ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations  (9)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress  (6)
  • American Geophysical Union  (15)
  • Public Library of Science
  • 2005-2009  (15)
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: The 2002–2003 Etna eruption is studied through earthquake distributions and surface fracturing. In September 2002, earthquake-induced surface rupture (sinistral offset 0.48 m) occurred along the E-W striking Pernicana Fault (PF), on the NE flank. In late October, a flank eruption accompanied further ( 0.77 m) surface rupturing, reaching a total sinistral offset of 1.25 m; the deformation then propagated for 18 km eastwards to the coastline (sinistral offset 0.03 m) and southwards, along the NW-SE striking Timpe (dextral offset 0.04 m) and, later, Trecastagni faults (dextral offset 0.035 m). Seismicity (〈4 km bsl) on the E flank accompanied surface fracturing: fault plane solutions indicate an overall ESEWNWextension direction, consistent with ESE slip of the E flank also revealed by ground fractures. A three-stage model of flank slip is proposed: inception (September earthquake), climax (accelerated slip and eruption) and propagation (E and S migration of the deformation).
    Description: Published
    Description: 2286
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 3.2. Tettonica attiva
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: JCR Journal
    Description: reserved
    Keywords: volcano seismology ; surface fracturing ; flank slip ; eruption ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: To investigate the kinematics of the Adriatic region we integrate continuous and episodic GPS measurements and ${M_w} 〉 4.5$ earthquake slip vectors selected from the Regional Centroid Moment Tensor (RCMT) catalogue. Coherent motion of GPS sites in the Po Valley, in Apulia and in the Hyblean Plateau allows us to estimate geodetically constrained angular velocities for these regions. The predictions of the GPS-inferred angular velocities are compared with the earthquake slip vectors, showing that the seismically-expressed deformation at the microplate boundaries is consistent with the observed geodetic motion. The remarkable consistency between geodetic, seismological and geological evidence of active tectonics, suggests that active deformation in the Central Adriatic is controlled by the relative motion between the Adria and Apulia microplates. The microplates angular rotation rates are then compared with the rotation rates calculated with a simple block model supporting the hypotheses (1) that Apulia forms a single microplate with the Ionian Sea and possibly with the Hyblean region and (2) that Adria and Apulia rotate in such a way as to accommodate the Eurasia-Nubia relative motion. We suggest that the present-day microplate configuration follows a recent fragmentation of the Adriatic promontory that during the Neogene rigidly transferred the Africa motion to the orogenic belts that now surround the Adriatic region.
    Description: Published
    Description: B12413
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Adria ; GPS ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We report on new paleomagnetic and anisotropy of magnetic susceptibility (AMS) data from Plio-Pleistocene sedimentary units from Corinth and Megara basins (Peloponnesus, Greece). Paleomagnetic results show that Megara basin has undergone vertical axis CW rotation since the Pliocene, while Corinth has rotated CCW during the same period of time. These results indicate that the overall deformation in central Greece has been achieved by complex interactions of mostly rigid, rotating, fault bounded crustal blocks. The comparison of paleomagnetic results and existing GPS data shows that the boundaries of the rigid blocks in central Greece have changed over time, with faulting migrating into the hanging walls, sometimes changing in orientation. The Megara basin belonged to the Beotia-Locris block in the past but has now been incorporated into the Peloponnesus block, possibly because the faulting in the Gulf of Corinth has propagated both north and east. Paleomagnetic and GPS data from Megara and Corinth basins have significant implications for the deformation style of the continental lithosphere. In areas of distributed deformation the continental lithosphere behaves instantaneously like a small number of rigid blocks with well-defined boundaries. This means that these boundaries could be detected with only few years of observations with GPS. However, on a larger time interval the block boundaries change with time as the active fault moves. Paleomagnetic studies distinguishing differential rotational domains provide a useful tool to map how block boundaries change with time.
    Description: Published
    Description: 1-15
    Description: reserved
    Keywords: Paleomagnetism ; Greece, block rotations ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1167012 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-03
    Description: The present-day stress field and its recent tectonic evolution in the Northern Apennines are reconstructed from borehole breakout analysis and focal mechanisms of crustal earthquakes and through the comparison with paleostress data. We have considered 86 wells for breakout analysis, with depths down to 6–7 km, 125 fault plane solutions of crustal earthquakes with M〈5 that occurred between 1988 and 1995 in the Northern and Central Apennines, and data of stronger earthquakes (M≤6) reported in other studies. The Tyrrhenian coastal region and the Apenninic belt are characterized by Shmin direction mainly trending NE-SW, with predominantly normal fault plane solutions. Along the outer front of the belt and the Adriatic offshore, Shmin is oriented NW-SE, and focal solutions are thrust or strike-slip, with maximum compression around NE-SW. Conversely, south of 43°N, breakouts evidence an orthogonal direction of horizontal compression (NW-SE), following the Southern Apennine trend, where a widespread NE-SW extension was recognized by previous investigations. Comparing these results to the recent tectonic evolution inferred from structural geology, we argue that the extension-compression pair, characteristic of the post-Tortonian evolution of the mountain belt, has been migrating in time from late Miocene to Present only in the northern sector of the arc, whereas the southern sector underwent a generalized extension, at least since middle Pleistocene. The striking correspondence between the active compression front and the region with evidence of a remnant subducted slab suggests that the migrating extension-compression pair has been controlled by progressive retreat of the slab.
    Description: Published
    Description: 108-118
    Description: reserved
    Keywords: stress ; borehole breakout ; tectonics ; Italy ; Apennines ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 4086543 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-02-03
    Description: We have analyzed a 1500 m section at 3.9 to 5.4 km depth in a well of the southern Apennines, in order to better characterize the local active stress field and its correlation with tectonic structures. In this paper we present and discuss the results obtained from the comparison between breakouts and structural analysis from dipmeter data. We have found that the mean breakout direction is in agreement with the regional stress field that in this area is characterized by normal faulting (σ1 = σv) with NE-SW trending extension (horizontal σ3). Since the regional stress field is relatively well known in this region, we could detect and study some anomalous horizontal stress directions along the well, which we interpret as due to faults crosscutting the borehole. A detailed comparison between the breakout-inferred stress variations along depth and the faults identified by the dipmeter analysis reveals that some of these faults are associated with stress rotations, whereas others do not show any variation. The former can be interpreted either as “open” fractures or as faults that slipped recently with a near-complete stress drop, and the latter can be interpreted as “sealed” faults. In particular, we found that the main thrust faults of the area, mainly active in Pliocene times, appear to be sealed, whereas ∼E-W trending high-angle (normal?) faults determine strong stress rotations, suggesting that they are the main active structures of the region. This suggests that the study area is located in a transfer zone between the two main “Apenninic” (NW-SE trending) fault systems which ruptured in the last 150 years. This study has shown that a detailed analysis of the structural and geometrical characteristics of deep wells can be used for the reconnaissance of active structures. This approach can contribute to seismic hazard studies and, if carried out in an oil-bearing section, can help to maximize the hydrocarbon production.
    Description: Published
    Description: reserved
    Keywords: borehole breakout ; structural analysis in deep wells ; active faults ; Southern Apennines ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1487574 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2017-04-03
    Description: We investigate crustal deformation along the Eurasia-Nubia plate boundary in Calabria and Sicily revealed by the GPS velocity field obtained by the combination of continuous site velocities with previous results from episodic campaigns. We recognize two distinct crustal domains characterized by different motions and styles of deformation. Convergence in Sicily is taken up by crustal shortening along the former Tyrrhenian back arc passive margin, in agreement with seismological data and geological evidence of recent cessation of deformation along the Plio-Pleistocene subduction front. The analysis of the GPS data and the consistency between earthquake slip vectors and convergence direction suggest that Eu-Nu convergence in Sicily does not require intermediate crustal blocks. Significant Eurasia ( 3 mm/yr to NNE) and Nubia-fixed ( 5 mm/yr to ESE) residual velocities in Calabria suggest instead the presence of an intermediate crustal block which can be interpreted as a forearc sliver or as an independent Ionian block. According to the first hypothesis, subduction is still active in the Ionian wedge, although we find no evidence for active back arc spreading in the Tyrrhenian Sea. The N115 E oriented Sicily-Calabria GPS relative motion is consistent with the extension observed during the 1908 Mw 7.1 Messina earthquake. We suggest that up to 3 mm/yr ( 80%) of this estimated relative motion between Sicily and the Calabrian Arc may be taken up in the Messina Straits.
    Description: Published
    Description: 1-16
    Description: reserved
    Keywords: GPS ; Calabria, Sicily, Active tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1237090 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We present the first GPS estimate of crustal extension in the central Apennines (Italy) through the analysis of the deformation of a sub-network of the National GPS Geodetic network IGM95 in the interval 1994–1999. The selected sub-network spans the entire active deformation belt perpendicularly to its axis and allows the evaluation of (1) the total extension rate absorbed in this sector of the Apennines and (2) the seismogenic potential of the normal faults active in the Late Pleistocene-Holocene interval within the network. Results of this reoccupation are consistent with an extensional strain rate of 0.18×10−6 yr−1 concentrated in an area of about 35 km width, giving an average extension rate of 6±2 mm/yr across the central Apennines. The pattern of active deformation suggests active elastic strain accumulation on the westernmost of the two fault systems active in the Late Pleistocene-Holocene interval and may also suggest the presence of another active fault system not recognized so far.
    Description: Published
    Description: 2121-2124
    Description: reserved
    Keywords: GPS ; Apennines, Active extension ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 211231 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We study the coseismic and postseismic displacements related with the 1997 Umbria-Marche earthquake sequence by means of leveling lines along a deformed aqueduct located in the epicentral area. Comparing the 1960 and 10/1997 measurements we obtain 0.49 0.10 m of coseismic displacement distributed along 3 km across the normal fault zone. Modeling of the coseismic surface dislocation is obtained from a combination of low angle (38°) faults at depth and high angle (80°) upper fault branches. The best fit model indicates that the upper branches stop at 0.4 km below the ground surface and have 60% of slip with respect to the lower faults. The postseismic displacement measured during 1998 is 0.18 m and represents 36% of the apparent coseismic deformation. Moderate earthquakes in the Apennines and related surface deformation may thus result from curved faults that reflect the brittle-elastic properties of the uppermost crustal structures.
    Description: Data collection was made while both authors were at Istituto di Ricerca per la Tettonica Recente – CNR (GNDT Project), Roma, Italy. M. Copparoni (ASM, Foligno) and M. Raponi and S. Pacico (Studio Topografico s.n.c., Foligno) provided data about aqueduct and leveling lines. Analysis of data and modeling were done while RB was visiting EOST-IPG, Strasbourg, France. Preparation of the paper benefited from discussion with R. Armijo, S. Barba, P. Gomez and G. Valensise. A. Amato and an anonymous reviewer are thanked for their constructive remarks.
    Description: Published
    Description: 2695–2698
    Description: JCR Journal
    Description: open
    Keywords: Coseismic displacement ; postseismic displacement ; earthquake fault ; Colfiorito, Italy ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Postseismic relaxation is modeled for the Irpinia earthquake, which struck southern Italy in 1980. Our goal is to understand the mechanism of surface deformation due to stress relaxation in the deep portion of the crust-lithosphere system for a shallow normal fault source and to infer the rheological properties of the lithosphere in the extensional environment of peninsular Italy. The modeling is carried out within the framework of our normal mode viscoelastic theory at high spatial resolution in order to accurately resolve the vertical surface displacements for a seismic source. The slip distribution over the faults is first inverted from coseismic leveling data, the misfit between observed and modeled vertical displacements being minimized by means of the L2 norm. Slip distribution is then used within the viscoelastic model to invert for the viscosities of the lower crust and generally of the lithosphere. Inversion is based on leveling data sampled along three lines crossing the epicentral area. Postseismic deformation in the Irpinia area is characterized by a broad region of crust upwarping in the footwall of the major fault and downwarping in the hanging wall that is responsible for the long-wavelength features of the vertical displacement pattern. The c2 analysis indicates that the Irpinia earthquake cannot constrain the rheology of the upper mantle but only of the crust; a full search in the viscosity spaces makes it possible to constrain the crustal viscosity to values of the order of 1019 Pa s, in agreement with previous studies carried out in different tectonic environments.
    Description: Published
    Description: 1-16
    Description: partially_open
    Keywords: Lithospheric rheology ; Irpinia earthquake ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 419 bytes
    Format: 623618 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: The active tectonics at the front of the Southern Apennines and in the Adriatic foreland is characterized by E-W striking, right-lateral seismogenic faults, interpreted as reactivated inherited discontinuities. The best studied among these is the Molise-Gondola shear zone (MGsz). The interaction of these shear zones with the Apennines chain is not yet clear. To address this open question we developed a set of scaled analogue experiments, aimed at analyzing: 1) how dextral strike-slip motion along a pre-existing zone of weakness within the foreland propagates toward the surface and affects the orogenic wedge; 2) the propagation of deformation as a function of displacement; 3) any insights on the active tectonics of Southern Italy. Our results stress the primary role played by these inherited structures when reactivated, and confirm that regional E-W dextral shear zones are a plausible way of explaining the seismotectonic setting of the external areas of the Southern Apennines.
    Description: INGV, Università degli Studi di Pavia
    Description: Published
    Description: 21
    Description: open
    Keywords: Active strike-slip fault ; sandbox model ; southern Italy ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 5190977 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2017-04-04
    Description: We integrate geologic, structural, leveling and Differential SAR Interferometry data to show that Vesuvius began to spread onto its sedimentary substratum about 3,600 years ago. Moreover, we model the detected deformation with a solution of the lubrication approximation of the Navier-Stokes equations to show that spreading may continue for about 7,200 years more. Correlation of volcanic spreading with phases of the eruptive activity suggests that Plinian eruptions, which are thought to pose the major hazard, are less likely to occur in the near future.
    Description: Published
    Description: 1-4
    Description: partially_open
    Keywords: Vesuvius ; volcanic activity ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.03. Geodesy::04.03.08. Theory and Models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 458 bytes
    Format: 292488 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-01-05
    Description: Destructive earthquakes are rare in France yet pose a sizable seismic hazard, especially when critical infrastructures are concerned. Only a few destructive events have occurred within the instrumental period, the most important being the 11 June 1909, Lambesc (Provence) earthquake. With a magnitude estimated at 6.2 [Rothé, 1942], the event was recorded by 30 observatories and produced intensity IX effects in the epicentral area, ~30 km north of Marseille. We collected 30 seismograms, leveling data and earthquake intensities to assess the magnitude and possibly the focal mechanism of this event. Following this multidisciplinary approach, we propose a source model where all relevant parameters are constrained by at least two of the input datasets. Our reappraisal of the seismological data yielded Mw 5.8-6.1 (6.0 preferred) and Ms 6.0, consistent with the magnitude from intensity data (Me 5.8) and with constraints derived from modeling of coseismic elevation changes. Hence, we found the Lambesc earthquake to have been somewhat smaller than previously reported. Our datasets also constrain the geometry and kinematics of faulting, suggesting that the earthquake was generated by reverse-right lateral slip on a WNW-striking, steeply north-dipping fault beneath the western part of the Trévaresse fold. This result suggests that the fold, located in front of the Lubéron thrust, plays a significant role in the region’s recent tectonic evolution. The sense of slip obtained for the 1909 rupture also agrees with the regional stress field obtained from earthquake focal mechanisms and microtectonic data as well as recent GPS data.
    Description: Published
    Description: 2454
    Description: partially_open
    Keywords: Lambesc earthquake ; France ; historical seismograms ; displacement modeling ; macroseismic data ; geodetic data ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.05. Historical seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 2978 bytes
    Format: 4419432 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2017-04-04
    Description: The Neapolitan volcanic region is located within the graben structure of the Campanian Plain (CP), which developed between the western sector of the Appenine Chain and the eastern margin of the Tyrrhenian Sea. Two volcanic areas, spaced less than 10 km apart, are situated within the CP: the Somma-Vesuvius Volcano (SVV) and the Phlegraean Volcanic District (PVD). SVV is a typical stratovolcano, whereas PVD, including Campi Flegrei, Procida, and Ischia, is composed mostly of monogenetic centers. This contrast is due to different magma supply systems: a widespread fissure-type system beneath the PVD and a central-type magma supply system for the SVV. Volcanological, geophysical, and geochemical data show that magma viscosity, magma supply rate, and depth of magma storage are comparable at PVD and SVV, whereas different structural arrangements characterize the two areas. On the basis of geophysical data and magma geochemistry, an oblique-extensional tectonic regime is proposed within the PVD, whereas in the SVVarea a compressive stress regime dominates over extension. Geophysical data suggest that the area with the maximum deformation rate extends between the EW-running 41st parallel and the NE-running Magnaghi-Sebeto fault systems. The PVD extensional area is a consequence of the Tyrrhenian Sea opening and is decoupled from the surrounding areas (Roccamonfina and Somma-Vesuvius) which are still dominated by Adriatic slab dynamics. Spatially, we argue that the contribution of the asthenospheric wedge become much less important from W-NW to E-SE in the CP. The development of the two styles of volcanism in the CP reflects the different tectonic regimes acting in the area.
    Description: Published
    Description: 1-25
    Description: partially_open
    Keywords: Volcanic styles ; Tectonic setting ; Neapolitan volcanic region ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 428 bytes
    Format: 1655376 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2017-04-04
    Description: In this paper we present the first geochemical data set regarding long-term monitoring of dissolved gases in thermal waters from a seismic area. Three sites in Umbria (Central Apennines, Italy) were studied both for the chemical and for the helium isotopic composition of the dissolved gases. Data were collected during and after the seismic crisis that struck the region in 1997â 1998. The chemical composition of the dissolved gases revealed that a CO2-rich gas phase was always mixed with an atmospheric-derived component dominated by N2. A normal faulting marked the beginning of the seismic activity enhancing the release of CO2 on a regional scale. Variations in both the chemical and isotopic compositions of the dissolved gases were also observed as preseismic, synseismic, and postseismic phenomena related to the seismic shock of March 1998. Those geochemical modifications were interpreted as being the consequence of a drop in the CO2 degassing rate, in good agreement with the compressive focal mechanism of that seismic event. Furthermore, this interpretation was also consistent with the geologic and tectonic setting of the study area and induced us to postulate that changes in the local rock permeability, due to crustal deformations (i.e., coseismic deformation and postseismic release), were responsible for the geochemical modifications observed. On the basis of the foregoing, we have concluded that the geochemistry of dissolved gases in groundwaters represents a useful tool for the investigation of the relationships between circulating fluids and seismic activity.
    Description: Published
    Description: partially_open
    Keywords: dissolved gases ; geochemistry ; seismic areas ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.04. Hydrogeological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 337669 bytes
    Format: 503 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-04-04
    Description: We present an updated present-day stress data compilation for the Italian region and discuss it with respect to the geodynamic setting and the seismicity of the area. We collected and analyzed 190 new stress data from borehole breakouts, seismicity, and active faults and checked in detail the previous compilation [Montone et al., 1999]. Our improved data set consists of 542 data, 362 of which with a reliable quality for stress maps. The Italian region is well sampled, allowing the computation of constrained smoothed stress maps; for surrounding regions we added the World Stress Map 2003 release data. These maps depict the active stress conditions and, in the areas where the data are sparse, contribute to understand the relationship between active stress, past tectonic setting, and the seismicity of the study region. The new data are particularly representative along the northern Apennine front, from the Po Plain to offshore the Adriatic, and along the southern Tyrrhenian Sea, north of Sicily, where they point out a compressive tectonic regime. In the Alps both compressive and transcurrent regimes are observed. Our data also confirm that the whole Apenninic belt and the Calabrian arc are extending. Along the central Adriatic coast, changes from one stress regime to another are shown by abrupt variations in the minimum horizontal stress directions. Other gentler stress rotations, as, for instance, from the southern Apennines to the Calabrian arc or along the northern Apennines, follow the curvature of the arcs and are not associated to a stress regime variation.
    Description: Published
    Description: (B10410)
    Description: partially_open
    Keywords: active stress ; earthquakes ; borehole breakouts ; crust and lithosphere ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 3452579 bytes
    Format: 711 bytes
    Format: application/pdf
    Format: text/html
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...