambient and hypobaric pressures. In addition, Star City is a relatively remote location in a host nation with variable access to reliable, Western-standard medical care. For these reasons, NASA's Human Health & Performance contract allocates full-time physician support to assigned ISS crewmembers training in Star City. The Star City physician also treats minor injuries and illnesses as needed for both long- and short-term NASA support personnel traveling in the area, while working to develop and maintain relationships with local health care resources in the event of more serious medical issues that cannot be treated on-site. The specifics of this unique scope of practice will be discussed. SIGNIFICANCE: ISS crewmembers training in Star City are at potential physical and occupational risk of trauma or dysbarism during nominal Soyuz training flow, requiring medical support from an on-duty aerospace medicine specialist. This support maintains human health and performance by preserving crewmember safety and well-being for mission success; sharing information regarding this operational model may contribute to advances in other areas of international, military, and civilian operational aerospace medicine.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37626 , Aerospace Medical Association (AsMA) Annual Scientific Meeting 2017; Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: INTRODUCTION: NASA's Space Medicine community knowledge regarding the "Vision Impairment Intracranial Pressure", or VIIP.has been evolving over time.. Various measures of occupational health related to this condition had to be determined and then plans/processes put into place. The most robust of these processes were inititated in 2010. This presentation will provide a clinic update of the astronaut occupational health data related to VIIP. METHODS: NASA and its international partners require its astronauts to undergo routine health measures deemed important to monitoring VIIP. The concern is that the spaceflight environment aboard ISS could cause some astronauts to have physiologic changes detrimental to either ongoing mission operations or long-term health related to the ocular system and possibly the CNS. Specific medical tests include but are not limited to brain/orbit MRI (NASA unique protocol), OCT, fundoscopy and ocular ultrasound. Measures are taken prior to spaceflight, in-flight and post-flight. Measures to be reported include incidence of disc edema, globe flattening, choroidal folds, ONSD and change in refractive error. RESULTS: 73 ISS astronauts have been evaluated at least partially for VIIP related measures. Of these individuals, approximately 1 in 7 have experienced disc edema. The prevalence of the other findings is more complicated as the medical testing has changed over time. Overall, 26 separate individuals have experienced at least one of the findings NASA has associated with VIIP Another confounding factor is most of the astronauts have prior spaceflight experience at the time of the "pre-flight" testing. DISCUSSION: In 2010 NASA and its US operating segment (USOS) partners (CSA, ESA and JAXA) began routine occupational monitoring and data collection for most VIIP related changes. Interpretation of that data is extremely challenging for several reasons. For example, the determination of disc edema is the most complete finding as we have had highly qualified optometrists routinely and competently performing post-flight funduscopic exams for the entirety of the ISS program. Yet in 2013 NASA added OCT to our in-flight suite of eye exams. Shortly after routine screening with the OCT, a new term appeared within VIIP vernacular - "subclinical disc edema". OCT has much greater ability to measure change within the retina and provides significantly more data to analyze, understand and communicate out. Communicating VIIP data clearly adds even more challenge. Historically we've reported data per eye and not necessarily per person. This has led to difficulty in understanding how many individuals have experienced "VIIP" within the aerospace medicine community. The presenter will attempt to provide clear and concise communication of VIIP findings.
    Keywords: Aerospace Medicine
    Type: JSC-CN-37889 , AsMA Annual Scientific Meeting; Apr 29, 2017 - May 04, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-19
    Description: It is known that spaceflight adversely affects human sensorimotor function. With interests in longer duration deep space missions it is important to understand microgravity dose-response relationships. NASA's One Year Mission project allows for comparison of the effects of one year in space with those seen in more typical six month missions to the International Space Station. In the Neuromapping project we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre- to post-spaceflight. Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad-ranging battery of sensory, motor, and cognitive assessments that are conducted pre-flight, during flight, and post-flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. With the one year mission we had one crewmember participate in all of the same measures pre-, per- and post-flight as in our ongoing study. During this presentation we will provide an overview of the magnitude of changes observed with our brain and behavioral assessments for the one year crewmember in comparison to participants that have completed our six month study to date.
    Keywords: Aerospace Medicine
    Type: JSC-CN-38008 , 2017 NASA Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-19
    Description: Astronauts and cosmonauts may experience symptoms of orthostatic intolerance during re-entry, landing, and for several days post-landing following short- and long-duration spaceflight. Presyncopal symptoms have been documented in approximately 20% of short-duration and greater than 60% of long-duration flyers on landing day specifically during 5-10 min of controlled (no countermeasures employed at the time of testing) stand tests or 80 deg head-up tilt tests. Current operational countermeasures to orthostatic intolerance include fluid loading prior to and whole body cooling during re-entry as well as compression garments that are worn during and for up to several days after landing. While both NASA and the Russian space program have utilized compression garments to protect astronauts and cosmonauts traveling on their respective vehicles, a "next-generation" gradient compression garment (GCG) has been developed and tested in collaboration with a commercial partner to support future space flight missions. Unlike previous compression garments used operationally by NASA that provide a single level of compression across only the calves, thighs, and lower abdomen, the GCG provides continuous coverage from the feet to below the pectoral muscles in a gradient fashion (from approximately 55 mm Hg at the feet to approximately 16 mmHg across the abdomen). The efficacy of the GCG has been demonstrated previously after a 14-d bed rest study without other countermeasures and after short-duration Space Shuttle missions. Currently the GCG is being tested during a stand test following long-duration missions (~6 months) to the International Space Station. While results to date have been promising, interactions of the GCG with other space suit components have not been examined. Specifically, it is unknown whether wearing the GCG over NASA's Maximum Absorbency Garment (MAG; absorbent briefs worn for the collection of urine and feces while suited during re-entry and landing) will interfere with the effectiveness of the GCG or conversely whether the GCG will reduce the fluid absorption capabilities of the MAG. Methods: This operational, directed study, will (1) determine whether the effectiveness of the GCG is affected by the MAG with regard to cardiovascular responses to head-up tilt, the standard orthostatic intolerance test employed for astronauts and bed rest subjects; (2) determine whether the effectiveness of the MAG is compromised by the GCG tested by injecting a standard fluid volume (950 ml in 3 separate simulated "urine voids") at a standardized rate (30 ml/sec); and (3) determine whether comfort is affected by wearing the MAG under the GCG using a standardized questionnaire. Results from this study will guide future development and operational use of the GCG and MAG to maximize crew health, safety, and comfort.
    Keywords: Aerospace Medicine
    Type: JSC-CN-38003 , 2017 Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: As an emerging technology, silicon carbide (SiC) power MOSFETs are showing great potential for higher temperature/power rating, higher efficiency, and reduction in size and weight, which makes this technology ideal for high temperature, harsh environment applications such as downhole, medical, avionic, or even space applications. Radiation tolerance therefore becomes a critical aspect of the device performance in such environments. In this work, we explored radiation hardness of SiC devices to total ionizing dose (TID), neutron-induced single-event burnout (SEB), and heavy-ion induced single-event effects (SEE).
    Keywords: Electronics and Electrical Engineering
    Type: GSFC-E-DAA-TN64775 , GSFC-E-DAA-TN46843 , International Conference on Silicon Carbide and Related Materials; Sep 17, 2017 - Sep 22, 2017; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: While supernova remnants (SNRs) are widely thought to be powerful cosmic-ray accelerators, indirect evidence comes from a small number of well-studied cases. Here we systematically determine the gamma-ray emission detected by the Fermi Large Area Telescope (LAT) from all known Galactic SNRs, disentangling them from the sea of cosmic-ray generated photons in the Galactic plane. Using LAT data we have characterized the 1-100 GeV emission in 279 regions containing SNRs, accounting for systematic uncertainties caused by source misattribution and instrumental response. We classified 30 sources as SNRs, using spatial overlap with the radio emission position. For all the remaining regions we evaluated upper limits on SNRs' emission. In the First Fermi-LAT SNR Catalog there is a study of the common characteristics of these SNRs, such as comparisons between GeV, radio and TeV quantities. We show that previously satisfactory models of SNRs' GeV emission no longer adequately describe the data. To address the question of cosmic ray (CR) origins, we also examine the SNRs' maximal CR contribution assuming the GeV emission arises solely from proton interactions. Improved breadth and quality of multiwavelength (MW) data, including distances and local densities, and more, higher resolution gamma-ray data with correspondingly improved Galactic diffuse models will strengthen this constraint.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN51443 , EPJ Web of Conferences (e-ISSN 2100-014X); 136; 03009
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: Mid-infrared spectra of amorphous and crystalline acetone are presented along with measurements of the refractive index and density for both forms of the compound. Infrared band strengths are reported for the first time for amorphous and crystalline acetone, along with IR optical constants. Vapor pressures and a sublimation enthalpy for crystalline acetone also are reported. Positions of (sup 13) C-labeled acetone are measured. Band strengths are compared to gas-phase values and to the results of a density-functional calculation. A 73 percent error in previous work is identified and corrected.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN55665 , Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (ISSN 1386-1425); 193; 33-39
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: We find evidence for a strong thermal inversion in the dayside atmosphere of the highly irradiated hot Jupiter WASP-18b (equatorial temperature equals 2411 degrees Kelvin, mass equals 10.3 times the mass of Jupiter) based on emission spectroscopy from Hubble Space Telescope secondary eclipse observations and Spitzer eclipse photometry. We demonstrate a lack of water vapor in either absorption or emission at 1.4 microns. However, we infer emission at 4.5 microns and absorption at 1.6 microns that we attribute to CO, as well as a non-detection of all other relevant species (e.g., TiO, VO). The most probable atmospheric retrieval solution indicates a C/O ratio of 1 and a high metallicity (C/H equals 283 from plus 395 to minus 138 times solar). The derived composition and temperature/pressure profile suggest that WASP-18b is the first example of both a planet with a non-oxide driven thermal inversion and a planet with an atmospheric metallicity inconsistent with that predicted for Jupiter-mass planets at greater than 2 sigma. Future observations are necessary to confirm the unusual planetary properties implied by these results.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN50537 , GSFC-E-DAA-TN53231 , The Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 850; 2; L32
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: We announce the discovery of KELT-16b, a highly irradiated, ultra-short period hot Jupiter transiting the relatively bright (visual magnitude equals 11.7) star TYC 2688-1839-1/KELT-16. A global analysis of the system shows KELT-16 to be an F7V star with effective temperature equal to 6236 plus or minus 54 degrees Kelvin, log g (sub asterisk) equal to 4.253 from plus 0.031 to minus 0.036, [Fe/H] equal to minus 0.002 from plus 0.086 to minus 0.085, mass (sub asterisk) equal to 1.211 from plus 0.043 to minus 0.046 times the solar mass, and radius (sub asterisk) equal to 1.360 from plus 0.064 o minus 0.053 times the solar radius. The planet is a relatively high-mass inflated gas giant with planetary mass equal to 2.75 from plus 0.016 to minus 0.15 times Jupiter's mass, planetary radius equal to 1.415 from plus 0.084 to minus 0.067 times Jupiter's radius, density planetary rho equal to 1.20 plus or minus 0.18 grams per cubic centimeter, surface gravity, log planetary gravity equal to 3.530 from plus 0.042 to minus 0.049, and equatorial temperature equal to 2453 from plus 55 to minus 47 degrees Kelvin. The best-fitting linear ephemeris is T(sub C) equal to 22457247.24791 plus or minus 0.00019 BJD (sub TDB) and P equal to 0.9689951 plus or minus 0.0000024 day. KELT-16b joins WASP-18b, -19b, -43b, -103b, and HATS-18b as the only giant transiting planets with periodicity P less than 1 day. Its ultra-short period and high irradiation make it a benchmark target for atmospheric studies by the Hubble Space Telescope, Spitzer, and eventually the James Webb Space Telescope. For example, as a hotter, higher-mass analog of WASP-43b, KELT-16b may feature an atmospheric temperature-pressure inversion and day-to-night temperature swing extreme enough for TiO to rain out at the terminator. KELT-16b could also join WASP-43b in extending tests of the observed mass-metallicity relation of the solar system gas giants to higher masses. KELT-16b currently orbits at a mere approximately 1.7 Roche radii from its host star, and could be tidally disrupted in as little as a few times 10 (sup 5) years (for a stellar tidal quality factor of Q (sup prime) (sub asterisk) equal to 10 (sup 5). Finally, the likely existence of a widely separated bound stellar companion in the KELT-16 system makes it possible that Kozai-Lidov (KL) oscillations played a role in driving KELT-16b inward to its current precarious orbit.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN56743 , The Astronomical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 153; 3; 97
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: The NASA K2 (Kepler-2) mission uses photometry to find planets transiting stars of various types. M dwarfs are of high interest since they host more short-period planets than any other type of main-sequence star and transiting planets around M dwarfs have deeper transits compared to other main-sequence stars. In this paper, we present stellar parameters from K and M dwarfs hosting transiting planet candidates discovered by our team. Using the SOFI (Son OF Isaac - ESA's earlier, similar instrument) spectrograph on the European Southern Observatory's New Technology Telescope, we obtained R approximately equal to 1000 J-, H-, and K-band (0.95-2.52 micron) spectra of 34 late-type K2 planet and candidate planet host systems and 12 bright K4-M5 dwarfs with interferometrically measured radii and effective temperatures. Out of our 34 late-type K2 targets, we identify 27 of these stars as M dwarfs. We measure equivalent widths of spectral features, derive calibration relations using stars with interferometric measurements, and estimate stellar radii, effective temperatures, masses, and luminosities for the K2 planet hosts. Our calibrations provide radii and temperatures with median uncertainties of 0.059 solar radii (16.09 percent) and 160 degrees Kelvin (4.33 percent), respectively. We then reassess the radii and equilibrium temperatures of known and candidate planets based on our spectroscopically derived stellar parameters. Since a planet's radius and equilibrium temperature depend on the parameters of its host star, our study provides more precise planetary parameters for planets and candidates orbiting late-type stars observed with K2. We find a median planet radius and an equilibrium temperature of approximately 3 solar radii and 500 degrees Kelvin, respectively, with several systems (K2-18b and K2-72e) receiving near-Earth-like levels of incident irradiation.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN56781 , The Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 837; 1; 72
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: The redshifted 21 cm monopole is expected to be a powerful probe of the epoch of the first stars and galaxies(10 less than z less than 35). The global 21 cm signal is sensitive to the thermal and ionization state of hydrogen gas and thusprovides a tracer of sources of energetic photonsprimarily hot stars and accreting black holeswhich ionize andheat the high redshift intergalactic medium (IGM). This paper presents a strategy for observations of the globalspectrum with a realizable instrument placed in a low-altitude lunar orbit, performing night-time 40120 MHzspectral observations, while on the farside to avoid terrestrial radio frequency interference, ionospheric corruption,and solar radio emissions. The frequency structure, uniformity over large scales, and unpolarized state of theredshifted 21 cm spectrum are distinct from the spectrally featureless, spatially varying, and polarized emissionfrom the bright foregrounds. This allows a clean separation between the primordial signal and foregrounds. Forsignal extraction, we model the foreground, instrument, and 21 cm spectrum with eigenmodes calculated viaSingular Value Decomposition analyses. Using a Markov Chain Monte Carlo algorithm to explore the parameterspace defined by the coefficients associated with these modes, we illustrate how the spectrum can be measured andhow astrophysical parameters (e.g., IGM properties, first star characteristics) can be constrained in the presence offoregrounds using the Dark Ages Radio Explorer (DARE).
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN45122 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 844; 33; No. 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: We present near-infrared high-precision photometry for eight transiting hot Jupiters observed during their predicted secondary eclipses. Our observations were carried out using the staring mode of the WIRCam instrument on the Canada-France-Hawaii Telescope (CFHT). We present the observing strategies and data reduction methods which delivered time series photometry with statistical photometric precision as low as 0.11%. We performed a Bayesian analysis to model the eclipse parameters and systematics simultaneously. The measured planet-to-star flux ratios allowed us to constrain the thermal emission from the day side of these hot Jupiters, as we derived the planet brightness temperatures. Our results combined with previously observed eclipses reveal an excess in the brightness temperatures relative to the blackbody prediction for the equilibrium temperatures of the planets for a wide range of heat redistribution factors. We find a trend that this excess appears to be larger for planets with lower equilibrium temperatures. This may imply some additional sources of radiation, such as reflected light from the host star and/or thermal emission from residual internal heat from the formation of the planet.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN54583 , Monthly Notices of the Royal Astronomical Society (ISSN 0035-8711) (e-ISSN 1365-2966); 474; 3; 4264–4277
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: The current explosion in detection and characterization of thousands of extrasolar planets from the Kepler mission, the Hubble Space Telescope, and large ground-based telescopes opens a new era in searches for Earth-analog exoplanets with conditions suitable for sustaining life. As more Earth-sized exoplanets are detected in the near future, we will soon have an opportunity to identify habitale worlds. Which atmospheric biosignature gases from habitable planets can be detected with our current capabilities? The detection of the common biosignatures from nitrogen-oxygen rich terrestrial-type exoplanets including molecular oxygen (O2), ozone (O3), water vapor (H2O), carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) requires days of integration time with largest space telescopes, and thus are very challenging for current instruments. In this paper we propose to use the powerful emission from rotational-vibrational bands of nitric oxide, hydroxyl and molecular oxygen as signatures of nitrogen, oxygen, and water rich atmospheres of terrestrial type exoplanets "highlighted" by the magnetic activity from young G and K main-sequence stars. The signals from these fundamental chemical prerequisites of life we call atmospheric "beacons of life" create a unique opportunity to perform direct imaging observations of Earth-sized exoplanets with high signal-to-noise and low spectral resolution with the upcoming NASA missions.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN52847 , Scientific Reports (ISSN 2045-2322); 7; 14141
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: Damaging effects due to spaceflight and long-duration weightlessness are seen in the musculoskeletal system, specifically with regards to bone loss, bone resorption, and changes in overall bone structure. These adverse effects are all seen with indicators of oxidative stress and a variation in the levels of oxidative gene expression. Once gravity is restored, however, the recovery is slow and incomplete. Despite this, few reports have investigated the correlation between oxidative damage and general modifications within the bone. In this project, we will make use of a ground-based model of simulated weightlessness (hindlimb unloading, HU) in order to observe skeletal changes in response to induced microgravity due to changes in oxidative pressures. With this model we will analyze samples at 14-day and 90-day time points following HU for the determination of acute and chronic effects, each with corresponding controls. We hypothesize that simulated microgravity will lead to skeletal adaptations including time-dependent activation of pro-oxidative processes and pro-osteoclastogenic signals related to the progression, plateau, and recovery of the bone. Microcomputed tomography techniques will be utilized to measure skeletal changes in response to HU. With the results of this study, we hope to further the understanding of skeletal affects as a result of long-duration weightlessness and develop countermeasures to combat bone loss in spaceflight and osteoporosis on Earth.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN48023 , American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: The recent discoveries of pulsed X-ray emission from three ultraluminous X-ray (ULX) sources have finally enabled us to recognize a subclass within the ULX class: the great pretenders, neutron stars (NSs) that appear to emit X-ray radiation at isotropic luminosities Lx = 7 x 10(exp 39) erg/s - 1 x 10(exp 41) erg/s only because their emissions are strongly beamed toward our direction and our sight lines are offset by only a few degrees from their magnetic-dipole axes. The three known pretenders appear to be stronger emitters than the presumed black holes of the ULX class, such as Holmberg II & IX X-1, IC10 X-1 and NGC 300 X-1. For these three NSs, we have adopted a single reasonable assumption, that their brightest observed outbursts unfold at the Eddington rate, and we have calculated both their propeller states and their surface magnetic-field magnitudes. We find that the results are not at all different from those recently obtained for the Magellanic Be/X-ray pulsars: the three NSs reveal modest magnetic fields of about 0.3 - 0.4 TG and beamed propeller-line X-ray luminosities of approx. 10(exp 36) - 10(exp 37) erg/s, substantially below the Eddington limit.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN50951 , Research in Astronomy and Astrophysics (ISSN 1674-4527); 17; 6; 063
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: We present two state-of-the-art models of the solar system, one corresponding to the present day and one to the Archean Eon 3.5 billion years ago. Each model contains spatial and spectral information for the star, the planets, and the interplanetary dust, extending to 50 au from the Sun and covering the wavelength range 0.3-2.5 micron. In addition, we created a spectral image cube representative of the astronomical backgrounds that will be seen behind deep observations of extrasolar planetary systems, including galaxies and Milky Way stars. These models are intended as inputs to high-fidelity simulations of direct observations of exoplanetary systems using telescopes equipped with high-contrast capability. They will help improve the realism of observation and instrument parameters that are required inputs to statistical observatory yield calculations, as well as guide development of post-processing algorithms for telescopes capable of directly imaging Earth-like planets.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN50746 , Publications of the Astronomical Society of the Pacific (ISSN 0004-6280) (e-ISSN 1538-3873); 129; 982; 124401
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: Polarization measurements provide strong constraints on models for emission from rotation-powered pulsars. We present multiwavelength polarization predictions showing that measurements over a range of frequencies can be particularly important for constraining the emission location, radiation mechanisms, and system geometry. The results assume a generic model for emission from the outer magnetosphere and current sheet in which optical to hard X-ray emission is produced by synchrotron radiation (SR) from electron-positron pairs and gamma-ray emission is produced by curvature radiation (CR) or SR from accelerating primary electrons. The magnetic field structure of a force-free magnetosphere is assumed and the phase-resolved and phase-averaged polarization is calculated in the frame of an inertial observer. We find that large position angle (PA) swings and deep depolarization dips occur during the light-curve peaks in all energy bands. For synchrotron emission, the polarization characteristics are strongly dependent on photon emission radius with larger, nearly 180deg, PA swings for emission outside the light cylinder (LC) as the line of sight crosses the current sheet. The phase-averaged polarization degree for SR is less that 10% and around 20% for emission starting inside and outside the LC, respectively, while the polarization degree for CR is much larger, up to 40%-60%. Observing a sharp increase in polarization degree and a change in PA at the transition between X-ray and gamma-ray spectral components would indicate that CR is the gamma-ray emission mechanism.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN50650 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 840; 2; 73
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: Two transit survey missions will have been flown by NASA prior to the launch of ESA's PLATO Mission in 2026, laying the groundwork for exoplanet discovery via the transit method. The Kepler Mission, which launched in 2009, collected data on its 100+ square degree field of view for four years before failure of a reaction wheel ended its primary mission. The results from Kepler include 2300+ confirmed or validated exoplanets, 2200+ planetary candidates, 2100+ eclipsing binaries. Kepler also revolutionized the field of asteroseismology by measuring the pressure mode oscillations of over 15000 solar-like stars spanning the lifecycle of such stars from hydrogen-burning dwarfs to helium-burning red giants. The re-purposed Kepler Mission, dubbed K2, continues to observe fields of view in and near the ecliptic plane for 80 days each, significantly broadening the scope of the astrophysical investigations as well as discovering an additional 156 exoplanets to date. The TESS mission will launch in 2017 to conduct an all-sky survey for small exoplanets orbiting stars 10X closer and 100X brighter than Kepler exoplanet host stars, allowing for far greater follow-up and characterization of their masses as well as their sizes for at least 50 small planets. Future assets such as James Webb Space Telescope, and ground-based assets such as ESOs Very Large Telescope (VLT) array, the Exremely Large Telescope (ELT), and the Thirty Meter Telescope (TMT) will be able to characterize the atmospheric composition and properties of these small planets. TESS will observe each 24 X 96 field of view for 30 days and thereby cover first the southern and then the northern hemisphere over 13 pointings during each year of the primary mission. The pole-most camera will observe the James Webb continuous viewing zone for one year in each hemisphere, permitting much longer period planets to be detected in this region. The PLATO mission will seek to detect habitable Earth-like planets with an instrument composed of 26 small telescopes in several 2232 square deg FOVs with a range of observation durations over a mission lifetime of up to eight years. This paper summarizes the findings of the KeplerK2 missions, previews the likely results from the TESS mission, and explores the lessons learned and to be learned from these prior missions that can be incorporated into the observation and data reduction strategy for the PLATO Mission so as to maximize the science return.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN46530 , PLATO Mission Conference 2017; Sep 05, 2017 - Sep 07, 2017; Coventry; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: The Transiting Exoplanet Survey Satellite (TESS) science pipeline is being developed by the Science Processing Operations Center (SPOC) at NASA Ames Research Center based on the highly successful Kepler Mission science pipeline. Like the Kepler pipeline, the TESS science pipeline will provide calibrated pixels, simple and systematic error-corrected aperture photometry, and centroid locations for all 200,000+ target stars, observed over the 2-year mission, along with associated uncertainties. The pixel and light curve products are modeled on the Kepler archive products and will be archived to the Mikulski Archive for Space Telescopes (MAST). In addition to the nominal science data, the 30-minute Full Frame Images (FFIs) simultaneously collected by TESS will also be calibrated by the SPOC and archived at MAST. The TESS pipeline will search through all light curves for evidence of transits that occur when a planet crosses the disk of its host star. The Data Validation pipeline will generate a suite of diagnostic metrics for each transit-like signature discovered, and extract planetary parameters by fitting a limb-darkened transit model to each potential planetary signature. The results of the transit search will be modeled on the Kepler transit search products (tabulated numerical results, time series products, and pdf reports) all of which will be archived to MAST.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN45029 , Kepler & K2 Science Conference; Jun 19, 2017 - Jun 23, 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: Thermonuclear flashes of hydrogen and helium accreted onto neutron stars produce the frequently observed Type I X-ray bursts. It is the current paradigm that almost all material burns in a burst, after which it takes hours to accumulate fresh fuel for the next burst. In rare cases, however, bursts are observed with recurrence times as short as minutes. We present the first one-dimensional multi-zone simulations that reproduce this phenomenon. Bursts that ignite in a relatively hot neutron star envelope leave a substantial fraction of the fuel unburned at shallow depths. In the wake of the burst, convective mixing events driven by opacity bring this fuel down to the ignition depth on the observed timescale of minutes. There, unburned hydrogen mixes with the metal-rich ashes, igniting to produce a subsequent burst. We find burst pairs and triplets, similar to the observed instances. Our simulations reproduce the observed fraction of bursts with short waiting times of approximately 30%, and demonstrate that short recurrence time bursts are typically less bright and of shorter duration.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN47277 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 842; 2; 113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: Review freeform optic applications as NASA. Describe design study results showing benefits of freeform optics to the instrument size, image quality, and field of view. Review areas of study and improvements needed to freeform manufacturing for future applications.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN48197 , European Photonics Industry Consortium (EPIC) Workshop; Oct 26, 2017 - Oct 27, 2017; Jena; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: We have developed a new fabrication process to actuate microshutter arrays (MSA) electrostatically at NASA Goddard Space Flight Center. The microshutters are fabricated on silicon with thin silicon nitride membranes. A pixel size of each microshutter is 100 x 200 micrometers 2. The microshutters rotate 90 degrees on torsion bars. The selected microshutters are actuated, held, and addressed electrostatically by applying voltages on the electrodes the front and back sides of the microshutters. The atomic layer deposition (ALD) of aluminum oxide was used to insulate electrodes on the back side of walls; the insulation can withstand over 100 V. The ALD aluminum oxide is dry etched, and then the microshutters are released in vapor HF.
    Keywords: Electronics and Electrical Engineering
    Type: GSFC-E-DAA-TN46304 , IEEE SENSORS 2017; Oct 30, 2017 - Nov 01, 2017; Glasgow, Scotland; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: This report describes more than 5000 hours of successful 500 C operation of semiconductor integrated circuits (ICs) with more than 100 transistors. Multiple packaged chips with two different 4H-SiC junction field effect transistor (JFET) technology demonstrator circuits have surpassed thousands of hours of oven-testing at 500 C. After 100 hours of 500 C burn-in, the circuits (except for 2 failures) exhibit less than 10 change in output characteristics for the remainder of 500C testing. We also describe the observation of important differences in IC materials durability when subjected to the first nine constituents of Venus-surface atmosphere at 9.4 MPa and 460C in comparison to what is observed for Earth-atmosphere oven testing at 500 C.
    Keywords: Electronics and Electrical Engineering
    Type: GRC-E-DAA-TN46833 , International Conference on Silicon Carbide and Related Materials (ICSCRM) 2017; Sep 17, 2017 - Sep 22, 2017; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: A brief overview of NASA supported research on electronic materials is presented to the Electrical Materials panel of the Inter-agency Advanced Power Group Electrical Systems Working Group.
    Keywords: Electronics and Electrical Engineering
    Type: GRC-E-DAA-TN45150 , IAPG Electrical Systems Working Group Meeting; Aug 08, 2017 - Aug 10, 2017; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: We present results from four new broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 (L (sub X) greater than 10 (sup 40) ergs per second), performed by Suzaku and NuSTAR in coordination. Combined with the archival data, we now have broadband observations of this remarkable source from six separate epochs. Two of these new observations probe lower fluxes than seen previously, allowing us to extend our knowledge of the broadband spectral variability exhibited. The spectra are well fit by two thermal blackbody components that dominate the emission below 10 kiloelectronvolts, as well as a steep (Gamma approximately equal to 3.5) power-law tail thatdominates above approximately 15 kiloelectronvolts. Remarkably, while the 0.3-10.0 kiloelectronvolts flux varies by a factor of approximately 3 between all these epochs, the 15-40 kiloelectronvolts flux varies by only approximately 20 percent. Although the spectral variability is strongest in the approximately 1-10 kiloelectronvolts band, both of the thermal components are required to vary when all epochs are considered. We also revisit the search for iron absorption features by leveraging the high-energy NuSTAR data to improve our sensitivity to extreme velocity outflows in light of the ultra-fast outflow recently detected in NGC 1313 X-1. Iron absorption from a similar outflow along our line of sight can be ruled out in this case. We discuss these results in the context of super-Eddington accretion models that invoke a funnel-like geometry for the inner flow, and propose a scenario in which we have an almost face-on view of a funnel that expands to larger radii with increasing flux, resulting in an increasing degree of geometrical collimation for the emission from intermediate-temperature regions.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN46238 , Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 839; 2; 105
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: Quantum electrodynamics in very strong Coulomb fields is one scope which has not yet been tested experimentally with sufficient accuracy to really determine whether the perturbative approach is valid. One sensitive test is the determination of the 1s Lamb shift in highly-charged very heavy ions. The 1s Lamb shift of hydrogen-like lead (Pb81+) and gold (Au78+) has been determined using the novel detector concept of silicon microcalorimeters for the detection of hard x-rays. The results of (260 +/- 53) eV for lead and (211 +/- 42) eV for gold are within the error bars in good agreement with theoretical predictions. To our knowledge, for hydrogen-like lead, this represents the most accurate determination of the 1s Lamb shift.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN46237 , Journal of Physics B: Atomic, Molecular and Optical Physics (ISSN 0953-4075) (e-ISSN 1361-6455); 50; 5; 055603
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: An overview of the NASA NEPP Program Silicon Carbide Power Device subtask is given, including the current task roadmap, partnerships, and future plans. Included are the Agency-wide efforts to promote development of single-event effect hardened SiC power devices for space applications.
    Keywords: Electronics and Electrical Engineering
    Type: GSFC-E-DAA-TN44037 , NEPP Electronics Technology Workshop; Jun 26, 2017 - Jun 29, 2017; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: Oxygen fugacity plays an important role in determining the detailed physical and chemical aspects of planets and their building blocks. Basic chemical properties such as the amount of oxidized Fe in a mantle (as FeO), the nature of alloying elements in the core (S, C, H, O, Si), and the solubility of various volatile elements in the silicate and metallic portions of embryos and planets can influence physical properties such as the size of the core, the liquidus and solidus of the mantle and core, and the speciation of volatile compounds contributing to atmospheres. This paper will provide an overview of the range of fO2 variation observed in primitive and differentiated materials that may have participated in accretion (cosmic dust, Star-dust and meteorites), a comparison to observations of planetary fO2 (Mercury, Mars and Earth), and a discus-sion of timing of variation of fO2 within both early and later accreted materials. This overview is meant to promote discussion and interaction between students of these two stages of planet formation to identify areas where more work is needed.
    Keywords: Astrophysics
    Type: JSC-CN-39953 , Accretion: Building New Worlds Conference; Aug 15, 2017 - Aug 18, 2017; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: The DC electrical behavior of n-type 4H-SiC resistors used for realizing 500C durable integrated circuits (ICs) is studied as a function of substrate bias and temperature. Improved fidelity electrical simulation is described using SPICE NMOS model to simulate resistor substrate body bias effect that is absent from the SPICE semiconductor resistor model.
    Keywords: Electronics and Electrical Engineering
    Type: 1234567 , GRC-E-DAA-TN41986 , International Conference on Silicon Carbide and Related Materials (ICSCRM) 2017; Sep 17, 2017 - Sep 22, 2017; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: High-temperature environment operable sensors and electronics are required for long-term exploration of Venus and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500 C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors in relevant environments. This talk will discuss a ceramic packaging system developed for high temperature electronics, and related testing results of SiC integrated circuits at 500 C facilitated by this high temperature packaging system, including the most recent progress.
    Keywords: Electronics and Electrical Engineering
    Type: GRC-E-DAA-TN44194 , National Aerospace & Electronics Conference (NAECON); Jun 27, 2017 - Jun 30, 2017; Dayton, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: During its first 18 years of operation, the cold (about -60degC) optical blocking filters of the Advanced CCD Imaging Spectrometer (ACIS), aboard the Chandra X-ray Observatory, has accumulated a growing layer of molecular contamination, which attenuates low-energy x rays. Over the past several years, the accumulation rate, spatial distribution, and composition have changed. This evolution has motivated further analysis of contamination migration within and near the ACIS cavity, in part to evaluate potential bake-out scenarios intended to reduce the level of contamination. This paper, the fourth on this topic, reports the results of recent contamination-migration simulations and their relevance to a decision whether to bake-out the ACIS instrument.
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN46438 , Optics and Photonics Conference; Aug 06, 2017 - Aug 08, 2017; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-13
    Description: We present highlights from a large set of simulations of a hot Jupiter atmosphere, nominally based on HD 209458b, aimed at exploring both the evolution of the deep atmosphere, and the acceleration of the zonal flow or jet. We find the occurrence of a super-rotating equatorial jet is robust to changes in various parameters, and over long timescales, even in the absence of strong inner or bottom boundary drag. This jet is diminished in one simulation only, where we strongly force the deep atmosphere equator-to-pole temperature gradient over long timescales. Finally, although the eddy momentum fluxes in our atmosphere show similarities with the proposed mechanism for accelerating jets on tidally-locked planets, the picture appears more complex. We present tentative evidence for a jet driven by a combination of eddy momentum transport and mean flow.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN46380 , Astronomy and Astrophysics (ISSN 0004-6361) (e-ISSN 1432-0746); 604; A79
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: A magnetic field dragged from the galactic disk, along with inflowing gas, can provide vertical support to the geometrically and optically thick pc (parsec) -scale torus in AGNs (Active Galactic Nuclei). Using the Soloviev solution initially developed for Tokamaks, we derive an analytical model for a rotating torus that is supported and confined by a magnetic field. We further perform three-dimensional magneto-hydrodynamic simulations of X-ray irradiated, pc-scale, magnetized tori. We follow the time evolution and compare models that adopt initial conditions derived from our analytic model with simulations in which the initial magnetic flux is entirely contained within the gas torus. Numerical simulations demonstrate that the initial conditions based on the analytic solution produce a longer-lived torus that produces obscuration that is generally consistent with observed constraints.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN45951 , The Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 842; 1; 43
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: X-ray observations of supernova remnants (SNRs) allow us to investigate the chemical inhomogeneity of ejecta, offering unique insight into the nucleosynthesis in supernova explosions. Here we present detailed imaging and spectroscopic studies of the Fe knot located along the eastern rim of the Type Ia SNR Tycho ( SN 1572) using Suzaku and Chandra long-exposure data. Surprisingly, the Suzaku spectrum of this knot shows no emission from Cr, Mn, or Ni, which is unusual for the Fe-rich regions in this SNR. Within the framework of the canonical delayed-detonation models for SN Ia, the observed mass ratios M(sub Cr)/M(sub Fe) is less than 0.023, M(sub Mn)/M(sub Fe) is less than 0.012, and M(sub Ni)/M(sub Fe) is less than 0.029 (at 90% confidence) can only be achieved for a peak temperature of (5.3 - 5.7) x 10(exp. 9) K and a neutron excess of approximately less than 2.0 x 10(exp. -3). These constraints rule out the deep, dense core of a Chandrasekhar-mass white dwarf as the origin of the Fe knot and favor either incomplete Si burning or an Alpha-rich freeze-out regime, probably close to the boundary. An explosive He burning regime is a possible alternative, although this hypothesis is in conflict with the main properties of this SNR.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN45948 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 834; 2; 124
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: We analyze dispersion measure(DM) variations of 37 millisecond pulsars in the nine-year North American Nanohertz Observatory for Gravitational Waves (NANOGrav) data release and constrain the sources of these variations. DM variations can result from a changing distance between Earth and the pulsar, inhomogeneities in the interstellar medium, and solar effects. Variations are significant for nearly all pulsars, with characteristic timescales comparable to or even shorter than the average spacing between observations. Five pulsars have periodic annual variations, 14 pulsars have monotonically increasing or decreasing trends, and 14 pulsars show both effects. Of the four pulsars with linear trends that have line-of-sight velocity measurements, three are consistent with a changing distance and require an overdensity of free electrons local to the pulsar. Several pulsars show correlations between DM excesses and lines of sight that pass close to the Sun. Mapping of the DM variations as a function of the pulsar trajectory can identify localized interstellar medium features and, in one case, an upper limit to the size of the dispersing region of 4 au. Four pulsars show roughly Kolmogorov structure functions (SFs), and another four show SFs less steep than Kolmogorov. One pulsar has too large an uncertainty to allow comparisons. We discuss explanations for apparent departures from a Kolmogorov-like spectrum, and we show that the presence of other trends and localized features or gradients in the interstellar medium is the most likely cause.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN45943 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 841; 2; 125
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: The stellar initial mass function (IMF), which is often assumed to be universal across unresolved stellar populations, has recently been suggested to be bottom-heavy for massive ellipticals. In these galaxies, the prevalence of gravity-sensitive absorption lines (e.g., Na I and Ca II) in their near-IR spectra implies an excess of low-mass (m 〈 or approx. = 0.5 Stellar Mass) stars over that expected from a canonical IMF observed in low-mass ellipticals. A direct extrapolation of such a bottom-heavy IMF to high stellar masses (m 〉 or approx. = 8 Stellar Mass) would lead to a corresponding deficit of neutron stars and black holes, and therefore of low-mass X-ray binaries (LMXBs), per unit near-IR luminosity in these galaxies. Peacock et al. searched for evidence of this trend and found that the observed number of LMXBs per unit K-band luminosity (N/LK) was nearly constant. We extend this work using new and archival Chandra X-ray Observatory and Hubble Space Telescope observations of seven low-mass ellipticals where N/LK is expected to be the largest and compare these data with a variety of IMF models to test which are consistent with the observed N/LK. We reproduce the result of Peacock et al., strengthening the constraint that the slope of the IMF at m 〉 or approx. = 8 Stellar Mass must be consistent with a Kroupa-like IMF. We construct an IMF model that is a linear combination of a Milky Way-like IMF and a broken power-law IMF, with a steep slope (alpha1 = 3.84) for stars 〈 0.5 Stellar Mass (as suggested by near-IR indices), and that flattens out (alpha2 = 2.14) for stars 〉 0.5 Stellar Mass, and discuss its wider ramifications and limitations.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN45844 , The Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 835; 2; 183
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: Human exploration missions that reach destinations beyond low Earth orbit, such as Mars, will present significant new challenges to crew health management. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system goals, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Model-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.
    Keywords: Aerospace Medicine
    Type: JSC-CN-40281 , AIAA SPACE and Astronautics Forum and Exposition (AIAA SPACE 2017); Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN45243 , Optics and Photonics Conference; Aug 06, 2017 - Aug 10, 2017; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: The Kepler era of exoplanetary discovery has presented the Astronomical community with a cornucopia of planetary systems very different from the one which we inhabit. It has long been known that Jupiter plays a major role in the orbital parameters of Mars and its climate, but there is also a long-standing belief that Jupiter would play a similar role for Earth if not for its large moon. Using a three dimensional general circulation model (3-D GCM) with a fully-coupled ocean we simulate what would happen to the climate of an Earth-like world if Mars did not exist, but a Jupiter-like planet was much closer to Earths orbit. We investigate two scenarios that involve evolution of the Earth-like planets orbital eccentricity from 0 to 0.066 on a time scale of 4500 years, and from 0 to 0.283 over 6500 years. We discover that during most of the 6500 year scenario the planet would experience a moist greenhouse effect when near periastron. This could have implications for the ability of such a world to retain an ocean on time scales of 109 years. More Earth-like planets in multi-planet systems will be discovered as we continue to survey the skies and the results herein show that the proximity of large gas giant planets may play an important role in the habitabilty of these worlds. These are the first such 3-D GCM simulations using a fully-coupled ocean with a planetary orbit that evolves over time due to the presence of a giant planet.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN38877 , Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 835; 1; L1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN45461 , SPIE Optics + Photonics; Aug 06, 2017 - Aug 10, 2017; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: This design study was conducted to support the HABEX project. There are a number of companion papers at this conference which go into detail on what all the HABEX goals are. The objective of this paper is to establish a baseline primary mirror design which satisfies the following structural related requirements. The designs in this study have a high TRL (Technology Readiness Level), realistic manufacturing limits and performance in line with the HABEX mission. A secondary goal of the study was to evaluate a number competing criteria for the selection. Questions such as differences in the on axis versus off axis static and dynamic response to disturbances. This study concentrates on the structural behavior, companion papers cover thermal and long term stability aspects of the problem.
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN45386 , Optics and Photonics Conference; Aug 06, 2017 - Aug 10, 2017; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: The Advanced Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort initiated in Fiscal Year (FY) 2012, to mature the Technology Readiness Level (TRL) of critical technologies required to enable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics, ultra-high-contrast observations of exoplanets, and National Interest missions. Key accomplishments of 2016/17 include the completion of the Harris Corp approximately 150 Hz 1.5-meter Ultra-Low Expansion (ULE Registered trademark) mirror substrate using stacked core method to demonstrate lateral stability of the stacked core technology, as well as the characterization and validation by test of the mechanical and thermal performance of the 1.2-meter Zerodur (Registered trademark) mirror using the STOP model prediction and verification of CTE homogeneity.
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN44658 , Optics and Photonics Conference; Aug 06, 2017 - Aug 10, 2017; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-19
    Description: Biological risks associated with microgravity is a major concern for space travel. Although determination of risk has been a focus for NASA research, data examining systemic (i.e., multi- or pan-tissue) responses to space flight are sparse. The overall goal of our work is to identify potential master regulators responsible for such responses to microgravity conditions. To do this we utilized the NASA GeneLab database which contains a wide array of omics experiments, including data from: 1) different flight conditions (space shuttle (STS) missions vs. International Space Station (ISS); 2) different tissues; and 3) different types of assays that measure epigenetic, transcriptional, and protein expression changes. We have performed meta-analysis identifying potential master regulators involved with systemic responses to microgravity. The analysis used 7 different murine and rat data sets, examining the following tissues: liver, kidney, adrenal gland, thymus, mammary gland, skin, and skeletal muscle (soleus, extensor digitorum longus, tibialis anterior, quadriceps, and gastrocnemius). Using a systems biology approach, we were able to determine that p53 and immune related pathways appear central to pan-tissue microgravity responses. Evidence for a universal response in the form of consistency of change across tissues in regulatory pathways was observed in both STS and ISS experiments with varying durations; while degree of change in expression of these master regulators varied across species and strain, some change in these master regulators was universally observed. Interestingly, certain skeletal muscle (gastrocnemius and soleus) show an overall down-regulation in these genes, while in other types (extensor digitorum longus, tibialis anterior and quadriceps) they are up-regulated, suggesting certain muscle tissues may be compensating for atrophy responses caused by microgravity. Studying these organtissue-specific perturbations in molecular signaling networks, we demonstrate the value of GeneLab in characterizing potential master regulators associated with biological risks for spaceflight.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN43907 , American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-19
    Description: Polycyclic aromatic hydrocarbons (PAHs) are believed to be ubiquitous in space therefore represent an important class of molecules for the field of astrochemistry. PAHs are relatively stable under interstellar conditions, account for a significant fraction of the known Universe's molecular carbon inventory, and are believed responsible for numerous telltale interstellar infrared emission bands. PAHs can be subdivided into numerous classes, one of which is Hydrogenated PAHs (Hn-PAHs). Hn-PAHs are multi-ringed partially aromatic compounds with excess hydrogenation, leading to a partial disruption of the aromatic system. The infrared spectra of these compounds produce telltale signatures that make them distinct from ordinary aromatic or aliphatic molecules (or a mixture of both). Hn-PAHs may be an important subclass of PAHs that could explain the spectra of some astronomical objects with anomalously large 3.4 micron features. The 3.4 micron feature observed in these objects may be associated with the aliphatic C-H stretching vibrations of the excess hydrogen. If this presumption is correct, we also expect to observe methylene scissoring modes at 6.9 microns. We have recently conducted a series of follow-up observations to compliment our laboratory experiments into the properties of Hn-PAHs. Here we present our laboratory and observational results in support of the hypothesis that Hn-PAHs are a viable candidate molecule as the emission source for numerous post-asymptotic giant branch objects with abnormally large 3.4 micron features.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN48892 , American Chemical Society (ACS) 2017 National Meeting and Exposition; Aug 20, 2017 - Aug 24, 2017; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-19
    Description: A review will be presented on the progress made under STMDGame Changing Development Program Funding towards the development of a Medical Decision Support System for augmenting crew capabilities during long-duration missions, such as Mars Transit. To create an MDSS, initial work requires acquiring images and developing models that analyze and assess the features in such medical biosensor images that support medical assessment of pathologies. For FY17, the project has focused on ultrasound images towards cardiac pathologies: namely, evaluation and assessment of pericardial effusion identification and discrimination from related pneumothorax and even bladder-induced infections that cause inflammation around the heart. This identification is substantially changed due to uncertainty due to conditions of fluid behavior under space-microgravity. This talk will present and discuss the work-to-date in this Project, recognizing conditions under which various machine learning technologies, deep-learning via convolutional neural nets, and statistical learning methods for feature identification and classification can be employed and conditioned to graphical format in preparation for attachment to an inference engine that eventually creates decision support recommendations to remote crew in a triage setting.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN46021 , Machine Learning Workshop 2017; Aug 29, 2017 - Aug 31, 2017; Mountain View, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-19
    Description: Understanding the effects of spaceflight on mammalian reproductive and developmental physiology is important to future human space exploration and permanent settlement beyond Earth orbit. Fetal developmental programming, including modulation of the HPA axis, is thought to originate at the placental-uterine interface, where both transfer of maternal hormones to the fetus and synthesis of endogenous hormones occurs. In healthy rats, fetal corticosterone levels are kept significantly lower by 11BetaHSD-2, which inactivates corticosterone by conversion into cortisone. Placental tissues express endogenous HPA axis-associated hormones including corticotropin-releasing hormone (CRH), pre-opiomelanocortin (POMC), and vasopressin, which may contribute to fetal programming alongside maternal hormones. DNA methylase 3A, 11BetaHSD-2, and 11BetaHSD-1, which are involved in the regulation of maternal cortisol transfer and modulation of the HPA axis, are also expressed in placental tissues along with glucocorticoid receptor and may be affected by differential gravity exposure during pregnancy. Fetuses may respond differently to maternal glucocorticoid exposure during gestation through sexually dimorphic expression of corticosterone-modulating hormones. To elucidate effects of altered gravity on placental gene expression, here we present a ground-based analogue study involving continuous centrifugation to produce 2g hypergravity. We hypothesized that exposure to 2g would induce a decrease in 11BetaHSD-2 expression through the downregulation of DNA methylase 3a and GC receptor, along with concurrent upregulation in endogenous CRH, POMC, and vasopressin expression. Timed pregnant female rats were exposed to 2G from Gestational day 6 to Gestational day 20, and comparisons made with Stationary Control (SC) and Vivarium Control (VC) dams at 1G. Dams were euthanized and placentas harvested on G20. We homogenized placental tissues, extracted and purified RNA, synthesized cDNA, and quantified the expression levels of the genes of interest relative to the GAPDH housekeeping gene, using RT-qPCR and gene-specific cDNA probes. Elucidation of glucocorticoid transfer and synthesis in the placenta can provide new insights into the unique dynamics of mammalian development in microgravity and guide future multi-generational studies in space.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN44642 , American Society for Gravitational and Space Research; Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-19
    Description: The Origins Space Telescope (OST) is the mission concept for the Far Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. The science program that has been selected to drive the OST performance requirements is broad, covering four main themes: Charting the Rise of Metals, Dust, and the First Galaxies; Unveiling the Growth of Black Holes and Galaxies Over Cosmic Time; Tracing the Signatures of Life and the Ingredients of Habitable Worlds; and Characterizing Small Bodies in the Solar System. The OST telescope itself will have a primary mirror diameter of 8-15 m (depending on the launch vehicle that is selected), will be diffraction-limited at 40m, and will be actively cooled to approximately 5K. Five science instruments have been base-lined for the observatory: a heterodyne instrument covering 150-500 m with a spectral resolving power of R1e7; a low-spectral resolution (R500) spectrometer covering 35-500 m; a high-spectral resolution (R1e5) spectrometer covering 50-500 m; a far-infrared imager (R15) covering 35-500m; and a mid-infrared imagerspectrometer (R15-500) covering 6-40m. In addition to having a vastly higher sensitivity than the corresponding SOFIA instrumentation that will allow more detailed follow-up of SOFIAs discoveries, the OST mission will be configured to provide efficient large-area mapping, which will further complement SOFIAs science capabilities by providing new targets for study by SOFIA. Furthermore, new SOFIA instruments can provide an excellent testbed for the advanced far-infrared detector technologies what will be required to achieve the anticipated OST performance.
    Keywords: Astrophysics
    Type: ARC-E-DAA-TN38990 , Spectroscopy with SOFIA: New Results and Future Opportunities; Mar 05, 2017 - Mar 08, 2017; Ringberg; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-19
    Description: Electromagnetic (EM) accelerators have the potential to fill a performance range not currently being met by conventional chemical and electric propulsion systems by providing a specific impulse of 600-1000 seconds and a thrust-to-power ratio greater than 200 mN/kW. A propulsion system based on EM acceleration of small projectiles has the traditional advantages of using a pulsed system, including precise control over a range of thrust and power levels as well as rapid response and repetition rates. Furthermore, EM accelerators have lower power requirements than conventional electric propulsion systems since no plasma creation is necessary. A coilgun is a specific type of EM device where a high-current pulse through a coil of wire interacts with a conductive projectile via an induced magnetic field to accelerate the projectile. There are no physical or electrical connections to the projectile, which leads to less system degradation and a longer life expectancy. Multi-staging a coilgun by adding multiple turns on a single coil or on the projectile increases the inductance, thus permitting acceleration of the projectile to higher velocities. Previously, a simplified problem of modeling an inductively-coupled, single-coil coilgun using a circuit-based analysis coupled to the one-dimensional momentum equation through Lenz's law was solved; however, the analysis was only conducted on uncoupled coils. The problem is significantly more complicated when multiple, independently-powered coils simultaneously operate and interact with each other and the projectile through induced magnetic fields. This paper presents a multi-coil model developed with the magnetostatic finite element solver QuickField. In the model, mutual inductance values between pairs of conductors were found by first computing the magnetic field energy for different cases where individual coils or multiple coils carry current, then integrating over the entire finite element domain for each case, and finally using the definition of inductive energy storage to solve for the self and mutual inductance. The electric circuit model is coupled to the projectile through Lenz's law, with the coils coupled through mutual inductance but able to be independently triggered at different times to optimize the acceleration profile. This initial model to predict the behavior of a projectile's acceleration through a coupled, multi-coil coilgun increases the potential of building a highly efficient coilgun thruster with key advantages over other EM thruster systems, thus making it a promising candidate for satellite main propulsion or attitude control thrusters.
    Keywords: Electronics and Electrical Engineering
    Type: IAC Paper 2017-39915 , M17-5886 , International Astronautical Congress 2017 Space Propulsion Symposium; Sep 25, 2017 - Sep 29, 2017; Adelaide; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-19
    Description: Interest in passive wireless sensing has grown over the past few decades to meet demands in structural health monitoring.(Deivasigamani et al., 2013; Wilson and Juarez, 2014) This work describes a passive wireless sensor for monitoring strain, which does not have an embedded battery or chip. Without an embedded battery, the passive wireless sensor has the potential to maintain its functionality over long periods in remote/harsh environments. This work also focuses on monitoring small strain (less than 1000 micro-). The wireless sensing system includes a reader unit, a coil-like transponder, and a sensing unit. It operates in the Megahertz (MHz) frequency range, which allows for a few centimeters of separation between the reader and sensing unit during measurements. The sensing unit is a strain-sensitive piezoelectric resonator that maximizes the energy efficiency at the resonance frequency, so it converts nanoscale mechanical variations to detectable differences in electrical signal. In response to an external loading, the piezoelectric sensor breaks from its original electromechanical equilibrium, and the resonant frequency shifts as the system reaches a new balanced equilibrium. In this work, the fixture of the sensing unit is a small, sticker-like package that converts the surface strain of a test material to measurable shifts in resonant frequencies. Furthermore, electromechanical modeling provides a lumped-parameter model of the system to describe and predict the measured wireless signals of the sensor. Detailed characterization demonstrates how this wireless sensor has resolution comparable to that of conventional wired strain sensors for monitoring small strain.
    Keywords: Electronics and Electrical Engineering
    Type: M17-6166 , ASME International Mechanical Engineering Congress and Exposition (IMECE 2017); Nov 03, 2017 - Nov 09, 2017; Tampa, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: We present a robust method to characterize the gravitational wave emission from the remnant of a neutron star coalescence. Our approach makes only minimal assumptions about the morphology of the signal and provides a full posterior probability distribution of the underlying waveform. We apply our method on simulated data from a network of advanced ground-based detectors and demonstrate the gravitational wave signal reconstruction. We study the reconstruction quality for different binary configurations and equations of state for the colliding neutron stars. We show how our method can be used to constrain the yet-uncertain equation of state of neutron star matter. The constraints on the equation of state we derive are complimentary to measurements of the tidal deformation of the colliding neutron stars during the late inspiral phase. In the case of a nondetection of a post-merger signal following a binary neutron star inspiral we show that we can place upper limits on the energy emitted.
    Keywords: Astrophysics
    Type: MSFC-E-DAA-TN50593 , Physical Review D - Particles, Fields, Gravitation and Cosmology (ISSN 1550-7998) (e-ISSN 1550-2368); 96; 12; 124035
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: Context. X-ray spectra of accreting pulsars are generally observed to vary with their X-ray luminosity. In particular, the hardness of the X-ray continuum is found to depend on luminosity. In a few sources, the correlation between the energy of the cyclotron resonance scattering feature (CRSF) and the luminosity is clear. Different types (signs) of the correlation are believed to reflect different accretion modes. Aims. We analyse two NuSTAR observations of the transient accreting pulsar Cep X-4 during its 2014 outburst. Our analysis is focused on a detailed investigation of the dependence of the CRSF energy and of the spectral hardness on X-ray luminosity, especially on short timescales. Methods. To investigate the spectral changes as a function of luminosity within each of the two observations, we used the intrinsic variability of the source on the timescale of individual pulse cycles (tens of seconds), the so-called pulse-to-pulse variability. Results. We find that the NuSTAR spectrum of Cep X-4 contains two CRSFs: the fundamental line at ~30 keV and its harmonic at ~55 keV. We find for the first time that the energy of the fundamental CRSF increases and the continuum becomes harder with increasing X-ray luminosity not only between the two observations, that is, on the long timescale, but also within an individual observation, on the timescale of a few tens of seconds. We investigate these dependencies in detail including their non-linearity. We discuss a possible physical interpretation of the observed behaviour in the frame of a simple one-dimensional model of the polar emitting region with a collisionless shock formed in the infalling plasma near the neutron star surface. With this model, we are able to reproduce the observed variations of the continuum hardness ratio and of the CRSF energy with luminosity.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN60579 , Astronomy & Astrophysics (ISSN 0004-6361) (e-ISSN 1432-0746); 601; A126
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 keV from a simultaneous NuSTAR-Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swift BAT All-sky Hard X-ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observations have identified a single X-ray source from 0.5 to 50 keV as the counterpart for the first time. In the 0.5-10 keV band, the source had been classified as an X-ray Binary candidate in various Chandra and XMM-Newton studies; however, since it was not clearly associated with Swift J0042.6+4112, the previous E〈10 keV observations did not generate much attention. This source has a spectrum with a soft X-ray excess (kT 0.2 keV) plus a hard spectrum with a power law of G ~ 1 and a cutoff around 15-20 keV, typical of the spectral characteristics of accreting pulsars. Unfortunately, any potential pulsation was undetected in the NuSTAR data, possibly due to insufficient photon statistics. The existing deep HST images exclude high-mass (〉3 solar mass) donors at the location of this source. The best interpretation for the nature of this source is an X-ray pulsar with an intermediate-mass (〈3 solar mass) companion or a symbiotic X-ray binary. We discuss other possibilities in more detail.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN60569 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 838; 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: Context. Cyclotron resonant scattering features (CRSFs) are formed by scattering of X-ray photons o_ quantized plasma electrons in the strong magnetic field (of the order 1012 G) close to the surface of an accreting X-ray pulsar. Due to the complex scattering cross-sections, the line profiles of CRSFs cannot be described by an analytic expression. Numerical methods, such as Monte Carlo (MC) simulations of the scattering processes, are required in order to predict precise line shapes for a given physical setup, which can be compared to observations to gain information about the underlying physics in these systems.Aims. A versatile simulation code is needed for the generation of synthetic cyclotron lines. Sophisticated geometries should be investigatable by making their simulation possible for the first time.Methods. The simulation utilizes the mean free path tables described in the first paper of this series for the fast interpolation of propagation lengths. The code is parallelized to make the very time-consuming simulations possible on convenient time scales. Furthermore, it can generate responses to monoenergetic photon injections, producing Green's functions, which can be used later to generate spectra for arbitrary continua.Results. We develop a new simulation code to generate synthetic cyclotron lines for complex scenarios, allowing for unprecedented physical interpretation of the observed data. An associated XSPEC model implementation is used to fit synthetic line profiles to NuSTAR data of Cep X-4. The code has been developed with the main goal of overcoming previous geometrical constraints in MC simulations of CRSFs. By applying this code also to more simple, classic geometries used in previous works, we furthermore address issues of code verification and cross-comparison of various models. The XSPEC model and the Green's function tables are available online (see link in footnote, page 1).
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN60584 , Astronomy & Astrophysics (ISSN 2329-1273) (e-ISSN 2329-1265); 601
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: "This work presents updates to the coronagraph and telescope components of the Segmented Aperture Interfer-ometric Nulling Testbed (SAINT). The project pairs an actively-controlled macro-scale segmented mirror withthe Visible Nulling Coronagraph (VNC) towards demonstrating capabilities for the future space observatoriesneeded to directly detect and characterize a significant sample of Earth-sized worlds around nearby stars inthe quest for identifying those which may be habitable and possibly harbor life. Efforts to improve the VNCwavefront control optics and mechanisms towards repeating narrowband results are described. A narrative isprovided for the design of new optical components aimed at enabling broadband performance. Initial work withthe hardware and software interface for controlling the segmented telescope mirror is also presented."
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN66131 , GSFC-E-DAA-TN56939 , Techniques and Instrumentation for Detection of Exoplanets VIII; 10400; 104001l|SPIE Optics and Photonics; Aug 06, 2017 - Aug 10, 2017; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...