ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (300)
  • Life Sciences (General)  (161)
  • Aerodynamics  (139)
  • 2015-2019  (298)
  • 1980-1984
  • 1960-1964
  • 1925-1929  (2)
  • 2017  (155)
  • 2016  (143)
  • 1926  (2)
  • 1
    Publication Date: 2019-05-07
    Description: Responses of animals exposed to microgravity during in-space experiments were observed via available video recording stored in the NASA Ames Life Sciences Data Archive. These documented observations of animal behavior, as well as the range and level of activities during spaceflight, demonstrate that weightlessness conditions and the extreme novelty of the surroundings may exert damaging psychological stresses on the inhabitants. In response to a recognized need for in-flight animals to improve their wellbeing we propose to reduce such stresses by shaping and interrelating structures and surroundings to satisfying vital physiological needs of inhabitants. A Rodent Habitat Hardware System (RHHS) based housing facility incorporating a tubing network system, to maintain and monitor rodent health environment with advanced accessories has been proposed. Placing mice in a tubing-configured environment creates more natural space-restricted nesting environment for rodents, thereby facilitating a more comfortable transition to living in microgravity. A sectional tubing structure of the RHHS environment will be more beneficial under microgravity conditions than the provision of a larger space area that is currently utilized. The new tubing configuration was found suitable for further incorporation of innovative monitoring technology and accessories in the animal holding habitat unit which allow to monitor in real-time monitoring of valuable health related biological parameters under weightlessness environment of spaceflight.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN50007
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: This report is based on a study made by the writer as a member of the Special Committee on Design of Army Semirigid Airship RS-1 appointed by the National Advisory Committee for Aeronautics. The increasing interest in airships has made the problem of the potential flow of a fluid about an ellipsoid of considerable practical importance. In 1833 George Green, in discussing the effect of the surrounding medium upon the period of a pendulum, derived three elliptic integrals, in terms of which practically all the characteristics of this type of motion can be expressed. The theory of this type of motion is very fully given by Horace Lamb in his "Hydrodynamics," and applications to the theory of airships by many other writers. Tables of the inertia coefficients derived from these integrals are available for the most important special cases. These tables are adequate for most purposes, but occasionally it is desirable to know the values of these integrals in other cases where tabulated values are not available. For this reason it seems worth while to assemble a collection of formulae which would enable them to be computed directly from standard tables of elliptic integrals, circular and hyperbolic functions and logarithms without the need of intermediate transformations. Some of the formulae for special cases (elliptic cylinder, prolate spheroid, oblate spheroid, etc.) have been published before, but the general forms and some special cases have not been found in previous publications. (author)
    Keywords: Aerodynamics
    Type: NACA-TR-210
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: The design of complicated structures often presents problems of extreme difficulty which are frequently insoluble. In many cases, however, the solution can be obtained by tests on suitable models. These model tests are becoming so important a part of the design of new engineering structures that their theory has become a necessary part of an engineer's knowledge. For balloons and airships water models are used. These are models about 1/30 the size of the airship hung upside down and filled with water under pressure. The theory shows that the stresses in such a model are the same as in the actual airship. In the design of the Army Semirigid Airship RS-1 no satisfactory way was found to calculate the stresses in the keel due to the changing shape of the bag. For this purpose a water model with a flexible keel was built and tested. This report gives the theory of the design, construction, and testing of such a water model.
    Keywords: Aerodynamics
    Type: NACA-TR-211
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-15
    Description: Boundary-layer transition in hypersonic flows over a straight cone can be predicted using measured freestream spectra, receptivity, and threshold values for the wall pressure fluctuations at the transition onset points. Simulations are performed for hypersonic boundary-layer flows over a 7-degree half-angle straight cone with varying bluntness at a freestream Mach number of 10. The steady and the unsteady flow fields are obtained by solving the two-dimensional Navier-Stokes equations in axisymmetric coordinates using a 5th-order accurate weighted essentially nonoscillatory (WENO) scheme for space discretization and using a third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The calculated N-factors at the transition onset location increase gradually with increasing unit Reynolds numbers for flow over a sharp cone and remain almost the same for flow over a blunt cone. The receptivity coefficient increases slightly with increasing unit Reynolds numbers. They are on the order of 4 for a sharp cone and are on the order of 1 for a blunt cone. The location of transition onset predicted from the simulation including the freestream spectrum, receptivity, and the linear and the weakly nonlinear evolutions yields a solution close to the measured onset location for the sharp cone. The simulations overpredict transition onset by about twenty percent for the blunt cone.
    Keywords: Aerodynamics
    Type: NF1676L-26446 , AIAA Journal (ISSN 0001-1452) (e-ISSN 1533-385X); 56; 1; 193-208
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-26
    Description: Optimal initial conditions for transient growth in a two-dimensional boundary layer flow correspond to stationary, counter-rotating vortices that subsequently develop into streamwise elongated streaks, which are characterized by an alternating pattern of low and high streamwise velocity. For incompressible flows, previous studies have shown that boundary layer modulation due to streaks below a threshold amplitude level can stabilize the Tollmien-Schlichting instability waves, resulting in a delay in the onset of laminar-turbulent transition. In the supersonic regime, the linearly, most-amplified waves become three-dimensional, corresponding to oblique, first-mode waves. This change in the character of dominant instabilities leads to an important change in the transition process, which is now dominated by oblique breakdown via nonlinear interactions between pairs of first-mode waves that propagate at equal but opposite angles with respect to the free stream. Because the oblique breakdown process is characterized by a rapid amplification of stationary streamwise streaks, artificial excitation of such streaks may be expected to promote transition in a supersonic boundary layer. Indeed, suppression of those streaks has been shown to delay the onset of transition in prior literature. Consistent with those findings, the present study shows that optimally growing stationary streaks indeed destabilize the first-mode waves, but only when the spanwise wavelength of the instability waves is equal to or smaller than twice the streak spacing. Transition in a benign disturbance environment typically involves first-mode waves with significantly longer spanwise wavelengths, and hence, these waves are stabilized by the optimal growth streaks. Thus, as long as the amplification factors for the destabilized, short wavelength instability waves remain below the threshold level for transition, a significant net stabilization is achieved, yielding a transition delay that is comparable to the length of the laminar region in the uncontrolled case.
    Keywords: Aerodynamics
    Type: NF1676L-26301 , Journal of Fluid Mechanics (ISSN 0022-1120) (e-ISSN 1469-7645); 831; 524-553
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-11
    Description: Femtosecond laser electronic excitation tagging (FLEET) velocimetry was used to study the flowfield around a symmetric, transonic airfoil in the NASA Langley 0.3-m TCT facility. A nominal Mach number of 0.85 was investigated with a total pressure of 125 kPa and total temperature of 280 K. Two-components of velocity were measured along vertical profiles at different locations above, below, and aft of the airfoil at angles of attack of 0, 3.5, and 7. Velocity profiles within the wake showed sufficient accuracy, precision, and sensitivity to resolve both the mean and fluctuating velocities and general flow physics such as shear layer growth. Evidence of flow separation is found at high angles of attack. Velocity measurements were assessed for their accuracy, precision, dynamic range, spatial resolution, and overall measurement uncertainty as they relate to the present experiments. Measurement precisions as low as 1 m/s were observed, while the velocity dynamic range was found to be nearly a factor of 500. The spatial resolution of between 1 mm and 5 mm was found to be primarily limited by the FLEET spot size and advection of the flow. Overall measurement uncertainties ranged from 3 to 4 percent.
    Keywords: Aerodynamics
    Type: NF1676L-26518 , AIAA Journal (ISSN 0001-1452) (e-ISSN 1533-385X); 55; 12; 4142-4154
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-08
    Description: A coupling between geomagnetic activity and the human nervous system's function was identified by virtue of continuous monitoring of heart rate variability (HRV) and the time-varying geomagnetic field over a 31-day period in a group of 10 individuals who went about their normal day-to-day lives. A time series correlation analysis identified a response of the group's autonomic nervous systems to various dynamic changes in the solar, cosmic ray, and ambient magnetic field. Correlation coefficients and p values were calculated between the HRV variables and environmental measures during three distinct time periods of environmental activity. There were significant correlations between the group's HRV and solar wind speed, Kp, Ap, solar radio flux, cosmic ray counts, Schumann resonance power, and the total variations in the magnetic field. In addition, the time series data were time synchronized and normalized, after which all circadian rhythms were removed. It was found that the participants' HRV rhythms synchronized across the 31-day period at a period of approximately 2.5 days, even though all participants were in separate locations. Overall, this suggests that daily autonomic nervous system activity not only responds to changes in solar and geomagnetic activity, but is synchronized with the time-varying magnetic fields associated with geomagnetic field-line resonances and Schumann resonances.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN56494 , International Journal of Environmental Research and Public Health (ISSN 1661-7827) (e-ISSN 1660-4601); 14; 7; 770
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-26
    Description: Future long duration missions outside the protection of the Earth's magnetosphere, or unshielded exposures to solar particle events, achieves total doses capable of causing cancellous bone loss. Cancellous bone loss caused by ionizing radiation occurs quite rapidly in rodents: Initially, radiation increases the number and activity of bone-resorbing osteoclasts, followed by decrease in bone forming osteoblast cells. Here we report that Dried Plum (DP) diet completely prevented cancellous bone loss caused by ionizing radiation (Figure 1). DP attenuated marrow expression of genes related to bone resorption (Figure 2), and protected the bone marrow-derived pre-osteoblasts ex vivo from total body irradiation (Figure 3). DP is known to inhibit resorption in models of aging and ovariectomy-induced osteopenia; this is the first report that dietary DP is radioprotective.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN28133 , NASA Human Research Program Investigators’ Workshop (HRP IWS 2016) ; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-26
    Description: The detrimental effects of mechanical unloading in microgravity, including the musculo-skeletal system, are well documented. However, the effects of mechanical unloading on joint health and the interaction between bone and cartilage specifically, are less well known. Our ongoing studies with the mouse bone model have identified the failure of normal stem cell-based tissue regeneration, in addition to tissue degeneration, as a significant concern for long-duration spaceflight, especially in the mesenchymal and hematopoietic tissue lineages. Furthermore, we have identified the cell cycle arrest molecule, CDKN1ap21, as specifically up-regulated during spaceflight exposure and localized to osteoprecursors on the bone surface and chondroprogenitors in articular cartilage that are both required for normal tissue regeneration. The 30-day BionM1 and 37-day Rodent Research 1 (RR1) missions enabled the possibility of studying these effects in long-duration microgravity experiments. We hypothesized that the inhibition of stem cell-based tissue regeneration in short-duration spaceflight would continue during long-duration spaceflight resulting in significant tissue alterations and we specifically studied the hip joint (pelvis and proximal femur) to elucidate these effects. To test this hypothesis we analyzed bone and bone marrow stem cells using techniques including high-resolution Microcomputed Tomography (MicroCT), in-vivo differentiation and migration assays, and whole transcriptome expression profiling. We found that exposure to spaceflight for 30 days results in a significant decrease in bone volume fraction (-31), trabecular thickness (-14) and trabecular number (-20). Similar decrements in bone volume fraction (-27), trabecular number (-13) and trabecular thickness (-17) were found in female mice exposed to 37 days spaceflight. Furthermore, high-resolution MicroCT and immunohistochemical analysis of spaceflight tissues revealed a severe disruption of the epiphyseal boundary, resulting in endochondral ossification of the femoral head and perforation of articular cartilage by bone. This suggests that spaceflight in microgravity may cause rapid induction of an aging-like phenotype with signs of osteoarthritic disease in the hip joint. Microarray analysis also revealed that the top pathways altered during spaceflight include activation of matrix metalloproteinases, oxidative stress signaling and inflammation in both whole bone tissue and isolated bone marrow stem cells. In conclusion, the observed inhibition of stem cell-based tissue regeneration persists during long-duration spaceflight. Furthermore, spaceflight mice exhibit disruption of the epiphyseal boundary and endochondral ossification of the femoral head, and an inhibition of stem cell based tissue regeneration, which, taken together, may indicate onset of an accelerated aging phenotype with signs of osteoarthritic disease.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN43927 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-26
    Description: Broad tissue degeneration and the failure of normal tissue regenerative processes in microgravity because of mechanical unloading are increasing concerns for sustaining life in space as the duration of future flight missions increases. Work in our laboratory has identified normal adult stem cell-based tissue regenerative processes, such as the formation of new bone, cartilage, and immune cells, as being particularly sensitive to the stresses of mechanical unloading in microgravity. Our studies have also identified the inhibition of differentiation of marrow mesenchymal stem cells and activation of CDKN1ap21-mediated cell cycle arrest in proliferative osteoprecursor cells on the bone surface as potential mechanisms for spaceflight-induced skeletal changes. This finding, in combination with the role of CDKN1ap21 as a suppressor of mammalian tissue regeneration, suggests that this gene could be responsible for suppressing stem cell-based tissue regeneration in response to disuse. In this work, we hypothesized that CDKN1ap21 regulates regenerative bone formation in response to alterations in mechanical load and tested this hypothesis by studying the skeletal phenotype and stem cell regenerative ability of juvenile (4-11 weeks old) and adult (18 weeks-12 months old) p21 (--) knockout (KO) mice. Additionally, we analyzed bone micro-architectural properties, bone formation rates and differentiation capacity of bone marrow stem cells (BMSCs) from male and female KO mice exposed to hindlimb unloading (HU) for 15-30 days. We found that juvenile KO mice exhibited increased femoral trabecular and cortical bone formation, whilst three-point bending of the tibias from KO mice showed decreased bone stiffness. Conversely, adult KO mice exhibited no significant differences in micro-architectural properties compared to WT (wild-type) but woven bone structure was indicative of rapid bone remodeling. Furthermore, cortical bone properties showed similar characteristics to aged bone, including increased cross-sectional area and perimeter, whilst three-point bending showed increased stiffness and toughness. Interestingly, in-vitro, KO mice exhibited increased differentiation and mineralized nodule formation in osteoblastogenesis assays compared to WT. Preliminary results from CDKN1ap21 KO mice subjected to HU suggest altered sensitivity to mechanical unloading resulting in decreased cortical thickness compared to WT mice. However, KO mice subjected to short and long-duration HU show increased in-vitro differentiation potential of BMSCs to from form mature, mineral-forming osteoblasts, indicating maintenance of regenerative potential. Analysis of bone formation rates, cell proliferation rates and key genes of interest are currently underway. These results indicate a novel role for CDKN1ap21 in load-dependent osteoprogenitor proliferation and differentiation and that deletion of CDKN1ap21 results in an age-dependent release of osteoblast proliferation inhibition and increased bone formation and turnover.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN43922 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-19
    Description: Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing radiation.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN27437 , Biophysical Society Annual Meeting; Feb 27, 2016 - Mar 02, 2016; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-19
    Description: This status report corresponds to two studies tied to an animal experiment being executed at the University of California Davis (Charles Fuller's laboratory). The animal protocol uses the well-documented rat hindlimb suspension (HLS) model, to examine the relationship between cephalic fluid shifts and the regulation of intracranial (ICP) and intraocular (IOP) pressures as well as visual system structure and function. Long Evans rats are subjected to HLS durations of 7, 14, 28 and 90 days. Subgroups of the 90-day animals are studied for recovery periods of 7, 14, 28 or 90 days. All HLS subjects have age-matched cage controls. Various animal cohorts are planned for this study: young males, young females and old males. In addition to the live measures (ICP by telemetry, IOP and retinal parameters by optical coherence tomography) which are shared with the Fuller study, the specific outcomes for this study include: -Gene expression analysis of the retina -Histologic analysis - Analysis of the microvasculature of retina flat mounts by NASA's VESsel GENeration Analysis (VESGEN) Software. To date, the young male and female cohorts are being completed. Due to the need to keep technical variation to a minimum, the histologic and genomic analyses have been delayed until all samples from each cohort are available and can be processed in a single batch per cohort. The samples received so far correspond to young males sacrificed at 7,14, 28 and 90 days of HLS and at 90 days of recovery; and from young females sacrificed at 7, 14 and 28 of HLS. A complementary study titled: "A gene expression and histologic approach to the study of cerebrospinal fluid (CSF) production and outflow in hindlimb suspended rats" seeks to study the molecular components of CSF production and outflow modulation as a result of HLS, bringing a molecular and histologic approach to investigate genome wide expression changes in the arachnoid villi and choroid plexus of HLS rats compared to rats in normal posture.
    Keywords: Life Sciences (General)
    Type: JSC-CN-34661 , 2016 NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-19
    Description: The translational Vestibulo-Ocular Reflex (tVOR) is an important otolith-mediated response to stabilize gaze during natural locomotion. One goal of this study was to develop a measure of the tVOR using a simple hand-operated chair that provided passive vertical motion. Binocular eye movements were recorded with a tight-fitting video mask in ten healthy subjects. Vertical motion was provided by a modified spring-powered chair (swopper.com) at approximately 2 Hz (+/- 2 cm displacement) to approximate the head motion during walking. Linear acceleration was measured with wireless inertial sensors (Xsens) mounted on the head and torso. Eye movements were recorded while subjects viewed near (0.5m) and far (approximately 4m) targets, and then imagined these targets in darkness. Subjects also provided perceptual estimates of target distances. Consistent with the kinematic properties shown in previous studies, the tVOR gain was greater with near targets, and greater with vision than in darkness. We conclude that this portable chair system can provide a field measure of otolith-ocular function at frequencies sufficient to elicit a robust tVOR.
    Keywords: Life Sciences (General)
    Type: JSC-CN-34422 , Association for Research in Otolaryngology; Feb 20, 2016 - Feb 24, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-20
    Description: Established research has illustrated that moderate exposure to stress in the womb influences both adult phonotype and genotype for several physiological pathways, especially in males. Proposed explanations include adaptions made by the fetus resulting from a limited supply of nutrients, referred to as the thrifty phenotype. In this study, we examine this fetal programming effect on the appetite control and energy expenditure pathways in prenatally stressed adult male offspring. Subjects were male rats born from time-mated female rats exposed to unpredictable, variable prenatal stress (UVPS) throughout gestation. An analysis of the adult male rat offspring genetic expression of epididymal fat pads and the plasma concentrations of hormones involved in appetite control and energy expenditure pathways showed a significantly diminished expression of leptin and adiponectin compared to unstressed controls. Leptin and adiponectin are both major hormones involved in the appetite control and energy expenditure pathways, with leptin regulating energy balance due to its function as an inhibitor of hunger, and adiponectin modulating glucose levels and fatty acid breakdown. We observed higher leptin concentrations within the prenatally stressed male plasma, and lower expression of leptin (OB) and adiponectin (ADIPOQ) genes from the epididymal fat pads. We suggest that elevated leptin in the plasma elicited a negative feedback effect on OB expression levels, decreasing their quantification compared to control animals. Further analysis will include plasma quantification of insulin and glucose, as well as expression of ghrelin, a peptide which acts on the central nervous system and the bodys perception of hunger.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN33060 , International Society for Development Psychobiology (ISDP) Annual Meeting; Nov 09, 2016 - Nov 11, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-20
    Description: This work is a simulation technology demonstrator, of sweep jets used to suppress boundary layer separation and increase maximum achievable load coefficients. A sweep jet is a discrete Coanda jet that oscillates in the plane parallel to an aerodynamic surface. It injects mass and momentum in the approximate stream wise direction. It also generate turbulent eddies at the oscillation frequency, which are typically large relative to boundary layer turbulence, and which augmenting mixing across the boundary layer to attack flow separation. Simulations of a fluidic oscillator, the sweep jet emerging from the oscillator, and the suppression of boundary layer separation by an array of sweep jets are performed. Simulation results are compared to data from a dedicated CFD validation experiment of a single oscillator and its sweep jet, and from a study of a full-scale Boeing 757 vertical tail augmented with an array of sweep jets.2, 20 A critical step in the work is the development of realistic time-dependent sweep-jet in flow boundary conditions, derived from the results of the single-oscillator simulations, which create the sweep jets in the full-tail simulations. Simulations were performed using the Over flow CFD solver, with high-order spatial discretization and a range of turbulence modeling. Good results were obtained for all flows simulated, when suitable turbulence modeling was used.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN28318 , 2016 AIAA Science and Technology Forum and Exposition; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-20
    Description: In support of air revitalization system sorbent selection for future space missions, Ames Research Center (ARC) has performed CO2 capacity tests on various sorbents to complement structural strength tests from Marshall Space Flight Center (MSFC). The materials of interest are: Grace Davison Grade 544 13x, Honeywell UOP APG III, VSA-10, BASF 13x, and Grace Davison Grade 522 5A. Each sorbents CO2 capacity was measured using a Micromeritics ASAP 2020 Physisorption Volumetric Analysis machine to produce 0C, 10C, 25C, 50C, and 75C isotherms. These datasets were then extrapolated using Langmuir 3-Site and Toth isotherm models to compare with previously measured capacity data from MSFC using a thermogravimetric analysis approach. The modeling and extrapolation from ARC data correlated well with data measured at MSFC.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN37094 , International Conference for Environmental Systems (ICES); Jul 16, 2016 - Jul 20, 2016; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-20
    Description: From a micro-biology perspective, directed evolution is a technique that uses controlled environmental pressures to select for a desired phenotype. Directed evolution has the distinct advantage over rational design of not needing extensive knowledge of the genome or pathways associated with a microorganism to induce phenotypes. However, there are currently limitations to the applicability of this technique including being time-consuming, error-prone, and dependent on existing assays that may lack selectivity for the given phenotype. The AADEC (Autonomous Adaptive Directed Evolution Chamber) system is a proof-of-concept instrument to automate and improve the technique such that directed evolution can be used more effectively as a general bioengineering tool. A series of tests using the automated system and comparable by-hand survival assay measurements have been carried out using UV-C radiation and Escherichia coli cultures in order to demonstrate the advantages of the AADEC versus traditional implementations of directed evolution such as random mutagenesis. AADEC uses UV-C exposure as both a source of environmental stress and mutagenesis, so in order to evaluate the UV-C tolerance obtained from the cultures, a manual UV-C exposure survival assay was developed alongside the device to compare the survival fractions at a fixed dosage. This survival assay involves exposing E. coli to UV-C radiation using a custom-designed exposure hood to control the flux and dose. Surviving cells are counted then transferred to the next iteration and so on for several iterations to calculate the survival fractions for each exposure iteration.This survival assay primarily serves as a baseline for the AADEC device, allowing quantification of the differences between the AADEC system over the manual approach. The primary data of comparison is survival fractions; this is obtained by optical density and plate counts in the manual assay and by optical density growth curve fits pre- and post-exposure in the automated case. This data can then be compiled to calculate trends over the iterations to characterize increasing UV-C resistance of the E.coli strains. The observed trends are statistically indistinguishable through several iterations from both sources.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN37497 , American Geophysical Union Fall Meeting (AGU 2016); Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-19
    Description: Exposure to stress in the womb shapes neurobiological and physiological outcomes of offspring in later life, including body weight regulation and metabolic profiles. Our previous work utilizing a centrifugation-induced hypergravity demonstrated significantly increased (8-15) body mass in male, but not female, rats exposed throughout gestation to chronic 2-g from conception to birth. We reported the same outcome in adult offspring exposed throughout gestation to Unpredictable Variable Prenatal Stress (UVPS). Here we examine gene expression changes using our UVPS model to identify a potential role for prenatal stress in this hypergravity programming effect. Specifically we focused on appetite control and energy expenditure pathways in prenatally stressed adult (90-day-old) male Sprague-Dawley rats. Time-mated female rats were exposed throughout their 22-day pregnancy to UVPS consisting of white noise, strobe light, and tube restraint individually once per day on an unpredictable schedule for 15, 30 or 60 min. To control for potential changes in postnatal maternal care, newborn pups were fostered to non-manipulated, newly parturient dams. At 90-days of age, we analyzed plasma concentrations of hormones involved in appetite control and energy expenditure (leptin and adiponectin), and quantified expression of key genes in epididymal fat pads harvested from adult male offspring and controls. Leptin regulates energy balance by inhibiting hunger, and adiponectin modulates glucose levels and fatty acid breakdown. Our findings indicate significantly elevated plasma leptin concentrations and reduced expression of epididymal fat leptin (OB) and adiponectin (ADIPOQ) genes compared to controls. Analyses presently underway include quantification of plasma insulin and glucose, and the expression of ghrelin, a peptide that acts on the central nervous system and the body's perception of hunger. Collectively, these findings will further understanding of the consequences of UVPS on body weight regulation and metabolism, and provide further insight into the effect of gravity modulation on mammalian fetal development.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN33631 , Annual Meeting American Society for Gravitational and Space Research (ASGSR 2016); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: For successful cell research, the growth culture environment must be tightly controlled. Deviance from the optimal conditions will mask the desired variable being analyzed or lead to inconstancies in the results. In standard laboratories, technology and procedures are readily available for the reliable control of variables such as temperature, pH, nutrient loading, and dissolved gases. Due to the nature of spaceflight, and the inherent constraints to engineering designs, these same elements become a challenge to maintain at stable values by both automated and manual approaches. Launch mass, volume, and power usage create significant constraints to cell culture systems; nonetheless, innovative solutions for active environmental controls are available. The acidity of the growth media cannot be measured through standard probes due to the degradation of electrodes and reliance on indicators for chromatography. Alternatively, carbon dioxide sensors are capable of monitoring the pH by leveraging the relationship between the partial pressure of carbon dioxide and carbonic acid in solution across a membrane. In microgravity cell growth systems, the gas delivery system can be used to actively maintain the media at the proper acidity by maintaining a suitable gas mixture around permeable tubing. Through this method, launch mass and volume are significantly reduced through the efficient use of the limited gas supply in orbit.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36807 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: Exposure to stress in the womb shapes neurobiological and physiological outcomes of offspring in later life, including body weight regulation and metabolic profiles. Our previous work utilizing a centrifugation-induced hyper-gravity demonstrated significantly increased (8-15%) body mass in male, but not female, rats exposed throughout gestation to chronic 2-g from conception to birth. We reported a similar outcome in adult offspring exposed throughout gestation to Unpredictable Variable Prenatal Stress (UVPS). Here we examine gene expression changes and the plasma of animals treated with our UVPS model to identify a potential role for prenatal stress in this hypergravity programming effect. Specifically we focused on appetite control and energy expenditure pathways in prenatally stressed adult (90-day-old) male Sprague-Dawley rats.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36744 , Annual Meeting of the American Society of Gravitational and Space Research (ASGSR) 2016; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: Mechanical unloading during spaceflight is known to adversely affect mammalian physiology. Our previous studies using the Animal Enclosure Module on short duration Shuttle missions enabled us to identify a deficit in stem cell based-tissue regeneration as being a significant concern for long-duration spaceflight. Specifically, we found that mechanical unloading in microgravity resulted in inhibition of differentiation of mesenchymal and hematopoietic stem cells in the bone marrow compartment. Also, we observed overexpression of a cell cycle arrest molecule, CDKN1ap21, in osteoprecursor cells on the bone surface, chondroprogenitors in the articular cartilage, and in myofibers attached to bone tissue. Specifically in bone tissue during both short (15-day) and long (30-day) microgravity experiments, we observed significant loss of bone tissue and structure in both the pelvis and the femur. After 15-days of microgravity on STS-131, pelvic ischium displayed a 6.23 decrease in bone fraction (p0.005) and 11.91 decrease in bone thickness (p0.002). Furthermore, during long-duration spaceflight we observed onset of an accelerated aging-like phenotype and osteoarthritic disease state indicating that stem cells within the bone tissue fail to repair and regenerate tissues in a normal manner, leading to drastic tissue alterations in response to microgravity. The Rodent Research Hardware System provides the capability to investigate these effects during long-duration experiments on the International Space Station. During the Rodent Research-1 mission 10 16-week-old female C57Bl6J mice were exposed to 37-days of microgravity. All flight animals were euthanized and frozen on orbit for future dissection. Ground (n10) and vivarium controls (n10) were housed and processed to match the flight animal timeline. During this study we collected pelvis, femur, and tibia from all animal groups to test the hypothesis that stem cell-based tissue regeneration is significantly altered after 37-days of spaceflight. To do this, we will analyze differences in bone morphometric parameters using MicroCT. The pelvis, femur, and tibia are key in supporting and distributing weight under normal conditions. Therefore, we expect to see altered remodeling in flight animals in response to microgravity with respect to ground controls. In combination with histomorphometry, these results will help elucidate the complex mechanisms underlying bone tissue maintenance and stem cell regeneration.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36752 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-13
    Description: During adaptation to the microgravity environment, adult mammals experience stress mediated by the Hypothalamic-Pituitary-Adrenal axis. In our previous studies of pregnant rats exposed to 2-g hypergravity via centrifugation, we reported decreased corticosterone and increased body mass and leptin in adult male, but not female, offspring. In this study, we utilized Unpredictable Variable Prenatal Stress to simulate the stressors of spaceflight by exposing dams to different stressors. Stress response modulation occurs via both positive and negative feedback in the hypothalamus, anterior pituitary gland, and adrenal cortex resulting in the differential release of corticosterone (CORT), a murine analog to human cortisol.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36746 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. A handful of papers have previously reported behavior of mice and rats in the weightless environment of space. The Rodent Research Hardware and Operations Validation (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS (International Space Station). Ten adult (16-week-old) female C57BL/6 mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in microgravity. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the Rodent Habitat (RH) during this long-duration flight. Video was recorded for 33 days on the ISS, permitting daily assessments of overall health and well-being of the mice, and providing a valuable repository for detailed behavioral analysis. We previously reported that, as compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Overall activity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized 'circling' or 'race-tracking' behavior that emerged within the first few days of flight following a common developmental sequence, and comprised the primary dark cycle activity persisting throughout the remainder of the experiment. Participation by individual mice increased dramatically over the course of the flight. Here we present a detailed analysis of 'race-tracking' behavior in which we quantified: (1) Complete lap rotations by individual mice; (2) Numbers of collisions between circling mice; (3) Lap directionality; and (4) Recruitment of mice into a group phenotype. This analysis contributes to the first NASA long-duration study of rodent behavior, providing evidence for the emergence of a distinctive, organized group behavior unique to the weightless space environment.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36632 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR 2016); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: Venation patterning in leaves is a major determinant of photosynthesis efficiency because of its dependency on vascular transport of photo-assimilates, water, and minerals. Arabidopsis thaliana grown in microgravity show delayed growth and leaf maturation. Gene expression data from the roots, hypocotyl, and leaves of A. thaliana grown during spaceflight vs. ground control analyzed by Affymetrix microarray are available through NASA's GeneLab (GLDS-7). We analyzed the data for differential expression of genes in leaves resulting from the effects of spaceflight on vascular patterning. Two genes were found by preliminary analysis to be up-regulated during spaceflight that may be related to vascular formation. The genes are responsible for coding an ARGOS (Auxin-Regulated Gene Involved in Organ Size)-like protein (potentially affecting cell elongation in the leaves), and an F-box/kelch-repeat protein (possibly contributing to protoxylem specification). Further analysis that will focus on raw data quality assessment and a moderated t-test may further confirm up-regulation of the two genes and/or identify other gene candidates. Plants defective in these genes will then be assessed for phenotype by the mapping and quantification of leaf vascular patterning by NASA's VESsel GENeration (VESGEN) software to model specific vascular differences of plants grown in spaceflight.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36715 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR 2016); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: JSC-CN-37455 , International Astronautical Congress (IAC); Sep 26, 2016 - Sep 30, 2016; Guadalajara; Mexico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: A series of aeroelastic optimization problems are solved on a high aspect ratio wingbox of the Common Research Model, in an effort to minimize structural mass under coupled stress, buckling, and flutter constraints. Two technologies are of particular interest: tow steered composite laminate skins and curvilinear stiffeners. Both methods are found to afford feasible reductions in mass over their non-curvilinear structural counterparts, through both distinct and shared mechanisms for passively controlling aeroelastic performance. Some degree of diminishing returns are seen when curvilinear stiffeners and curvilinear fiber tow paths are used simultaneously.
    Keywords: Aerodynamics
    Type: NF1676L-22826 , 2016 AIAA Aviation Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.
    Keywords: Aerodynamics
    Type: NF1676L-22595 , 2016 AIAA Aviation Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerodynamics
    Type: DFRC-E-DAA-TN32736 , AIAA Aviation 2016 Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: The aerodynamic effects of compliant flaps installed onto a modified Gulfstream III airplane were investigated. Analyses were performed prior to flight to predict the aerodynamic effects of the flap installation. Flight tests were conducted to gather both structural and aerodynamic data. The airplane was instrumented to collect vehicle aerodynamic data and wing pressure data. A leading-edge stagnation detection system was also installed. The data from these flights were analyzed and compared with predictions. The predictive tools compared well with flight data for small flap deflections, but differences between predictions and flight estimates were greater at larger deflections. This paper describes the methods used to examine the aerodynamics data from the flight tests and provides a discussion of the flight-test results in the areas of vehicle aerodynamics, wing sectional pressure coefficient profiles, and air data.
    Keywords: Aerodynamics
    Type: DFRC-E-DAA-TN31619 , Aviation 2016; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: Computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a Gulfstream G-III airplane (Gulfstream Aerospace Corporation, Savannah, Georgia) swept wing modified with an experimental seamless, compliant flap called the Adaptive Compliant Trailing Edge (ACTE) flap. The stall characteristics of the modified ACTE wing were analyzed and compared with the unmodified, clean wing at the flight speed of 120 knots and altitude of 2300 feet above mean sea level, in free air as well as in ground effect. A polyhedral finite-volume unstructured full Navier-Stokes CFD code, STAR-CCM (registered trademark) plus (CD-adapco [Computational Dynamics Limited, United Kingdom, and Analysis & Design Application Co., United States]), was used. Steady Reynolds-averaged Navier-Stokes CFD simulations were conducted for a clean wing and the ACTE wings at various ACTE deflection angles in free air (-2 degrees, 15 degrees, and 30 degrees) as well as in ground effect (15 degrees and 30 degrees). Solution sensitivities to grid densities were examined. In free air, the ACTE wings are predicted to stall at lower angles of attack than the clean wing. In ground effect, all wings are predicted to stall at lower angles of attack than the corresponding wings in free air. Even though the lift curves are higher in ground effect than in free air, the maximum lift coefficients for all wings are lower in ground effect. Finally, the lift increase due to ground effect for the ACTE wing is predicted to be less than the clean wing.
    Keywords: Aerodynamics
    Type: DFRC-E-DAA-TN32023 , AIAA Applied Aerodynamics Conference; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: The NASA Environmentally Responsible Aviation (ERA) Project sponsored a series of computational and experimental investigations of the propulsion and airframe integration issues associated with Hybrid-Wing-Body (HWB) or Blended-Wing-Body (BWB) configurations. NASA collaborated with Boeing Research and Technology (BR&T) to conduct this research on a new twin-engine Boeing BWB transport configuration. The experimental investigations involved a series of wind tunnel tests with a 5.75-percent scale model conducted in two low-speed wind tunnels. This testing focused on the basic aerodynamics of the configuration and selection of the leading edge Krueger slat position for takeoff and landing. This paper reviews the results and analysis of these low-speed wind tunnel tests.
    Keywords: Aerodynamics
    Type: NF1676L-21491 , AIAA 2016 Science and Technology Forum; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-13
    Description: A concerted effort has been underway over the past several years to evolve computational capabilities for modeling aircraft loss-of-control under the NASA Aviation Safety Program. A principal goal has been to develop reliable computational tools for predicting and analyzing the non-linear stability & control characteristics of aircraft near stall boundaries affecting safe flight, and for utilizing those predictions for creating augmented flight simulation models that improve pilot training. Pursuing such an ambitious task with limited resources required the forging of close collaborative relationships with a diverse body of computational aerodynamicists and flight simulation experts to leverage their respective research efforts into the creation of NASA tools to meet this goal. Considerable progress has been made and work remains to be done. This paper summarizes the status of the NASA effort to establish computational capabilities for modeling aircraft loss-of-control and offers recommendations for future work.
    Keywords: Aerodynamics
    Type: NF1676L-21486 , AIAA Aerospace Sciences Meeting (Sci-Tech 2016); Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: Information on nest temperatures of the American Alligator (Alligator mississippiensis) constructed in the wild is limited. Nesting temperatures during a critical thermal sensitive period determine the sex of alligators and are therefore critical in establishing the sex biases in recruitment efforts of alligators within a given community. Nest components, varying environmental conditions, and global warming could have a significant impact on nest temperatures, thus affecting future generations of a given population. One hundred and seventy four programmable thermistors were inserted into fifty eight nests from 2010 through 2015 nesting cycles. Three thermistors were placed inside each nest cavity (one on top of the eggs, one in the middle of the eggs, and one at the bottom of the clutch of the eggs) to collect temperature profiles in the incubation chamber and throughout the entire incubation period. One thermistor was also placed near or above these nests to obtain an ambient air temperature profile. Once retrieved, data from these thermistors were downloaded to examine temperature profiles throughout the incubation period as well as during the period of sexual determination. These data would help establish survival rates related to nest temperature and predict sex ratio of recruited neonates at the Kennedy Space Center. Over three million temperatures have been recorded since 2010 for the alligator thermistor study giving us insight to the recruitment efforts found here. Precipitation was the largest influence on nesting temperatures outside of daily photoperiod, with immediate changes of up to eight degrees Celsius.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN31423 , Working Meeting of the Crocodile Specialist Group; May 23, 2016 - May 27, 2016; Sakuza; South Africa
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: Growing vegetable crops in space will be an essential part of sustaining astronauts during long-range missions. To drive photosynthesis, red and blue light-emitting diodes (LEDs) have attracted attention because of their efficiency, longevity, small size, and safety. In efforts to optimize crop yield, there is also recent interest in analyzing the subtle effects of additional wavelengths on plant growth. For instance, since plants often look purplish gray under red and blue LEDs, the addition of green light allows easy recognition of disease and the assessment of plant health status. However, it is important to know if wavelengths outside the traditional red and blue wavebands have a direct effect on enhancing or hindering the mechanisms involved in plant growth. In this experiment, a comparative study was performed on two short cycle crops of red romaine lettuce (Lactuca sativa cv. "Outredgeous") and radish (Raphanus sativa cv. 'Cherry Bomb'), which were grown under two light treatments. The first treatment being red (630 nm) and blue (450 nm) LEDs alone, while the second treatment consisted of daylight tri-phosphor fluorescent lamps (CCT approximately 5000 K) at equal photosynthetic photon flux (PPF). The treatment effects were evaluated by measuring the fresh biomass produced, plant morphology and leaf dimensions, leaf chlorophyll content, and adenosine triphosphate (ATP) within plant leaf/storage root tissues.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN30693 , International Symposium on Light in Horticulture; May 22, 2016 - May 26, 2016; East Lansing, MI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: The Columbia Scientific Balloon Facility provides Telemetry and Command systems necessary for balloon operations and science support. There are various Line-Of-Sight (LOS) and Over-The-Horizon (OTH) systems and interfaces that provide communications to and from a science payload. This presentation will discuss the current data throughput options available and future capabilities that may be incorporated in the LDB Support Instrumentation Package (SIP) such as doubling the TDRSS data rate. We will also explore some new technologies that could potentially expand the data throughput of OTH communications.
    Keywords: Aerodynamics
    Type: GSFC-E-DAA-TN32044 , The Scientific Ballooning Technologies Workshop; May 09, 2016 - May 11, 2016; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: Blade tip vortices generated by a helicopter rotor blade are a major source of rotor noise and airframe vibration. This occurs when a vortex passes closely by, and interacts with, a rotor blade. The accurate prediction of Blade Vortex Interaction (BVI) continues to be a challenge for Computational Fluid Dynamics (CFD). Though considerable research has been devoted to BVI noise reduction and experimental techniques for measuring the blade tip vortices in a wind tunnel, there are only a handful of post-processing tools available for extracting vortex core lines from CFD simulation data. In order to calculate the vortex core radius, most of these tools require the user to manually select a vortex core to perform the calculation. Furthermore, none of them provide the capability to track the growth of a vortex core, which is a measure of how quickly the vortex diffuses over time. This paper introduces an automated approach for tracking the core growth of a blade tip vortex from CFD simulations of rotorcraft in hover. The proposed approach offers an effective method for the quantification and visualization of blade tip vortices in helicopter rotor wakes. Keywords: vortex core, feature extraction, CFD, numerical flow visualization
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN29078 , IEEE Pacific Visualization Symposium 2016; Apr 19, 2016 - Apr 22, 2016; Taipei; Taiwan, Province of China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: The Ames Vertical Gun Range (AVGR) is a national facility for conducting laboratory- scale investigations of high-speed impact processes. It provides a set of light-gas, powder, and compressed gas guns capable of accelerating projectiles to speeds up to 7 km s(exp -1). The AVGR has a unique capability to vary the angle between the projectile-launch and gravity vectors between 0 and 90 deg. The target resides in a large chamber (diameter approximately 2.5 m) that can be held at vacuum or filled with an experiment-specific atmosphere. The chamber provides a number of viewing ports and feed-throughs for data, power, and fluids. Impacts are observed via high-speed digital cameras along with investigation-specific instrumentation, such as spectrometers. Use of the range is available via grant proposals through any Planetary Science Research Program element of the NASA Research Opportunities in Space and Earth Sciences (ROSES) calls. Exploratory experiments (one to two days) are additionally possible in order to develop a new proposal.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN29579 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-12
    Description: The Transonic Dynamics Tunnel (TDT) at the National Aeronautics and Space Administration's (NASA) Langley Research Center began research operations in early 1960. Since that time, over 600 tests have been conducted, primarily in the discipline of aeroelasticity. This paper presents a bibliography of the publications that contain data from these tests along with other reports that describe the facility, its capabilities, testing techniques, and associated research equipment. The bibliography is divided by subject matter into a number of categories. An index by author's last name is provided.
    Keywords: Aerodynamics
    Type: NASA/TM-2016-219355 , L-20739 , NF1676L-25167
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-12
    Description: A wing/fuselage wind-tunnel model was tested in the Langley 14- by 22-foot Subsonic Wind Tunnel in preparation for a highly-instrumented Juncture Flow Experiment to be conducted in the same facility. This test, which was sponsored by the NASA Transformational Tool and Technologies Project, is part of a comprehensive set of experimental and computational research activities to develop revolutionary, physics-based aeronautics analysis and design capability. The objectives of this particular test were to examine the surface and off-body flow on a generic wing/body combination to: 1) choose a final wing for a future, highly instrumented model, 2) use the results to facilitate unsteady pressure sensor placement on the model, 3) determine the area to be surveyed with an embedded laser-doppler velocimetry (LDV) system, 4) investigate the primary juncture corner- flow separation region using particle image velocimetry (PIV) to see if the particle seeding is adequately entrained and to examine the structure in the separated region, and 5) to determine the similarity of observed flow features with those predicted by computational fluid dynamics (CFD). This report documents the results of the above experiment that specifically address the first three goals. Multiple wing configurations were tested at a chord Reynolds number of 2.4 million. Flow patterns on the surface of the wings and in the region of the wing/fuselage juncture were examined using oil- flow visualization and infrared thermography. A limited number of unsteady pressure sensors on the fuselage around the wing leading and trailing edges were used to identify any dynamic effects of the horseshoe vortex on the flow field. The area of separated flow in the wing/fuselage juncture near the wing trailing edge was observed for all wing configurations at various angles of attack. All of the test objectives were met. The staff of the 14- by 22-foot Subsonic Wind Tunnel provided outstanding support and delivered exceptional value to the experiment, which exceeded expectations. The results of this test will directly inform the planning for the first of a series of instrumented-model tests at the same Reynolds number. These tests will be performed on a slightly larger-scale model with the selected wing, and will include off-body measurements with LDV and PIV, steady and unsteady pressure measurements, and the flow-visualization techniques that are discussed in this report.
    Keywords: Aerodynamics
    Type: NASA/TM-2016-219348 , L-20760 , NF1676L-25653
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-12
    Description: This report documents a ballistic-range test campaign conducted in 2012 in order to estimate the aerodynamic stability characteristics of two configurations of the Supersonic Flight Dynamics Test (SFDT) vehicle prior to its initial flight in 2014. The SFDT vehicle was a test bed for demonstrating several new aerodynamic decelerator technologies then being developed under the Low-Density Supersonic Decelerator (LDSD) Project. Of particular interest here is the Supersonic Inflatable Aerodynamic Decelerator (SIAD), an inflatable attached torus used to increase the drag surface area of an entry vehicle during the supersonic portion of the entry trajectory. Two model configurations were tested in the ballistic range: one representing the SFDT vehicle prior to deployment of the SIAD, and the other representing the nominal shape with the SIAD inflated. Both models were fabricated from solid metal, and therefore, the effects of the flexibility of the inflatable decelerator were not considered. The test conditions were chosen to match, as close as possible, the Mach number, Reynolds number, and motion dynamics expected for the SFDT vehicle in flight, both with the SIAD stowed and deployed. For SFDT models with the SIAD stowed, 12 shots were performed covering a Mach number range of 3.2 to 3.7. For models representing the deployed SIAD, 37 shots were performed over a Mach number range of 2.0 to 3.8. Pitch oscillation amplitudes covered a range from 0.7 to 20.6 degrees RMS. Portions of this report (data analysis approach, aerodynamic modeling, and resulting aerodynamic coefficients) were originally published as an internal LDSD Project report [1] in 2012. In addition, this report provides a description of the test design approach, the test facility, and experimental procedures. Estimated non-linear aerodynamic coefficients, including pitch damping, for both model configurations are reported, and the shot-by-shot trajectory measurements, plotted in comparison with calculated trajectories based on the derived non-linear aerodynamic coefficients, are provided as appendices. Since the completion of these tests, two full-scale SFDT flights have been successfully conducted: one in June 2014 [2, 3], and one in June 2015 [3].
    Keywords: Aerodynamics
    Type: NASA/TM-2017-219693 , ARC-E-DAA-TN47243
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-12
    Description: Models are presented for the aerodynamic coefficients of Supersonic Ringsail and Disk-Gap-Band parachutes as functions of total porosity, Lambda(sub t), Mach number, M, and total angle of attack, Alpha(sub t) (when necessary). The source aerodynamic coefficients data used for creating these models were obtained from a wind tunnel test of subscale parachutes. In this wind tunnel test, subscale parachutes of both parachute types were fabricated from two different fabrics with very different permeabilities. By varying the fabric permeability, while maintaining the parachute geometry constant, it was possible to vary Alpha(sub t). The fabric permeability test data necessary for the calculation of Alpha(sub t) were obtained from samples of the same fabrics used to fabricate the subscale parachutes. Although the models for the aerodynamic coefficients are simple polynomial functions of Alpha(sub t) and M, they are capable of producing good reproductions of the source data. The (Alpha(sub t), M) domains over which these models are applicable are clearly defined. The models are applicable to flight operations on Mars.
    Keywords: Aerodynamics
    Type: NASA/TM-2017-219619 , L-20812 , NF1676L-27003
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-12
    Description: In July 2017, a three-day Turbulence Modeling Symposium sponsored by the University of Michigan and NASA was held in Ann Arbor, Michigan. This meeting brought together nearly 90 experts from academia, government and industry, with good international participation, to discuss the state of the art in turbulence modeling, emerging ideas, and to wrestle with questions surrounding its future. Emphasis was placed on turbulence modeling in a predictive context in complex problems, rather than on turbulence theory or descriptive modeling. This report summarizes many of the questions, discussions, and conclusions from the symposium, and suggests immediate next steps.
    Keywords: Aerodynamics
    Type: NASA/TM-2017-219682 , L-20880 , NF1676L-28239
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-12
    Description: Limits and guidelines are set on microbial counts in produce to protect the consumer. Different agencies make specifications, which constitute when a product becomes unsafe for human consumption. Producers design their procedures to comply with the limits, but they are responsible creating their own internal standards. The limits and guidelines are summarized here to be applied to assess the microbial safety of the NASA Veggie Program.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN42115
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-12
    Description: A wind tunnel experiment was conducted in the NASA Langley Research Center 7- by 10-Foot High Speed Tunnel to determine the effects of passive surface porosity on the subsonic vortex flow interactions about a general research fighter configuration. Flow-through porosity was applied to the leading-edge extension, or LEX, and leading-edge flaps mounted to a 65deg cropped delta wing model as a potential vortex flow control technique at high angles of attack. All combinations of porous and nonporous LEX and flaps were investigated. Wing upper surface static pressure distributions and six-component forces and moments were obtained at a free-stream Mach number of 0.20 corresponding to a Reynolds number of 1.35(106) per foot, angles of attack up to 45deg, angles of sideslip of 0deg and +/-5deg, and leading-edge flap deflections of 0deg and 30deg.
    Keywords: Aerodynamics
    Type: NASA-TM-2017-219596 , L-20784 , NF1676L-26349
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-12
    Description: The purpose of this manual is to aid in the design of an aerodynamics test of an earth or planetary entry capsule in a ballistic range. In this manual, much use is made of the results and experience gained in 50 years of ballistic range aerodynamics testing at the NASA Ames Research Center, and in particular, that gained in the last 27 years, while the author was working at NASA Ames. The topics treated herein include: Data to be obtained; flight data needed to design test; Reynolds number and dynamic similarity of flight trajectory and ballistic range test; capabilities of various ballistic ranges; Calculations of swerves due to average and oscillating lift and of drag-induced velocity decreases; Model and sabot design; materials, weights and stresses; Sabot separation; Launches at angle of attack and slapping with paper to produce pitch/yaw oscillations.
    Keywords: Aerodynamics
    Type: NASA/TM-2017-219473 , ARC-E-DAA-TN20974
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-12
    Description: As the world's space agencies and commercial entities continue to expand beyond Low Earth Orbit (LEO), novel approaches to carry out biomedical experiments with animals are required to address the challenge of adaptation to space flight and new planetary environments. The extended time and distance of space travel along with reduced involvement of Earth-based mission support increases the cumulative impact of the risks encountered in space. To respond to these challenges, it becomes increasingly important to develop the capability to manage an organism's self-regulatory control system, which would enable survival in extraterrestrial environments. To significantly reduce the risk to animals on future long duration space missions, we propose the use of metabolically flexible animal models as "pathfinders," which are capable of tolerating the environmental extremes exhibited in spaceflight, including altered gravity, exposure to space radiation, chemically reactive planetary environments and temperature extremes. In this report we survey several of the pivotal metabolic flexibility studies and discuss the importance of utilizing animal models with metabolic flexibility with particular attention given to the ability to suppress the organism's metabolism in spaceflight experiments beyond LEO. The presented analysis demonstrates the adjuvant benefits of these factors to minimize damage caused by exposure to spaceflight and extreme planetary environments. Examples of microorganisms and animal models with dormancy capabilities suitable for space research are considered in the context of their survivability under hostile or deadly environments outside of Earth. Potential steps toward implementation of metabolic control technology in spaceflight architecture and its benefits for animal experiments and manned space exploration missions are discussed.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN39143
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-12
    Description: As part of a computational study of acoustic radiation due to the passage of turbulent boundary layer eddies over the trailing edge of an airfoil, the Lattice-Boltzmann method is used to perform direct numerical simulations of compressible, low Mach number flow past an NACA 0012 airfoil at zero degrees angle of attack. The chord Reynolds number of approximately 0.657 million models one of the test conditions from a previous experiment by Brooks, Pope, and Marcolini at NASA Langley Research Center. A unique feature of these simulations involves direct modeling of the sand grain roughness on the leading edge, which was used in the abovementioned experiment to trip the boundary layer to fully turbulent flow. This report documents the findings of preliminary, proof-of-concept simulations based on a narrow spanwise domain and a limited time interval. The inclusion of fully-resolved leading edge roughness in this simulation leads to significantly earlier transition than that in the absence of any roughness. The simulation data is used in conjunction with both the Ffowcs Williams-Hawkings acoustic analogy and a semi-analytical model by Roger and Moreau to predict the farfield noise. The encouraging agreement between the computed noise spectrum and that measured in the experiment indicates the potential payoff from a full-fledged numerical investigation based on the current approach. Analysis of the computed data is used to identify the required improvements to the preliminary simulations described herein.
    Keywords: Aerodynamics
    Type: NASA/TM-2016-219363 , L-20774 , NF1676L-26131
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-12
    Description: LM has leveraged our partnership with the Air Force Research Laboratory (AFRL) and NASA on the advanced hybrid wing body (HWB) concept to develop a commercial freighter which addresses the NASA Advanced Air Transport Technology (AATT) Project goals for improved efficiency beyond 2025. The current Air Force Research Laboratory (AFRL) Revolutionary Configurations for Energy Efficiency (RCEE) program established the HWB configuration and technologies needed for military transports to achieve aerodynamic and fuel efficiencies well beyond the commercial industry's most modern designs. This study builds upon that effort to develop a baseline commercial cargo aircraft and two HWB derivative commercial cargo aircraft to quanitify the benefit of the HWB and establish a technology roadmap for further development.
    Keywords: Aerodynamics
    Type: NASA/CR-2017-219653 , NF1676L-26587
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-12
    Description: The present invention is directed to methods of manufacturing bioactive gels from ECM material, i.e., gels which retain bioactivity, and can serve as scaffolds for preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. The manufacturing methods take advantage of a new recognition that bioactive gels from ECM material can be created by digesting particularized ECM material in an alkaline environment and neutralizing to provide bioactive gels.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-12
    Description: A method and an apparatus for detecting and quantifying bacterial spores on a surface. In accordance with the method: bacterial spores are transferred from a place of origin to a test surface, the test surface comprises lanthanide ions. Aromatic molecules are released from the bacterial spores; a complex of the lanthanide ions and aromatic molecules is formed on the test surface, the complex is excited to generate a characteristic luminescence on the test surface; the luminescence on the test surface is detected and quantified.
    Keywords: Life Sciences (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: Long duration space exploration will require the capability for crews to grow their own food. Growing food is desirable from a mass-efficiency standpoint, as it is currently not feasible to carry enough prepackaged food on spacecraft to sustain crews for long duration missions. Nutritionally, fresh produce provides key nutrients that are not preserved well in pre-packaged meals (e.g. vitamins C and K) and those that are able to counteract detrimental effects of space flight, such as antioxidants to combat radiation exposure and lutein for decreasing macular degeneration. Additionally, there are significant psychological benefits of maintaining gardens, one being an indicator for the passage of time.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN33920
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-12
    Description: The effect of nonlinear optimal streaks on disturbance growth in a Mach 6 axisymmetric flow over a 7deg half-angle cone is investigated in an e ort to expand the range of available techniques for transition control. Plane-marching parabolized stability equations are used to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone, but subharmonic first mode instabilities, which are destabilized by the presence of the streaks, reach N = 6 near the end of the cone. These results suggest a passive flow control strategy of using micro vortex generators to induce streaks that would delay transition in hypersonic boundary layers.
    Keywords: Aerodynamics
    Type: NASA/TM-2016-219210 , L-20721 , NF1676L-24663
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-12
    Description: This report documents the data collected during the large wind tunnel campaigns conducted as part of the SUNSET project (StUdies oN Scaling EffecTs due to ice) also known as the Ice-Accretion Aerodynamics Simulation study: a joint effort by NASA, the Office National d'Etudes et Recherches Arospatiales (ONERA), and the University of Illinois. These data form a benchmark database of full-scale ice accretions and corresponding ice-contaminated aerodynamic performance data for a two-dimensional (2D) NACA 23012 airfoil. The wider research effort also included an analysis of ice-contaminated aerodynamics that categorized ice accretions by aerodynamic effects and an investigation of subscale, low- Reynolds-number ice-contaminated aerodynamics for the NACA 23012 airfoil. The low-Reynolds-number investigation included an analysis of the geometric fidelity needed to reliably assess aerodynamic effects of airfoil icing using artificial ice shapes. Included herein are records of the ice accreted during campaigns in NASA Glenn Research Center's Icing Research Tunnel (IRT). Two different 2D NACA 23012 airfoil models were used during these campaigns; an 18-in. (45.7-cm) chord (subscale) model and a 72-in. (182.9-cm) chord (full-scale) model. The aircraft icing conditions used during these campaigns were selected from the Federal Aviation Administration's (FAA's) Code of Federal Regulations (CFR) Part 25 Appendix C icing envelopes. The records include the test conditions, photographs of the ice accreted, tracings of the ice, and ice depth measurements. Model coordinates and pressure tap locations are also presented. Also included herein are the data recorded during a wind tunnel campaign conducted in the F1 Subsonic Pressurized Wind Tunnel of ONERA. The F1 tunnel is a pressured, high- Reynolds-number facility that could accommodate the full-scale (72-in. (182.9-cm) chord) 2D NACA 23012 model. Molds were made of the ice accreted during selected test runs of the full-scale model in the IRT. From these molds, castings were made that closely replicated the features of the accreted ice. The castings were then mounted on the full-scale model in the F1 tunnel, and aerodynamic performance measurements were made using model surface pressure taps, the facility force balance system, and a large wake rake designed specifically for these tests. Tests were run over a range of Reynolds and Mach numbers. For each run, the model was rotated over a range of angles-of-attack that included airfoil stall. The benchmark data collected during these campaigns were, and continue to be, used for various purposes. The full-scale data form a unique, ice-accretion and associated aerodynamic performance dataset that can be used as a reference when addressing concerns regarding the use of subscale ice-accretion data to assess full-scale icing effects. Further, the data may be used in the development or enhancement of both ice-accretion prediction codes and computational fluid dynamic codes when applied to study the effects of icing. Finally, as was done in the wider study, the data may be used to help determine the level of geometric fidelity needed for artificial ice used to assess aerodynamic degradation due to aircraft icing. The structured, multifaceted approach used in this research effort provides a unique perspective on the aerodynamic effects of aircraft icing. The data presented in this report are available in electronic form upon formal approval by proper NASA and ONERA authorities.
    Keywords: Aerodynamics
    Type: NASA/TP-2016-218348 , E-18942 , GRC-E-DAA-TN15782
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NASA/TM-2017-219696/SUPPL , E-19427 , GRC-E-DAA-TN46228
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-12
    Description: An experimental investigation of tip vortices from a NACA0012 airfoil is conducted in a low-speed wind tunnel at a chord Reynolds number (Rc) of 410(exp 4 ). Data for the stationary airfoil at various angles of attack (alpha) are first discussed. Detailed flow-field surveys are done for two cases: alpha = 10deg with attached flow and alpha = 25deg with massive flow separation. Data include mean velocity, streamwise vorticity, and turbulent stresses at various streamwise locations. For all cases, the vortex core is seen to involve a mean velocity deficit. The deficits in these cases trace to the airfoil wake, part of which gets wrapped up by the tip vortex. Comparison with data from the literature suggests that with increasing Rc, the deficit turns into an excess, with the transition occurring in the approximate Rc range of 210(exp 5) to 510(exp 5). Survey results for various shapes of the airfoil wingtip are then presented. The shapes include square and rounded ends and a number of winglet designs. Finally, data under sinusoidal pitching condition, for the airfoil with square ends, are documented. All pitching cases pertain to a mean alpha = 15deg, while the amplitude and frequency are varied. Amplitudes of +/-5deg, +/-10deg, and +/-15deg and reduced frequencies k = 0.08, 0.2, and 0.33 are covered. Digital records of all data and some of the hardware design are made available on a supplemental CD with the electronic version of the paper for those interested in numerical simulation.
    Keywords: Aerodynamics
    Type: NASA/TM-2017-219696 , E-19427 , GRC-E-DAA-TN46228
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-12
    Description: Exploration of the solar system is constrained by the cost of moving mass off Earth. Producing materials in situ will reduce the mass that must be delivered from earth. CO2 is abundant on Mars and manned spacecraft. On the ISS, NASA reacts excess CO2 with H2 to generate CH4 and H2O using the Sabatier System. The resulting water is recovered into the ISS, but the methane is vented to space. Thus, there is a capability need for systems that convert methane into valuable materials. Methanotrophic bacteria consume methane but these are poor synthetic biology platforms. Thus, there is a knowledge gap in utilizing methane in a robust and flexible synthetic biology platform. The yeast Pichia pastoris is a refined microbial factory that is used widely by industry because it efficiently secretes products. Pichia could produce a variety of useful products in space. Pichia does not consume methane but robustly consumes methanol, which is one enzymatic step removed from methane. Our goal is to engineer Pichia to consume methane thereby creating a powerful methane-consuming microbial factory.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN46034
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-12
    Description: An approximately 6-percent scale model of the NASA Second-Generation Large Civil Tiltrotor (LCTR2) Aircraft was tested in the U.S. Army 7- by 10-Foot Wind Tunnel at NASA Ames Research Center January 4 to April 19, 2012, and September 18 to November 1, 2013. The full model was tested, along with modified versions in order to determine the effects of the wing tip extensions and nacelles; the wing was also tested separately in the various configurations. In both cases, the wing and nacelles used were adopted from the U.S. Army High Efficiency Tilt Rotor (HETR) aircraft, in order to limit the cost of the experiment. The full airframe was tested in high-speed cruise and low-speed hover flight conditions, while the wing was tested only in cruise conditions, with Reynolds numbers ranging from 0 to 1.4 million. In all cases, the external scale system of the wind tunnel was used to collect data. Both models were mounted to the scale using two support struts attached underneath the wing; the full airframe model also used a third strut attached at the tail. The collected data provides insight into the performance of the preliminary design of the LCTR2 and will be used for computational fluid dynamics (CFD) validation and the development of flight dynamics simulation models.
    Keywords: Aerodynamics
    Type: NASA/TM-2016-219394 , ARC-E-DAA-TN35499
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-12
    Description: In the interest of improving the predictability of high-lift systems at maximum lift conditions, a series of fundamental experiments were conducted to study the effects of adverse pressure gradient on a wake flow. Mean and fluctuating velocities were measured with a two-component laser-Doppler velocimeter. Data were obtained for several cases of adverse pressure gradient, producing flows ranging from no reversed flow to massively reversed flow. While the turbulent Reynolds stresses increase with increasing size of the reversed flow region, the gradient of Reynolds stress does not. Computations using various turbulence models were unable to reproduce the reversed flow.
    Keywords: Aerodynamics
    Type: NASA/TM-2016-219068 , ARC-E-DAA-TN29325
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-19
    Description: International Space Station (ISS) assembly complete ushered a new era focused on utilization of this state-of-the-art orbiting laboratory to advance science and technology research in a wide array of disciplines, with benefits to Earth and space exploration. ISS enabling capability for research in cellular and molecular biology includes equipment for in situ, on-orbit analysis of biomolecules. Applications of this growing capability range from biomedicine and biotechnology to the emerging field of Omics. For example, Biomolecule Sequencer is a space-based miniature DNA sequencer that provides nucleotide sequence data for entire samples, which may be used for purposes such as microorganism identification and astrobiology. It complements the use of WetLab-2 SmartCycler"TradeMark", which extracts RNA and provides real-time quantitative gene expression data analysis from biospecimens sampled or cultured onboard the ISS, for downlink to ground investigators, with applications ranging from clinical tissue evaluation to multigenerational assessment of organismal alterations. And the Genes in Space-1 investigation, aimed at examining epigenetic changes, employs polymerase chain reaction to detect immune system alterations. In addition, an increasing assortment of tools to visualize the subcellular distribution of tagged macromolecules is becoming available onboard the ISS. For instance, the NASA LMM (Light Microscopy Module) is a flexible light microscopy imaging facility that enables imaging of physical and biological microscopic phenomena in microgravity. Another light microscopy system modified for use in space to image life sciences payloads is initially used by the Heart Cells investigation ("Effects of Microgravity on Stem Cell-Derived Cardiomyocytes for Human Cardiovascular Disease Modeling and Drug Discovery"). Also, the JAXA Microscope system can perform remotely controllable light, phase-contrast, and fluorescent observations. And upcoming confocal microscopy capability will allow for optical sectioning of biological tissues to determine microanatomical localization of biomarkers. Furthermore, NASA's geneLAB effort addresses integration of genomic, epigenomic, transcriptomic, proteomic and metabolomic datasets, by applying an innovative open source science platform for multi-investigator high throughput utilization of the ISS. In sum, the expanding ISS capability for analysis of biomolecules is enabling innovative research in a broad spectrum of areas such as cellular and molecular biology, biotechnology, tissue engineering, biomedicine, and Omics, providing manifold benefits for humanity.
    Keywords: Life Sciences (General)
    Type: JSC-CN-36567 , Annual Meeting of the American Society for Gravitational and Space Research; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-19
    Description: Predictions for Reynolds-stress and triple product turbulence models are compared for flows with significant rotational effects. Driver spinning cylinder flowfield and Zaets rotating pipe case are to be investigated at a minimum.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN28408 , Aviation 2016; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-19
    Description: The NASA Decadal Survey (2011) emphasized the importance of long duration rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware and science capabilities supporting mouse studies in space were developed at Ames Research Center. Here we present a video-based behavioral analysis of ten C57BL6 female adult mice exposed to a total of 37 days in space compared with identically housed Ground Controls. Flight and Control mice exhibited the same range of behaviors, including feeding, drinking, exploratory behavior, grooming, and social interactions. Mice propelled themselves freely and actively throughout the Habitat using their forelimbs to push off or by floating from one cage area to another. Overall activity was greater in Flt as compared to GC mice. Spontaneous, organized circling or race-tracking behavior emerged within the first few days of flight and encompassed the primary dark cycle activity for the remainder of the experiment. I will summarize qualitative observations and quantitative comparisons of mice in microgravity and 1g conditions. Behavioral phenotyping revealed important insights into the overall health and adaptation of mice to the space environment, and identified unique behaviors that can guide future habitat development and research on rodents in space.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN32780 , Life in Space for Life on Earth 2016; Jun 05, 2016 - Jun 10, 2016; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-19
    Description: After spaceflight, the number of immune cells is reduced in humans. In other research models, including Drosophila, not only is there a reduction in the number of plasmatocytes, but expression of immune-related genes is also changed after spaceflight. These observations suggest that the immune system is compromised after exposure to microgravity. It has also been reported that there is a change in virulence of some bacterial pathogens after spaceflight. We recently observed that samples of gram-negative S. marcescens retrieved from spaceflight is more virulent than ground controls, as determined by reduced survival and increased bacterial growth in the host. We were able to repeat this finding of increased virulence after exposure to simulated microgravity using the rotating wall vessel, a ground based analog to microgravity. With the ground and spaceflight samples, we looked at involvement of the Toll and Imd pathways in the Drosophila host in fighting infection by ground and spaceflight samples. We observed that Imd-pathway mutants were more susceptible to infection by the ground bacterial samples, which aligns with the known role of this pathway in fighting infections by gram-negative bacteria. When the Imd-pathway mutants were infected with the spaceflight sample, however, they exhibited the same susceptibility as seen with the ground control bacteria. Interestingly, all mutant flies show the same susceptibility to the spaceflight bacterial sample as do wild type flies. This suggests that neither humoral immunity pathway is effectively able to counter the increased pathogenicity of the space-flown S. marcescens bacteria.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36470 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR) 2016; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-19
    Description: Ionizing radiation-induced bone loss appears to be a two-stage process: first an early increase in pro-resorption cytokines and increased bone resorption by osteoclasts, followed by a decrease in bone formation by osteoblasts. This results in a net loss of mass in mineralized bone tissue. The molecular mechanisms underlying the imbalance in bone remodeling caused by exposure to radiation are not fully understood. We hypothesized that the radiation-induced rise in reactive oxygen species (ROS) damages osteoblast progenitors, leading to a decrease in number and activity of differentiated progeny. We have shown that a diet high in antioxidant capacity prevents radiation-induced bone loss in adult mice (Schreurs et al. 2016) by reducing the early increase in pro-resotption cytokines. Here, we investigated the damaging effects of radiation exposure on cells in the osteoblast lineage, testing if addition of the exogenous antioxidant enzyme, superoxide dismutase (SOD) can mitigate radiation damage. Osteoprogenitors were grown in vitro from the marrow of 16wk old, male C57Bl/6 mice. Cells were irradiated 3 days after plating (day 0) with either gamma (Cs-137, 0.1-5Gy) or iron (Fe-56, 600 MeV/n, 0.5-2Gy), and then grown until day 10. SOD or vehicle was added 2 hours before irradiation (SOD at 200U/ml), twice a day and up to day 5, for a total of 2 days treatment. Cell behavior was assessed by: (a) colony number (counted on day 7), (b) DNA content (surrogate for cell number) to assess cell growth (percent change between day 3 and day 10) and (c) alkaline phosphatase activity (osteoblast differentiation marker). Results show that SOD protected cells from the adverse effects of low-LET ionizing radiation, but not high-LET radiation. These novel results provide an interesting platform to explore further diverse effects and damages caused by low-LET and high-LET, pointing toward different mechanisms and possible intervention strategies for radiation-induced bone loss.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36265 , American Society for Cell Biology (ASCB) Meeting 2016; Dec 03, 2016 - Dec 07, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-19
    Description: The NASA Decadal Survey (2011), Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era, emphasized the importance of expanding NASA life sciences research to long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware, operations, and science capabilities supporting mouse studies in space were developed at NASA Ames Research Center. The first flight experiment carrying mice, Rodent Research Hardware and Operations Validation (Rodent Research-1), was launched on Sept 21, 2014 in an unmanned Dragon Capsule, SpaceX4, exposing the mice to a total of 37 days in space. Ground control groups were maintained in environmental chambers at Kennedy Space Center. Mouse health and behavior were monitored for the duration of the experiment via video streaming. Here we present behavioral analysis of two groups of five C57BL/6 female adult mice viewed via fixed camera views compared with identically housed Ground Controls. Flight (Flt) and Ground Control (GC) mice exhibited the same range of behaviors, including eating, drinking, exploratory behavior, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Mice propelled themselves freely and actively throughout the Habitat using their forelimbs to push off or by floating from one cage area to another, and they quickly learned to anchor themselves using tails and/or paws. Overall activity was greater in Flt as compared to GC mice, with spontaneous ambulatory behavior including the development of organized circling or race-tracking behavior that emerged within the first few days of flight and encompassed the primary dark cycle activity for the remainder of the experiment. We quantified the bout frequency, duration and rate of circling with respect to characteristic behaviors observed in the varying stages of the progressive development of circling: flipping utilizing two sides of the habitat, circling, multi-lap circling and group-circling. Once begun, mice did not regress to flipping behavior or other previous behavioral milestones for the remainder of flight. An overall upward trend in circling frequency, rate, duration, participation, and organization was observed over the course of the 37-day spaceflight experiment. In this presentation, we will summarize qualitative observations and quantitative comparisons of mice in microgravity and 1g conditions. Behavioral analyses provide important insights into the overall health and adaptation of mice to the space environment, and identify unique behaviors and social interactions to guide future habitat development and research on rodents in space.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN28255 , 2016 Human Research Program Investigators Workshop; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-19
    Description: Living organisms control their cellular biological clocks to maintain functional oscillation of the redox cycle, also called the "metabolic cycle" or "respiratory cycle". Organization of cellular processes requires parallel processing on a synchronized time-base. These clocks coordinate the timing of all biochemical processes in the cell, including energy production, DNA replication, and RNA transcription. When this universal time keeping function is perturbed by exogenous induction of reactive oxygen species (ROS), the rate of metabolism changes. This causes oxidative stress, aging and mutations. Therefore, good temporal coordination of the redox cycle not only actively prevents chemical conflict between the reductive and oxidative partial reactions; it also maintains genome integrity and lifespan. Moreover, this universal biochemical rhythm can be disrupted by ROS induction in vivo. This in turn can be achieved by blocking the electron transport chain either endogenously or exogenously by various metabolites, e.g. hydrogen sulfide (H2S), highly diffusible drugs, and carbon monoxide (CO). Alternatively, the electron transport in vivo can be attenuated via a coherent or interfering transfer of energy from exogenous ultralow frequency (ULF) and extremely low frequency (ELF) electromagnetic (EM) fields, suggesting that-on Earth-such ambient fields are an omnipresent (and probably crucially important) factor for the time-setting basis of universal biochemical reactions in living cells. Our work demonstrated previously un-described evidence for quantum effects in biology by electromagnetic coupling below thermal noise at the universal electron transport chain (ETC) in vivo.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN28270 , 2016 Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-19
    Description: So you want to conduct human spaceflight research aboard the International Space Station (ISS)? Once your spaceflight research aboard the ISS is proposal is funded.... the real work begins. Because resources are so limited for ISS research, it is necessary to maximize the work being done, while at the same time, minimizing the resources spent. Astronauts may be presented with over 30 human research experiments and select, on average approximately 15 in which to participate. In order to conduct this many studies, ISSMP uses the study requirements provided by the principle investigator to integrate all of this work into the astronauts' complement. The most important thing for investigators to convey to the ISSMP team is their RESEARCH REQUIREMENTS. Requirements are captured in the Experiment document. This document is the official record of how, what, where and when data will be collected. One common mistake that investigators make is not taking this document seriously, but when push comes to shove, if a research requirement is not in this document....it will not get done. The research requirements are then integrated to form a complement of research for each astronaut. What do we mean by integration? Many experiments have overlapping requirements; blood draws, behavioral surveys, heart rate measurement. Where possible, these measures are combined to reduce redundancy and save crew time. Investigators can access these data via data sharing agreements. More examples of how ISS research is integrated will be presented. There are additional limitations commonly associated with human spaceflight research that will also be discussed. Large/heavy hardware, invasive procedures, and toxic reagents are extremely difficult to implement on the ISS. There are strict limits placed on the amount of blood that can be drawn from crew members during (and immediately after) spaceflight. These limits are based on 30-day rolling accumulations. We have recently had to start restricting studies due to this limit. The NASA Human Research Program (HRP) provides extensive support, via ISSMP, to help investigators cope with all of the intricacies of conducting human spaceflight research. This presentation will help you take the best advantage of that support.
    Keywords: Life Sciences (General)
    Type: JSC-CN-38021 , 2017 Human Research Program Investigators'' Workshop (HRP IWS 2017); Jan 23, 2017 - Jan 26, 2017; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-19
    Description: Our overarching goal is to discover how the structure of the genotypic space of RNA polymers affects their ability to evolve. Specifically, we will address several fundamental questions that, so far, have remained largely unanswered. Was the genotypic space explored globally or only locally? Was the outcome of early evolution predictable or was it, instead, govern by chance? What was the role of neutral mutations in the evolution of increasing complex systems? As the first step, we study the problem in the example of RNA ligases. We obtain the complete, empirical fitness landscapes for short ligases and examine possible evolutionary paths for RNA molecules that are sufficiently long to preclude exhaustive search of the genotypic space.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36547 , NoR HGT & LUCA Conference; Nov 03, 2016 - Nov 04, 2016; Milton, Keynes; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: Spectrum is a multispectral fluorescence imager designed for capturing in vivo genetic expression in a variety of biological organisms, providing a capability that does not currently exist on the International Space Station (ISS). Researching organisms that have been transformed with in vivo reporter genes ligated with fluorescent proteins allows the scientific community to further understand the fundamental biological responses of these organisms when subjected to space environments. Model organisms that may utilize multispectral imaging on the ISS include unicellular organisms (e.g. Saccharomyces cerevisiae), plants (e.g. Arabidopsis thaliana), and invertebrates (e.g. Caenorhabditis elegans).
    Keywords: Life Sciences (General)
    Type: NASA/SP-2017-10-1095-KSC , KSC-E-DAA-TN53022
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-20
    Description: The conditions encountered during spaceflight place unique stresses on physiological processes that oftentimes lead to deleterious effects. Identifying these effects and better understanding their molecular mechanisms will be essential in enabling long-duration space travel by humans. Studies in Saccharomyces cerevisiae suggest an aging model that involves the accumulation of toxic components, such as excess extrachromosomal rDNA and damaged mitochondria. This build-up then limits the replicative lifespan (the number of times a mother cell can form a new daughter cell). Remarkably, each new daughter cell emerges completely renewed from the senescing mother cell through an asymmetric distribution of aging determinants via mechanisms that are intricately linked to the budding process. When exposed to simulated microgravity, S. cerevisiae undergoes an altered budding process characterized by a breakdown in bud scar polarity. Because the budding process is critical to replicative aging, we hypothesize that the replicative lifespan may be affected by microgravity as well. To measure relative replicative aging rates, we will construct a strain of yeast in which daughter cells are inviable. In this strain, the Cre recombinase will be expressed under the control of the daughter cell specific promoter, pSCW11, and LoxP sites will be inserted at both flanks of two essential genes involved in the cell cycle, UBC9 and CDC20, using a CRISPRCas9 system. Thus, UBC9 and CDC20 will be excised from daughter cells, leading to cell-cycle arrest and eventual death. To mimic the low shear conditions encountered in microgravity, this strain will be grown in rotating wall vessels. The number of viable mother cells will be monitored over time, and this rate will be compared to cells growing in standard conditions. Because asymmetric division also occurs in mammalian cells (e.g. in neural stem cells), this study will provide insight into how cellular aging rates may change in mammals and will help empower humans to thrive in space for extended and even indefinite periods of time.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN34927 , Yale UnderGrad Research Showcase; 9 Sept. 2016; New Haven, CT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-20
    Description: Cell and animal studies conducted onboard the International Space Station and formerly on Shuttle flights have provided groundbreaking data illuminating the deleterious biological response of bone to mechanical unloading. However the intercellular communicative mechanisms associated with the regulation of bone synthesis and bone resorption cells are still largely unknown. Connexin-43 (CX43), a gap junction protein, is hypothesized to play a significant role in osteoblast and osteocyte signaling. The purpose of this investigation was to evaluate within a novel three-dimensional microenvironment how the osteocyte-osteoblast gap-junction expression changes when cultures are exposed to exaggerated mechanical load. MLO-Y4 osteocyte-like cells were cultured on a 3D-Biotek polystyrene insert and placed in direct contact with an MC3T3-E1 pre-osteoblast co-cultured monolayer and exposed to 48 h of mechanical stimulation (pulsatile fluid flow (PFF) or monolayer cyclic stretch (MCS)) then evaluated for viability, proliferation, metabolism, and CX43 expression. Mono-cultured MLO-Y4 and MC3T3-E1 control experiments were conducted under PFF and MCS stimulation to observe how strain application stimuli (PFF cell membrane shear or MCS cell focal adhesionattachment loading) initiates different signaling pathways or downstream regulatory controls. TotalLive cell count, viability and metabolic reduction (Trypan Blue, LIVEDead and Alamar Blue analysis respectively) indicate that mechanical activation of MC3T3-E1 cells inhibits proliferation while maintaining an average 1.04E4 reductioncell metabolic rate, *p0.05 n4. MLO-Y4s in monolayer culture increase in number when exposed to MCS loading but the percent of live cells within the population is low (46.3 total count, *p0.05 n4), these results may indicate an apoptotic signaling cascade. PFF stimulation of the three-dimensional co-cultures elicits a universal increase in CX43 in MLO-Y4 and MC3T3-E1 cells, illustrated by immunohistological observation. Increased CX43 expression is also observed with the three-dimensional co-cultures with MC3T3-E1 MCS stimulation but the increased gap-junction protein presence was limited to the osteoblast-osteocyte interface region. Previously reported PCR evaluation of osteogenic markers further corroborate that the co-cultured populations communicative networks play a role in translating mechanical signals to molecular messaging. These findings suggests an osteocyte-osteoblast gap-junction signaling feedback mechanism may regulate mechanotransduction of apoptosis initiation and transcription of cytokine signaling proteins responsible for stem cell niche recruitment much more directly than previously believed.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36753 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-20
    Description: Spaceflight has deleterious effects on skeletal structure and function, specifically causingprofound loss in bone mass, density, and strength, as well as changes in expression levels of genes related to oxidative stress [Hyeon et al., Smith et al.]. It is known that bone resorption remains elevated after spaceflight and that bone density and strength fail to recover completely even years following spaceflight [Smith et al., Carpenter et al.]. However, our current understanding of the signaling pathways and molecular mechanisms that control bone loss and that link oxidative stress, bone resorption, and mechanical unloading of skeletal tissue is incomplete. Here, we aim to examine skeletal responses to simulated long-duration spaceflight on bone loss using the ground-based hindlimb unloading (HU) model in adult (9 months old) male rats. We hypothesized that simulated microgravity leads to the temporal regulation of oxidative-defense genes and pro-osteoclastogenic factors, showing progression and eventual plateau during long-term unloading, and that transient changes at early timepoints in these pathways precede skeletal adaptations to long-duration unloading. We will identify oxidativestress and bone resorption-related changes using global gene expression analysis (Affymetrix arrays) for both acute (within 14 days) and long-term timepoints (90 days). We will also use quantitative PCR to examine changes in expression of genes related to oxidative metabolism (e.g. Nrf2, SOD-1), bone turnover (resorption and formation markers, e.g. TRAP, osteocalcin respectively, SOST), and osteoclastogenesis (e.g. RANKL, OPG) at both early and late timepoints. We will then use detailed microarchitectural and structural analysis through microcomputed tomography to relate gene expression changes with structural changes in bone, expecting that plateaus in gene expression correlate with long-term changes in bone microarchitecture.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN33598 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-20
    Description: Experimental techniques to measure rotorcraft aerodynamic performance are widely used. However, the need exists to understand the limitations of ground based testing by augmenting the analysis of experimental test results with Computational Fluid Dynamics (CFD) modeling. The immediate objective of the present research is to develop an XV-15 Tilt Rotor Research Aircraft rotor model for investigation of wind tunnel wall interference. The predicted performance of the XV-15 during various flight modes is compared to theoretical and experimental data. This research is performed to support wind tunnel tests scheduled for 2016. A mid-fidelity RANS solver, RotCFD, is used with an unsteady, incompressible flow model and a realizable k- turbulence model. The rotor is modeled using an actuator disk model or blade element model with a momentum source approach. In RotCFD the setup, grid generation and running of cases is faster than many CFD codes which makes it a useful engineering tool. Performance predictions need not be as accurate as high-fidelity CFD codes, as long as wall effects can be properly simulated. Being able to accurately predict unsteady rotorcraft performance on desktop-class computers provides a quicker analysis of highly complex flows during the initial design phase.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN28085 , AHS Technical Meeting on Aeromechanics Design for Vertical Lift; Jan 20, 2016 - Jan 22, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-20
    Description: Space radiation and micro-gravity are the two major obstacles impeding human exploration of Mars and beyond. Long-duration space flights expose astronauts to high doses of high linear energy transfer (LET) radiation as well as prolonged periods of skeletal disuse due to weightlessness. One important consequence of both radiation exposure and micro-gravity is acute bone loss. However, biological responses to different radiation types and combined radiation and micro-gravity environments remain unknown. Thus, the purpose of this study is to compare the acute effects of different radiation species and simulated weightlessness on bone degeneration for the purpose of developing accurate risk assessments of prolonged space flight. Mouse models were used to simulate space flight-relevant doses of different radiation types as well as weightlessness via hind-limb unloading. Three groups of mice (n 9) were irradiated with 1 Gy (Gray) H+, 1 Gy 56Fe, and 1 Gy combined H+ and 56Fe (dual ion) respectively and compared to sham irradiated (n 9) and 2 Gy 56Fe irradiated positive controls (n 6). Two groups of mice (n 9) were hind-limb unloaded for three days and then either sham irradiated or dual ion irradiated respectively, followed by subsequent hind-limb unloading for 11 days. Cancellous tissue from tibiae metaphyses were harvested 11 days post-irradiation for ex vivo micro-computed tomography analysis. Microarchitecture parameters including bone volume to total volume ratio (BVTV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular spacing (Tb.S), and connectivity density (Conn.D) will be quantified using a novel automated segmentation procedure developed in our lab. The anticipated results will be instrumental in developing counter-measures against micro-gravity and radiation-induced bone loss. Moreover, possible synergistic effects may provide insight into underlying mechanisms mediating biological response.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN34526 , Annual Meeting of the American Society for Gravitational and Space Research (ASGSR 2016); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-24
    Description: The advancement of flow measurement techniques continues to extend experimental boundaries and thus significantly contributes to improving our understanding of both basic and applied aerodynamics. This is particularly apparent in the case of particle image velocimetry (PIV), where its application has furthered the existing knowledge in several areas of helicopter rotor aerodynamics. The complex nature of helicopter rotor flows presents unique challenges to experimentalists, including transonic flow, concentrated vortices and dynamic stall. To illustrate the impact of the technological advancements on the way helicopter aerodynamics is studied today, the development of PIV since the early nineties of the last century is reviewed and some recent PIV applications are described. Using examples of main rotor wakes, dynamic stall and flow control investigations, the capabilities of largescale, timeresolved and volumetric PIV are summarized.
    Keywords: Aerodynamics
    Type: NF1676L-24871 , AIAA Journal (ISSN 0001-1452) (e-ISSN 1533-385X); 55; 9; 2859-2874
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-20
    Description: A synthesis is presented of recent numerical predictions for the F-16XL aircraft flowfields and aerodynamics. The computational results were all performed with hybrid RANS/LES formulations, with an emphasis on unsteady flows and subsequent aerodynamics, and results from five computational methods are included. The work was focused on one particular low-speed, high angle-of-attack flight test condition, and comparisons against flight-test data are included. This work represents the third coordinated effort using the F-16XL aircraft, and a unique flight-test data set, to advance our knowledge of slender airframe aerodynamics as well as our capability for predicting these aerodynamics with advanced CFD formulations. The prior efforts were identified as Cranked Arrow Wing Aerodynamics Project International, with the acronyms CAWAPI and CAWAPI-2.
    Keywords: Aerodynamics
    Type: NF1676L-24577 , Journal of Aircraft (ISSN 0021-8669) (e-ISSN 1533-3868); 54; 6; 2100-2114
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-20
    Description: Continued space bioscience research onboard the International Space Station (ISS) and future long-duration flight missions to the Moon or Mars will require the ability to conduct on-orbit molecular analysis of biological samples independently from Earth. In the last year two new molecular analytic technologies have been installed and the technologies demonstrated onboard the ISS: The Sample Prep Module (SPM) WetLab-2 (WL2) qRT-PCR toolbox and the Oxford Nanopore MinIon Biomolecule Sequencer. Here we describe protocol development and integration into existing ISS technology for end-to-end on-orbit biological sample processing and molecular analysis with real time results generated utilizing only field offline analytic software. For this experiment we isolated primary cells from bone marrow flushes of wild type B6129SF2 mice (Jackson Labs) long bones. The cell isolate was then processed using the SPM to produce total 147nanograms of RNA. The total RNA was purified to only messenger RNA (mRNA) and transferred to Smartcycler Thermocycle ISS kit consumable tube using Eppendorf gel loading pipette tips for further processing. Complementary first strand cDNA was synthesized using OLIGO dT priming followed by addition of SuperScript II Reverse Transcriptase and thermal cycling as per manufacturers instruction. All thermal cycling was conducted using the ISS WetLab-2 Cephid Smarcycler real time thermal cycler. Our protocol takes advantage of mRNAs native poly(A) tail, synthesized in vivo to protect the mRNA from degradation by endonucleases, to eliminate end-prep for adapter ligation. The adapted library is purified using MyOne C1 Streptavidin beads before elution in buffer. The pre-sequencing library is diluted in the loading buffer and injected into the MinIon sample port, drawn into the nanopore window by capillary action, and sequenced using the MinKnown software with local basecalling. The sequencing read produced 34.5 million events and local basecalling produced 117,301 successful reads. NCBI Blast of the data for the mouse genome resulted in 2,462 successful nucleotide collection matches (gene sequences) exceeding 70 homology. These results demonstrate the viability of this novel flight ready end-to-end sample analytic methodology and provide a real time homolog for flight experimentation utilizing supply kits and technologies that have already been demonstrated on ISS.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN43951 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-20
    Description: NASAs PowerCell payload on the DLR (Deutsches Zentrum fur Luft- und Raumfahrt, i.e. German Aerospace Center) Eu:CROPIS satellite will compare the effect of multiple simulated gravity regimes on basic processes required for synthetic biology in space including growth, protein production, and genetic transformation of the bacterium Bacillus subtilis. In addition, it will pioneer the use of a cyanobacterially-produced feedstock for microbial growth in space, a concept we call PowerCell. The PowerCell experiment system will be integrated using the Spaceflight Secondary Payload System with the German Space Agency's (DLR's) Euglena and Combined Regenerative Organic-food Production In Space (Eu:CROPIS) satellite, to be launched during the summer of 2017. In order to simulate the gravitational gradient of different celestial bodies, the Eu:CROPIS satellite will establish artificial microgravity, lunar, and Martian gravity levels prior to conducting each set of biological experiments, with experimental results compared to ground controls. Experiments will be carried out in microfluidics cards with experimental progress measured through absorbance as detected by the LED-based optical system. Here we describe the ground studies that led to these experiments, along with a description of the flight hardware and its performance. The results of this mission will provide foundational data for the use and production of genetically engineered organisms for extraterrestrial missions.
    Keywords: Life Sciences (General)
    Type: SSC-16-XI-04 , ARC-E-DAA-TN32950 , AIAA/USU Conference on Small Satellites; Aug 08, 2016 - Aug 13, 2016; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-20
    Description: System testing of the Carbon Dioxide Removal and Compression System (CRCS) has revealed that sufficient CO2 removal capability was not achieved with the designed system. Subsystem component analysis of the zeolite bed revealed that the sorbent material suffered significant degradation and CO2 loading capacity loss. In an effort to find the root cause of this degradation, various factors were investigated to try to reproduce the observed performance loss. These factors included contamination by vacuum pump oil, o-ring vacuum grease, loadingunloading procedures, and operations. This paper details the experiments that were performed and their results.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN37174 , International Conference for Environmental Systems; Jul 16, 2017 - Jul 20, 2017; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN37001 , Division for Planetary Sciences and the European Planetary Science Congress (DPS-EPSC) Joint Meeting; Oct 16, 2016 - Oct 21, 2016; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-20
    Description: The Ames Life Science Data Archive (ALSDA) at NASA Ames Research Center is managed by the Space Biosciences Division and has been operational since 1993. The ALSDA is responsible for archiving information and biospecimens collected from life science spaceflight experiments and matching ground control experiments. They are stored in the Ames biobank, which is located in the Biospecimen Storage Facility (BSF). The ALSDA also manages a Biospecimen Sharing Program, performs curation and long-term storage operations, and makes biospecimens available to the scientific community for research purposes via the Life Science Data Archive public website (https:lsda.jsc.nasa.gov). The BSF maintains both fixed and frozen spaceflight and ground tissues, collected from recent and past spaceflight missions. Due to the ever increasing demand for space to preserve current and future flight biospecimens, the ALSDA has initiated the development of a culling plan for biospecimens currently stored in the BSF. Culling enables the ALSDA to assess the quality of archived samples, and supports the development of standardized culling procedures that improve the operational efficiency of the BSF. The culling plan focuses on generating disposition recommendations for samples in the BSF, and currently is based on measuring ribonucleic acid (RNA) integrity number (RIN). The culling process includes (1) sorting and identification of candidate samples for RIN analysis, (2) completion of RIN analysis on select samples, and (3) development of disposition recommendations for specimens based on the RIN values. Furthermore, our approach allows for unique scientific opportunities, including development of a RIN-based methodology for culling, and temporal assessment of the quality of the tissues that have been stored in BSF since the 1980s. Results of this work will also support NASA open science initiatives.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN37076 , International Society for Biological and Environmental Repositories (ISBER) Regional Meeting; Nov 07, 2016 - Nov 08, 2016; Bethesda, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-19
    Description: Altered gravity conditions, such as experienced by organisms during spaceflight, is known to cause transcriptomic and proteomic changes. We describe the proteomic changes in the whole body of adult Drosophila melanogaster (fruit fly), but focus specifically on the localized changes in the adult head in response to chronic hypergravity (3G) treatment. Canton S adult female flies (2-3 days old) were exposed to chronic hypergravity for 9 days and compared with parallel 1G controls. After hypergravity treatment, whole flies and fly heads were separated, and evaluated for quantitative comparison of the two gravity conditions using an isobaric tagging liquid chromatography-tandem mass spectrometry approach. Data revealed a total of 1948 (whole flies) and 1480 (head) proteins to be differentially present in hypergravity-treated flies. Gene Ontology analysis of head specific proteomics revealed host immune response and humoral stress proteins were significantly upregulated. Proteins related to calcium signaling, ion transport and ATPase were decreased. Enhanced expression of cuticular proteins may suggest an alteration in chitin metabolism and in chitin-based cuticle development. We therefore present a comprehensive quantitative survey of proteomic changes in response to chronic hypergravity in Drosophila, which will help elucidate the underlying molecular mechanisms associated with altered gravity environments.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN31697
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-20
    Description: Evidence from spaceflight and ground-based missions demonstrate that sleep loss and circadian desynchronization occur among astronauts, leading to reduced performance and, increased risk of injuries and accidents. We conducted a comprehensive literature review to determine the optimal sleep environment for lighting, temperature, airflow, humidity, comfort, intermittent and erratic sounds, privacy and security in the sleep environment. We reviewed the design and use of sleep environments in a wide range of cohorts including among aquanauts, expeditioners, pilots, military personnel, and ship operators. We also reviewed the specifications and sleep quality data arising from every NASA spaceflight mission, beginning with Gemini. We found that the optimal sleep environment is cool, dark, quiet, and is perceived as safe and private. There are wide individual differences in the preferred sleep environment; therefore modifiable sleeping compartments are necessary to ensure all crewmembers are able to select personalized configurations for optimal sleep.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN56624 , International Conference on Applied Human Factors; Jul 27, 2016 - Jul 31, 2016; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-20
    Description: Human immune response is compromised and bacteria can become more antibiotic resistant in space microgravity (MG). We report that under low-shear modeled microgravity (LSMMG) stationary-phase uropathogenic Escherichia coli (UPEC) become more resistant to gentamicin (Gm). UPEC causes urinary tract infections (UTIs), reported to afflict astronauts; Gm is a standard treatment, so these findings could impact astronaut health. Because LSMMG has been shown to differ from MG, we report here preparations to examine UPEC's Gm sensitivity during spaceflight using the E. coli Anti-Microbial Satellite (EcAMSat) on a free flying nanosatellite in low Earth orbit. Within EcAMSats payload, a 48-microwell fluidic card contains and supports study of bacterial cultures at constant temperature; optical absorbance changes in cell suspensions are made at three wavelengths for each microwell and a fluid-delivery system provides growth medium and predefined Gm concentrations. Performance characterization is reported for spaceflight prototypes of this payload system. Using conventional microtiter plates, we show that Alamar Blue (AB) absorbance changes due to cellular metabolism accurately reflect E. coli viability changes: measuring AB absorbance onboard EcAMSat will enable telemetry of spaceflight data to Earth. Laboratory results using payload prototypes are consistent with wellplate and flask findings of differential sensitivity of UPEC and its delta rpoS strain to Gm. Space MG studies using EcAMSat should clarify inconsistencies from previous space experiments on bacterial antibiotic sensitivity. Further, if sigma (sup s) plays the same role in space MG as in LSMMG and Earth gravity, EcAMSat results would facilitate utilizing our previously developed terrestrial UTI countermeasures in astronauts.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN35487
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-26
    Description: Spaceflight environments and their associated conditions, such as microgravity and space radiation, cause many biological functions formerly considered to be standard to behave in nonstandard ways. Exposure to microgravity has shown to induce deleterious effects in stem cell-based tissue regeneration, leading to immune system and healing response impairments as well as muscle and bone density loss. Such risks must be mitigated in order for long-term human space exploration to proceed. Thus, our work seeks to explore mechanisms of stem cell-based tissue regeneration that experience changes in spaceflight environments. Cellular senescence is a process of inducing cell cycle arrest that can be initiated by various stimuli. This function is influenced by two major pathways, controlled by p53 and pRB tumor suppressor proteins. p53 activity targets the cyclin-dependent kinase inhibitor gene p21Cdkn1a in osteogenic cell cycle arrest. Under conditions of mechanical unloading, stem cell-based tissue regeneration has shown to be decreased in both proliferation and differentiation, as many cells are arrested in progenitor states. p21 has shown upregulation in expression under conditions of microgravity, suggesting its role in regenerative bone formation arrest in space. p21 levels are found to be elevated independent of p53, suggesting a decrease in proliferation and regeneration without apoptosis, but rather through cell cycle arrest alone. Thus, we hypothesize that p21 is a mediator of cellular senescence in bone marrow stem cells. Culturing of bone marrow stem cells from wild type and p21 knockout mice under osteoblastogenic conditions will be completed to explore the role of p21Cdkn1a in stem cell proliferation and maturation. We believe that decreases in somatic stem cell differentiation may occur after spaceflight due to signal pathway alterations that result in downstream inhibition of genes involved in differentiation, preventing tissue from repairing and regenerating normally.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN43925 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-20
    Description: Precision landing of large payloads on Mars presents a challenge to the Entry, Descent, and Landing (EDL) community. Previous studies indicated that by incorporating the capability for a Hypersonic Inflatable Aerodynamic Decelerator (HIAD) to morph during reentry would result in a more accurate landing footprint by allowing modulation of the lift- to-drag (L/D) vector directly instead of through bank angle control. However, morphing the HIAD shape for trajectory control may expose the HIAD to potential structural loads or aero heating concerns. In this study, the application of an optimal control allocation (OCA) technique was investigated that would to enable the morphing HIAD to maximize trajectory control capabilities while simultaneously keeping the structural loads and aero heating below some thresholds. This concept was demonstrated in a 3 degree-of-freedom (DOF) EDL simulation and provides basis for future research.
    Keywords: Aerodynamics
    Type: NF1676L-27448 , AIAA SciTech Forum 2018; Jan 08, 2018 - Jan 12, 2018; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-13
    Description: The ends of human chromosomes contain telomeres, or tandem arrays of repeating DNA sequences capped by multiple associated proteins that protect chromosomal ends from degradation. Telomeres function to preserve genomic stability by preventing natural chromosomal ends from being recognized as broken DNA double-strand breaks and triggering inappropriate DNA damage responses. Mounting evidence shows telomere length is an inherited trait that decreases with cellular division and normal aging. In addition, telomere length also appears to be influenced by other factors such as cellular oxidative stress, radiation and mechanical unloading of tissues as in microgravity. To measure these potential effects of the space environment on telomere lengths and cellular aging and regenerative potential we developed a novel telomere measurement approach based on nanopore sequencing of PCR amplified bar-coded chromosome termini. Specifically, telomeres can be directly enriched using barcode sequences ligated to the end of a free end- repaired telomere using the WetLab-2 facility SmartCycler on ISS. Prior to the ligation and amplification protocol a proteinase K digestion of capping proteins followed by a single 95-degree C heat denaturation of the protease is included. After digestion and bar-code ligation, PCR amplification will initiate with the ligated barcoded sequence, suppressing amplification of intra-genomic fragments and resulting in long read barcoded telomere amplicons including the nanopore motor protein sequences. Purified PCR amplicons are then used for nanopore sequencing library generation by simple addition of motor proteins and sequencing library is loaded into the MinION nanopore DNA-sequencer. Amplicon sequence reads from the nanopore device can be base-called quickly on ISS due to barcoding ligation and subsequent PCR amplification enhancing the telomere sequence resolution. If successfully implemented on ISS this technique will provide a novel means of measuring regenerative ability of somatic stem cells in astronauts, and of determining whether spaceflight in microgravity alters their telomere lengths and causes premature cellular aging.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN44002 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: In order to maximize the amount of omics data returned from space flight experiments, the GeneLab project can collaborate with Space Biology funded PIs. Here, we outline the process by which these collaborations take place.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN36421 , Annual American Society for Gravitational and Space Research (ASGSR); Oct 25, 2016 - Oct 28, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: APEX is Advanced Plant Experiments on Orbit which is a series of investigations which focus on fundamental plant biology.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN33927 , MSFC Payload Operations Integration Working Group (POIWG) Meeting; Jan 26, 2016 - Jan 28, 2016; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-13
    Description: As human habitation and eventual colonization of space becomes an inevitable reality, there is a necessity to understand how organisms develop over the life span in the space environment. Microgravity, altered CO2, radiation and psychological stress are some of the key factors that could affect mammalian reproduction and development in space, however there is a paucity of information on this topic. Here we combine early (neonatal) in vivo spectroscopic imaging with an adult emotionality assay following a common obstetric complication (prenatal asphyxia) likely to occur during gestation in space. The neural metabolome is sensitive to alteration by degenerative changes and developmental disorders, thus we hypothesized that that early neonatal neurometabolite profiles can predict adult response to novelty. Late gestation fetal rats were exposed to moderate asphyxia by occluding the blood supply feeding one of the rats pair uterine horns for 15min. Blood supply to the opposite horn was not occluded (within-litter cesarean control). Further comparisons were made with vaginal (natural) birth controls. In one-week old neonates, we measured neurometabolites in three brain areas (i.e., striatum, prefrontal cortex, and hippocampus). Adult perinatally-asphyxiated offspring exhibited greater anxiety-like behavioral phenotypes (as measured the composite neurobehavioral assay involving open field activity, responses to novel object, quantification of fecal droppings, and resident-intruder tests of social behavior). Further, early neurometabolite profiles predicted adult responses. Non-invasive MRS screening of mammalian offspring is likely to advance ground-based space analogue studies informing mammalian reproduction in space, and achieving high-priority.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN48058 , American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: Spaceflight imposes multiple stresses on biological systems resulting in genome-scale adaptations. Understanding these adaptations and their underlying molecular mechanisms is important to clarifying and reducing the risks associated with spaceflight. One such risk is infection by microbes present in spacecraft and their associated systems and inhabitants. This risk is compounded by results suggesting that some microbes may exhibit increased virulence after exposure to spaceflight conditions. The yeast, S. cerevisiae, is a powerful microbial model system, and it's response to spaceflight has been studied for decades. However, to date, these studies have utilized common lab strains. Yet studies on trait variation in S. cerevisiae demonstrate that these lab strains are not representative of wild yeast and instead respond to environmental stimuli in an atypical manner. Thus, it is not clear how transferable these results are to the wild S. cerevisiae strains likely to be encountered during spaceflight. To determine if diverse S. cerevisiae strains exhibit a conserved response to simulated microgravity, we will utilize a collection of 100 S. cerevisiae strains isolated from clinical, environmental and industrial settings. We will place selected S. cerevisiae strains in simulated microgravity using a high-aspect rotating vessel (HARV) and document their transcriptional response by RNA-sequencing and quantify similarities and differences between strains. Our research will have a strong impact on the understanding of how genetic diversity of microorganisms effects their response to spaceflight, and will serve as a platform for further studies.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN48315 , Annual Meeting of the American Society for Gravitational and Space Research - ASGSR; Oct 25, 2017 - Oct 28, 2017; Renton, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: Electrochemical detection of biological molecules is a pertinent topic and application in many fields such as medicine, environmental spills, and life detection in space. Proteases, a class of molecules of interest in the search for life, catalyze the hydrolysis of peptides. Trypsin, a specific protease, was chosen to investigate an optimized enzyme detection system using electrochemistry. This study aims at providing the ideal functionalization of an electrode that can reliably detect a signal indicative of an enzymatic reaction from an Enceladus sample.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN47161 , Ames Research and Technology Showcase; Sep 28, 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-13
    Description: Differential drag is a technique for altering the semi-major axis, velocity, and along-track position of a spacecraft in low Earth orbit. It involves varying the spacecrafts cross-sectional area relative to its velocity direction by temporarily changing attitude and solar array angles, thus varying the amount of atmospheric drag on the spacecraft. The technique has recently been proposed and used by at least three satellite systems for initial separation of constellation spacecraft after launch, stationkeeping during the mission, and potentially for conjunction avoidance. Similarly, differential drag has been proposed as a control strategy for rendezvous, removing the need for active propulsion. In theory, some operational missions that lack propulsion capability could use this approach for conjunction avoidance, though options are typically constrained for spacecraft that are already in orbit. Shortly before the spacecraft was decommissioned, an experiment was performed using NASAs EO-1 spacecraft in order to demonstrate differential drag on an operational spacecraft in orbit, and discover some of the effects differential drag might manifest. EO-1 was not designed to maintain off-nominal orientations for long periods, and as a result the team experienced unanticipated challenges during the experiment. This paper will discuss operations limitations identified before the experiment, as well as those discovered during the experiment. The effective displacement that resulted from increasing the drag area for 39 hours will be compared to predictions as well as the expected position if the spacecraft maintained nominal operations. A hypothetical scenario will also be examined, studying the relative risks of maintaining an operational spacecraft bus in order to maintain the near-maximum drag area orientation and hasten reentry.
    Keywords: Aerodynamics
    Type: GSFC-E-DAA-TN47408 , IAA Conference on Space Situational Awareness (ICSSA); Nov 13, 2017 - Nov 15, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: Future space exploration and long duration space flight will pose an array of challenges to the health and wellbeing of astronauts. Since 2015, Fairchild Tropical Botanic Garden (FTBG), in partnership with NASA's Veggie team, has been testing edible crops for space flight potential through a series of citizen science experiments. FTBG's interest in classroom-based science projects, along with NASA's successful operation of the Veggie system aboard the International Space Station (ISS), led to a NASA-FTBG partnership that gave rise to the Growing Beyond Earth STEM Initiative (GBE). Established in 2015, GBE now involves 131 middle and high school classrooms in South Florida, all conducting simultaneous plant science experiments. The results of those experiments (both numeric and visual) are directly shared with the space food production researchers at KSC. Through this session, we will explore the successful classroom implementation and integration into the curriculum, how the data is being used and the impact of the project on participating researchers, teachers, and students. Participating schools were supplied with specialized LED-lit growth chambers, mimicking the Veggie system on ISS, for growing edible plants under similar physical and environmental constraints. Research protocols were provided by KSC scientists, while edible plant varieties were selected mainly by the botanists at FTBG. In a jointly-led professional development workshop, participating teachers were trained to conduct GBE experiments in their classrooms. Teachers were instructed to not only teach basic botany concepts, but to also demonstrate practical applications of math, physics and chemistry. As experiments were underway, students shared data on plant germination, growth, and health in an online spreadsheet. Results from the students research show a promising selection of new plant candidates for possible further testing. Over a two year period, more than 5000 South Florida students, ages 11 to 18, participated in GBE. Evaluation of the program shows an increased knowledge of and interest in science and science careers among students. The program has also boosted the demand for summer high school internships at FTBG, further developing expertise in plant research and science related to space exploration. Supported by a grant from NASA (NNX16AM32G) to Fairchild Tropical Botanic Garden.
    Keywords: Life Sciences (General)
    Type: KSC-E-DAA-TN47796 , Annual Meeting American Society for Gravitational and Space Research (ASGSR); Oct 25, 2017 - Oct 28, 2017; Renton, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: JSC-CN-40547 , Ohio State University 2017 Optometry Homecoming; Oct 06, 2017; Columbus, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: NASA invests in professional coaching as a way to accelerate the development of its staff. The speaker shares one foundational human development model in coaching - the Six Streams - and applies it to the challenges that new scientists face. The speaker also describes how a new scientist can develop greater capabilities in the Six Streams so that they can become a more effective scientist and feel more satisfaction with their work.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN46151 , NASA ARC Night of Science; Aug 10, 2017; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-19
    Description: We hypothesize that DNA damage induced by high local energy deposition, occurring when cells are traversed by high-LET (Linear Energy Transfer) particles, can be experimentally modeled by exposing cells to high doses of low-LET. In this work, we validate such hypothesis by characterizing and correlating the time dependence of 53BP1 radiation-induced foci (RIF) for various doses and LET across 72 primary skin fibroblast from mice. This genetically diverse population allows us to understand how genetic may modulate the dose and LET relationship. The cohort was made on average from 3 males and 3 females belonging to 15 different strains of mice with various genetic backgrounds, including the collaborative cross (CC) genetic model (10 strains) and 5 reference mice strains. Cells were exposed to two fluences of three HZE (High Atomic Energy) particles (Si 350 megaelectronvolts per nucleon, Ar 350 megaelectronvolts per nucleon and Fe 600 megaelectronvolts per nucleon) and to 0.1, 1 and 4 grays from a 160 kilovolt X-ray. Individual radiation sensitivity was investigated by high throughput measurements of DNA repair kinetics for different doses of each radiation type. The 53BP1 RIF dose response to high-LET particles showed a linear dependency that matched the expected number of tracks per cell, clearly illustrating the fact that close-by DNA double strand breaks along tracks cluster within one single RIF. By comparing the slope of the high-LET dose curve to the expected number of tracks per cell we computed the number of remaining unrepaired tracks as a function of time post-irradiation. Results show that the percentage of unrepaired track over a 48 hours follow-up is higher as the LET increases across all strains. We also observe a strong correlation between the high dose repair kinetics following exposure to 160 kilovolts X-ray and the repair kinetics of high-LET tracks, with higher correlation with higher LET. At the in-vivo level for the 10-CC strains, we observe that drops in the number of T-cells and B-cells found in the blood of mice 24 hours after exposure to 0.1 gray of 320 kilovolts X-ray correlate well with slower DNA repair kinetics in skin cells exposed to X-ray. Overall, our results suggest that repair kinetics found in skin is a surrogate marker for in-vivo radiation sensitivity in other tissue, such as blood cells, and that such response is modulated by genetic variability.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN42188 , Annual International Meeting of the Radiation Research Society (RRS); Oct 15, 2017 - Oct 18, 2017; Cancun; Mexico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-19
    Description: The Adaptable Deployable Entry and Placement Technology (ADEPT) project will be conducting the first flight test of ADEPT, titled Sounding Rocket One (SR-1), in just two months. The need for this flight test stems from the fact that ADEPT's supersonic dynamic stability has not yet been characterized. The SR-1 flight test will provide critical data describing the flight mechanics of ADEPT in ballistic flight. These data will feed decision making on future ADEPT mission designs. This presentation will describe the SR-1 scientific data products, possible flight test outcomes, and the implications of those outcomes on future ADEPT development. In addition, this presentation will describe free-flight ground testing performed in advance of the flight test. A subsonic flight dynamics test conducted at the Vertical Spin Tunnel located at NASA Langley Research Center provided subsonic flight dynamics data at high and low altitudes for multiple center of mass (CoM) locations. A ballistic range test at the Hypervelocity Free Flight Aerodynamics Facility (HFFAF) located at NASA Ames Research Center provided supersonic flight dynamics data at low supersonic Mach numbers. Execution and outcomes of these tests will be discussed. Finally, a hypothesized trajectory estimate for the SR-1 flight will be presented.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN39602 , International Planetary Probe Workshop; Jun 12, 2017 - Jun 16, 2017; The Hague; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN37026 , International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles and the International Transportation Electrification Conference (ESARS-ITEC); Nov 02, 2016 - Nov 04, 2016; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: Exploration of the solar system is constrained by the cost of moving mass off Earth. Producing materials in situ will reduce the mass that must be delivered from earth. CO2 is abundant on Mars and manned spacecraft. On the ISS, NASA reacts excess CO2 with H2 to generate CH4 and H2O using the Sabatier System. The resulting water is recovered into the ISS, but the methane is vented to space. Thus, there is a capability need for systems that convert methane into valuable materials. Methanotrophic bacteria consume methane but these are poor synthetic biology platforms. Thus, there is a knowledge gap in utilizing methane in a robust and flexible synthetic biology platform. The yeast Pichia pastoris is a refined microbial factory that is used widely by industry because it efficiently secretes products. Pichia could produce a variety of useful products in space. Pichia does not consume methane but robustly consumes methanol, which is one enzymatic step removed from methane. Our goal is to engineer Pichia to consume methane thereby creating a powerful methane-consuming microbial factory.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN47267 , Ames Research and Technology Showcase (ARTS) Event; Sep 28, 2017; Moffatt Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: BioSentinel is one of 13 secondary payloads to be deployed on Exploration Mission 1 (EM-1) in 2019. We will use the budding yeast Saccharomyces cerevisiae as a biosensor to determine how deep-space radiation affects living organisms and to potentially quantify radiation levels through radiation damage analysis. Radiation can damage DNA through double strand breaks (DSBs), which can normally be repaired by homologous recombination. Two yeast strains will be air-dried and stored in microfluidic cards within the payload: a wild-type control strain and a radiation sensitive rad51 mutant that is deficient in DSB repairs. Throughout the mission, the microfluidic cards will be rehydrated with growth medium and an indicator dye. Growth rates of each strain will be measured through LED detection of the reduction of the indicator dye, which correlates with DNA repair and the amount of radiation damage accumulated. Results from BioSentinel will be compared to analog experiments on the ISS and on Earth. It is well known that desiccation can damage yeast cells and decrease viability over time. We performed a screen for desiccation-tolerant rad51 strains. We selected 20 re-isolates of rad51 and ran a weekly screen for desiccation-tolerant mutants for five weeks. Our data shows that viability decreases over time, confirming previous research findings. Isolates L2, L5 and L14 indicate desiccation tolerance and are candidates for whole-genome sequencing. More time is needed to determine whether a specific strain is truly desiccation tolerant. Furthermore, we conducted an intracellular trehalose assay to test how intracellular trehalose concentrations affect or protect the mutant strains against desiccation stress. S. cerevisiae cell and reagent concentrations from a previously established intracellular trehalose protocol did not yield significant absorbance measurements, so we tested varying cell and reagent concentrations and determined proper concentrations for successful protocol use.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN47978 , Annual Meeting American Society for Gravitational and Space Research; Oct 25, 2017 - Oct 28, 2017; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...