ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOTRACES  (6)
  • Salinity  (5)
  • Elsevier  (7)
  • American Geophysical Union  (4)
  • Public Library of Science
  • 2015-2019  (11)
  • 1940-1944
Collection
Years
Year
  • 1
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 32(12), (2019): 1738-1758, doi:10.1029/2018GB005994.
    Description: Sinking particles strongly regulate the distribution of reactive chemical substances in the ocean, including particulate organic carbon and other elements (e.g., P, Cd, Mn, Cu, Co, Fe, Al, and 232Th). Yet, the sinking fluxes of trace elements have not been well described in the global ocean. The U.S. GEOTRACES campaign in the North Atlantic (GA03) offers the first data set in which the sinking flux of carbon and trace elements can be derived using four different radionuclide pairs (238U:234Th ;210Pb:210Po; 228Ra:228Th; and 234U:230Th) at stations co‐located with sediment trap fluxes for comparison. Particulate organic carbon, particulate P, and particulate Cd fluxes all decrease sharply with depth below the euphotic zone. Particulate Mn, Cu, and Co flux profiles display mixed behavior, some cases reflecting biotic remineralization, and other cases showing increased flux with depth. The latter may be related to either lateral input of lithogenic material or increased scavenging onto particles. Lastly, particulate Fe fluxes resemble fluxes of Al and 232Th, which all have increasing flux with depth, indicating a dominance of lithogenic flux at depth by resuspended sediment transported laterally to the study site. In comparing flux estimates derived using different isotope pairs, differences result from different timescales of integration and particle size fractionation effects. The range in flux estimates produced by different methods provides a robust constraint on the true removal fluxes, taking into consideration the independent uncertainties associated with each method. These estimates will be valuable targets for biogeochemical modeling and may also offer insight into particle sinking processes.
    Description: This study grew out of a synthesis workshop at the Lamont‐Doherty Earth Observatory of Columbia University in August 2016. This workshop was sponsored by the U.S. GEOTRACES Project Office (NSF 1536294) and the Ocean Carbon and Biogeochemistry (OCP) Project Office (NSF 1558412 and NASA NNX17AB17G). The U.S. National Science Foundation supported all of the analytical work on GA03. Kuanbo Zhou measured 228Th in the large size class particles (NSF 0925158 to WHOI). NSF 1061128 to Stony Brook University supported the BaRFlux project, for which Chistina Heilbrun is acknowledged for laboratory and field work. The lead author acknowledges support from a start‐up grant from the University of Southern Mississippi. Two anonymous reviewers are thanked for their constructive comments. All GEOTRACES GA03 data used in this study are accessible through the Biological and Chemical Oceanography Data Management Office (http://data.bco‐dmo.org/jg/dir/BCO/GEOTRACES/NorthAtlanticTransect/), and derived parameters are reported in the supporting information.
    Description: 2019-05-22
    Keywords: Biological carbon pump ; Trace metals ; North Atlantic ; Export ; GEOTRACES
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(4), (2019):2861-2875, doi: 10.1029/2018JC014175.
    Description: Strong variability in sea surface salinity (SSS) in the Eastern Tropical Pacific (ETPac) on intraseasonal to interannual timescales was studied using data from the Soil Moisture and Ocean Salinity, Soil Moisture Active Passive, and Aquarius satellite missions. A zonal wave number‐frequency spectral analysis of SSS reveals a dominant timescale of 50–180 days and spatial scale of 8°–20° of longitude with a distinct seasonal cycle and interannual variability. This intraseasonal SSS signal is detailed in the study of 19 individual ETPac eddies over 2010–2016 identified by their sea level anomalies, propagating westward at a speed of about 17 cm/s. ETPac eddies trap and advect water in their core westward up to 40° of longitude away from the coast. The SSS signatures of these eddies, with an average anomaly of 0.5‐pss magnitude difference from ambient values, enable the study of their dynamics and the mixing of their core waters with the surroundings. Three categories of eddies were identified according to the location where they were first tracked: (1) in the Gulf of Tehuantepec, (2) in the Gulf of Papagayo, and (3) in the open ocean near 100°W–12°N. They all traveled westward near 10°N latitude. Category 3 is of particular interest, as eddies seeded in the Gulf of Tehuantepec grew substantially in the vicinity of the Clipperton Fracture Zone rise and in a region where the mean zonal currents have anticyclonic shear. The evolution of the SSS signature associated with the eddies indicates the importance of mixing to their dissipation.
    Description: This research was carried out in part at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with NASA and part at LOCEAN (Sorbonne Université, CNRS, IRD, MNHN) under a CNES Postdoctoral fellowship. This work is supported by NASA Grants NNX11AE83G and NNX14AH38G and is a contribution to the TOSCA/SMOS‐Ocean proposal supported by CNES. We thank the reviewers for their thoughtfully comments that lead to a much‐improved manuscript. We benefited from numerous data sets made freely available and are listed here: The SMOS debias_v2 SSS have been produced by LOCEAN laboratory and ACRI‐st company that participate to the Ocean Salinity Expertise Center (CEC‐OS) of Centre Aval de Traitement des Donnees SMOS (CATDS). of CATDS at IFREMER, Plouzane, France (http://www.catds.fr/Products, see documentation: http://www.catds.fr/Products/Available‐products‐from‐CEC‐OS/L3‐Debiased‐Locean‐v2); the Aquarius/SAC‐D and SMAP data was produced by Remote Sensing Systems and distributed by PODAAC (https://podaac.jpl.nasa.gov/dataset/AQUARIUS_L3_SSS_SMI_7DAY_V4; https://podaac.jpl.nasa.gov/dataset/SMAP_RSS_L3_SSS_SMI_8DAY‐RUNNINGMEAN_V2); the SLA product is processed and distributed by CMEMS (http://marine.copernicus.eu); the global atlas of eddies is produced by AVISO (https://www.aviso.altimetry.fr/en/data/products/value‐added‐products/global‐mesoscale‐eddy‐trajectory‐product.html); the GPCP precipitation data set (http://eagle1.umd.edu/GPCP_CDR/Monthly_Data) is described in the project technical report (http://eagle1.umd.edu/GPCP_ICDR/GPCPmonthlyV2.3.pdf); Woods Hole Oceanographic Institution OAFlux evaporation data set (ftp://ftp.whoi.edu/pub/science/oaflux/data_v3); UCAR high‐resolution terrain data set (High res terrain data set https://rda.ucar.edu/datasets/ds759.2/#!description); Chelton et al. (1998) Global Atlas of the First‐Baroclinic Rossby Radius of Deformation and Gravity‐Wave Phase Speed (http://www‐po.coas.oregonstate.edu/research/po/research/rossby_radius/).
    Description: 2019-09-28
    Keywords: Eddies ; Mesoscale ; Salinity ; Pacific
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(2), (2019): 1322-1330, doi:10.1029/2018JC014106.
    Description: A Lagrangian model is constructed for a surface column of initial height h(0) that propagates at an average speed u and is subject to excess (i.e., net) evaporation of q m/year. It is shown that these parameters combine to form an evaporation length, L = uh(0)/q, which provides an estimate for the distance the column must travel before evaporating completely. While these changes in the surface water level due to evaporation are compensated by entrainment of water into the overall column, the changes in either near‐surface salinity or isotopic compositions are retained and can be measured. Observations of surface salinity and isotopic compositions of δ18O and δD along 1,000‐ to 3,500‐km long transects are used to estimate values of L in the Red Sea, Mediterranean Sea, Indian Ocean, and Gulf Stream. The variations of salinity, δ18O and δD in all four basins are linear. As anticipated, the estimated value of L is smallest in the slowly moving and arid Red Sea and is greatest in the fast‐moving Gulf Stream.
    Description: The salinity and δ18O data collected aboard the Indian Ocean cruise described in Srivastava et al. (2007) can be accessed at this website (https://www.nodc.noaa.gov). The salinity, δ18O and δD data collected during the Red Sea cruise of the Interuniversity Institute for Marine Sciences, Eilat, described in Steiner et al. (2014) and can be accessed in the supporting information section of doi: 10.1073/pnas.1414323111. H. B. acknowledges the support provided by the Eshkol Foundation of the Israel Ministry of Science.
    Description: 2019-07-26
    Keywords: Air-sea interaction ; Evaporation ; Semienclosed basins ; Salinity ; Stable isotopes ; Thermohaline circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(5), (2019): 3279-3297, doi: 10.1029/2019JC014988.
    Description: Radium isotopes are produced through the decay of thorium in sediments and are soluble in seawater; thus, they are useful for tracing ocean boundary‐derived inputs to the ocean. Here we apply radium isotopes to study continental inputs and water residence times in the Arctic Ocean, where land‐ocean interactions are currently changing in response to rising air and sea temperatures. We present the distributions of radium isotopes measured on the 2015 U.S. GEOTRACES transect in the Western Arctic Ocean and combine this data set with historical radium observations in the Chukchi Sea and Canada Basin. The highest activities of radium‐228 were observed in the Transpolar Drift and the Chukchi shelfbreak jet, signaling that these currents are heavily influenced by interactions with shelf sediments. The ventilation of the halocline with respect to inputs from the Chukchi shelf occurs on time scales of ≤19–23 years. Intermediate water ventilation time scales for the Makarov and Canada Basins were determined to be ~20 and 〉30 years, respectively, while deep water residence times in these basins were on the order of centuries. The radium distributions and residence times described in this study serve as a baseline for future studies investigating the impacts of climate change on the Arctic Ocean.
    Description: We thank the captain and crew of the USCGC Healy (HLY1502) and the chief scientists D. Kadko and W. Landing for coordinating a safe and successful expedition. We thank the members of the pump team, P. Lam, E. Black, S. Pike, X. Yang, and M. Heller for their assistance with sample collection and for their unfailingly positive attitudes during this 65‐day expedition. We also appreciate sampling assistance from P. Aguilar and M. Stephens, and MATLAB assistance from B. Corlett, A. Pacini, P. Lin, and M. Li. The radium data from the HLY1502 expedition are available through the Biological & Chemical Oceanography Data Management Office (https://www.bco‐dmo.org/dataset/718440) and the radium measurements from the SHEBA, AWS‐2000, and SBI expeditions can be found in the supporting information. This work was funded by NSF awards OCE‐1458305 to M.A.C., OCE‐1458424 to W.S.M., and PLR‐1504333 to R.S.P. This research was conducted with Government support under and awarded by a DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship awarded to L.E.K., 32 CFR 168a.
    Description: 2019-10-26
    Keywords: Radium ; Arctic Ocean ; GEOTRACES ; Chukchi shelf
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hult, M., Charette, M., Lutter, G., Marissens, G., Henderson, P., Sobiech-Matura, K., & Simgen, H. Underground gamma-ray measurements of radium isotopes from hydrothermal plumes in the deep Pacific Ocean. Applied Radiation and Isotopes, 153, (2019): 108831, doi:10.1016/j.apradiso.2019.108831.
    Description: The radium isotopes 226Ra and 228Ra can provide important data on the dynamics of deep-sea hydrothermal plumes that travel the oceans for decades and have great impact on the ocean chemistry. This study focuses on parameters important for obtaining low detection limits for 228Ra using gamma-ray spectrometry. It is present at mBq-levels in samples collected during the US GEOTRACES 2013 cruise to the Southeast Pacific Ocean.
    Description: The work of the HADES-staff of Euridice at SCK•CEN is gratefully acknowledged. We are most grateful to Dr. Faidra Tzika for her work in the precursor to this project. Many thanks to Heiko Stroh for quality control and measurements in HADES. This research was supported in part by grants from the U.S. National Science Foundation, Ocean Sciences division (OCE-1232669 and OCE-1736277).
    Keywords: γ-ray spectrometry ; HPGe detectors ; Hydrothermal plume ; Climate change ; Underground laboratory ; GEOTRACES
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Regional Studies in Marine Science 18 (2018): 1-10, doi:10.1016/j.rsma.2017.12.004.
    Description: The variations of temperature and salinity in the Sudanese coastal zone of the Red Sea are studied for the first time using measurements acquired from survey cruises during 2009–2013 and from a mooring during 2014–2015. The measurements show that temperature and salinity variability above the permanent pycnocline is dominated by seasonal signals, similar in character to seasonal temperature and salinity oscillations observed further north on the eastern side of the Red Sea. Using estimates of heat flux, circulation and horizontal temperature/salinity gradients derived from a number of sources, we determined that the observed seasonal signals of temperature and salinity are not the product of local heat and mass flux alone, but are also due to alongshore advection of waters with spatially varying temperature and salinity. As the temperature and salinity gradients, characterized by warmer and less saline water to the south, exhibit little seasonal variation, the seasonal salinity and temperature variations are closely linked to an observed seasonal oscillation in the along-shore flow, which also has a mean northward component. We find that the inclusion of the advection terms in the heat and mass balance has two principal effects on the computed temperature and salinity series. One is that the steady influx of warmer and less saline water from the south counteracts the long-term trend of declining temperatures and rising salinities computed with only the local surface flux terms, and produces a long-term steady state in temperature and salinity. The second effect is produced by the seasonal alongshore velocity oscillation and most profoundly affects the computed salinity, which shows no seasonal signal without the inclusion of the advective term. In both the observations and computed results, the seasonal salinity signal lags that of temperature by roughly 3 months.
    Description: The SPS surveys were funded by the Norwegian Norad’s Program for Master Studies and organized by IMR–RSU in Port Sudan. The central Red Sea mooring data were acquired as part of a WHOI–KAUST collaboration funded by Award Nos. USA00001, USA00002, and KSA00011 to the WHOI by the KAUST in the Kingdom of Saudi Arabia. The work of I. Skjelvan and A.M. Omar was partly supported by the Research Council of Norway through the MIMT Center for Research-based Innovation. This work is part of a Ph.D. project at GFI–UiB funded by the Norwegian Quota program .
    Keywords: Coastal Red Sea ; Temperature ; Salinity ; Time series ; Seasonality ; Alongshore advection
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chemical Geology 493 (2018): 210-223, doi:10.1016/j.chemgeo.2018.05.040.
    Description: The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: Conway GEOTRACES - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González.
    Description: We gratefully acknowledge financial support by the Scientific Committee on Oceanic Research (SCOR) through grants from the U.S. National Science Foundation, including grants OCE-0608600, OCE-0938349, OCE-1243377, and OCE-1546580. Financial support was also provided by the UK Natural Environment Research Council (NERC), the Ministry of Earth Science of India, the Centre National de Recherche Scientifique, l'Université Paul Sabatier de Toulouse, the Observatoire Midi-Pyrénées Toulouse, the Universitat Autònoma de Barcelona, the Kiel Excellence Cluster The Future Ocean, the Swedish Museum of Natural History, The University of Tokyo, The University of British Columbia, The Royal Netherlands Institute for Sea Research, the GEOMAR-Helmholtz Centre for Ocean Research Kiel, and the Alfred Wegener Institute.
    Keywords: GEOTRACES ; Trace elements ; Isotopes ; Electronic atlas ; IDP2017
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Hydrology: Regional Studies 11 (2017): 147-165, doi:10.1016/j.ejrh.2015.12.056.
    Description: The study region encompasses the nearshore, coastal waters off west Maui, Hawaii. Here abundant groundwater—that carries with it a strong land-based fingerprint—discharges into the coastal waters and over a coral reef. Coastal groundwater discharge is a ubiquitous hydrologic feature that has been shown to impact nearshore ecosystems and material budgets. A unique combined geochemical tracer and oceanographic time-series study addressed rates and oceanic forcings of submarine groundwater discharge at a submarine spring site off west Maui, Hawaii. Estimates of submarine groundwater discharge were derived for a primary vent site and surrounding coastal waters off west Maui, Hawaii using an excess 222Rn (t1/2 = 3.8 d) mass balance model. Such estimates were complemented with a novel thoron (220Rn, t1/2 = 56 s) groundwater discharge tracer application, as well as oceanographic time series and thermal infrared imagery analyses. In combination, this suite of techniques provides new insight into the connectivity of the coastal aquifer with the near-shore ocean and examines the physical drivers of submarine groundwater discharge. Lastly, submarine groundwater discharge derived constituent concentrations were tabulated and compared to surrounding seawater concentrations. Such work has implications for the management of coastal aquifers and downstream nearshore ecosystems that respond to sustained constituent loadings via this submarine route.
    Description: This research was primarily funded by the USGS Coastal and Marine Geology Program (CMGP). CRG acknowledges support from the National Oceanic and Atmospheric Administration, Project R/SB-12, which is sponsored by the University of Hawaii Sea Grant College Program, SOEST, under Institutional Grant No. NA14OAR4170071 from NOAA Office of Sea Grant, Department of Commerce.
    Keywords: Regional groundwater flow ; Submarine groundwater discharge ; Radon ; Thoron ; Thermal infrared ; Oceanographic time series ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Continental Shelf Research 124 (2016): 165-181, doi:10.1016/j.csr.2016.06.005.
    Description: A new hydrographic climatology has been created for the continental shelf region, extending from the Labrador shelf to the Mid-Atlantic Bight. The 0.2-degree climatology combines all available observations of surface and bottom temperature and salinity collected between 1950 and 2010 along with the location, depth and date of these measurements. While climatological studies of surface and bottom temperature and salinity have been presented previously for various regions along the Canadian and U.S. shelves, studies also suggest that all these regions are part of one coherent system. This study focuses on the coherent structure of the mean seasonal cycle of surface and bottom temperature and salinity and its variation along the shelf and upper slope. The seasonal cycle of surface temperature is mainly driven by the surface heat flux and exhibits strong dependency on latitude (r≈−0.9). The amplitude of the seasonal cycle of bottom temperature is rather dependent on the depth, while the spatial distribution of bottom temperature is correlated with latitude. The seasonal cycle of surface salinity is influenced by several components, such as sea-ice on the northern shelves and river discharge in the Gulf of St. Lawrence. The bottom salinity exhibits no clear seasonal cycle, but its spatial distribution is highly correlated with bathymetry, thus Slope Water and its intrusion on the shelf can be identified by its relatively high salinity compared to shallow, fresher shelf water. Two different regimes can be identified, especially on the shelf, separated by the Laurentian Channel: advection influences the phasing of the seasonal cycle of surface salinity and bottom temperature to the north, while in the southern region, river runoff and air-sea heat flux forcing are dominant, especially over the shallower bathymetry.
    Description: Support from NSF OCE PO to Y-OK (OCE-1242989 and OCE-1435602) and SJL (OCE-1332666).
    Keywords: Seasonal climatology ; Temperature ; Salinity ; Dataset ; Shelf
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Chemistry 177 (2015): 1-8, doi:10.1016/j.marchem.2015.04.005.
    Description: The GEOTRACES Intermediate Data Product 2014 (IDP2014) is the first publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2013. It consists of two parts: (1) a compilation of digital data for more than 200 trace elements and isotopes (TEIs) as well as classical hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing a strongly inter-linked on-line atlas including more than 300 section plots and 90 animated 3D scenes. The IDP2014 covers the Atlantic, Arctic, and Indian oceans, exhibiting highest data density in the Atlantic. The TEI data in the IDP2014 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at cross-over stations. The digital data are provided in several formats, including ASCII spreadsheet, Excel spreadsheet, netCDF, and Ocean Data View collection. In addition to the actual data values the IDP2014 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering. Metadata about data originators, analytical methods and original publications related to the data are linked to the data in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2014 data providing section plots and a new kind of animated 3D scenes. The basin-wide 3D scenes allow for viewing of data from many cruises at the same time, thereby providing quick overviews of large-scale tracer distributions. In addition, the 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of observed tracer plumes, as well as for making inferences about controlling processes.
    Description: We gratefully acknowledge financial support by the Scientific Committee on Oceanic Research (SCOR) through grants from the U.S. National Science Foundation, including grants OCE-0608600, OCE-0938349, and OCE-1243377. Financial support was also provided by the UK Natural Environment Research Council, the Ministry of Earth Science of India, the Centre National de Recherche Scientifique, l'Université Paul Sabatier de Toulouse, the Observatoire Midi-Pyrénées Toulouse, the Universitat Autònoma de Barcelona, the Kiel Excellence Cluster The Future Ocean, the Swedish Museum of Natural History, The University of Tokyo, The University of British Columbia, The Royal Netherlands Institute for Sea Research, the GEOMAR-Helmholtz Centre for Ocean Research Kiel, and the Alfred Wegener Institute.
    Keywords: GEOTRACES ; Trace elements ; Isotopes ; Electronic atlas
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 116 (2015): 283-302, doi:10.1016/j.dsr2.2014.11.019.
    Description: In this paper, we present, describe, and model the first size-fractionated (0.8–51 µm; 〉51 µm) water-column particulate trace metal results from the US GEOTRACES North Atlantic Zonal Transect in situ pumping survey, with a focus on the lithogenic tracer elements Al, Fe and Ti. This examination of basin-wide, full-depth distributions of particulate elements elucidates many inputs and processes—some for bulk lithogenic material, others element-specific—which are presented via concentration distributions, elemental ratios, size-fractionation dynamics, and steady-state inventories. Key lithogenic inputs from African dust, North American boundary interactions, the Mediterranean outflow, hydrothermal systems, and benthic nepheloid layers are described. Using the refractory lithogenic tracer Ti, we develop a 1-D model for lithogenic particle distributions and test the sensitivities of size-fractionated open-ocean particulate Ti profiles to biotically driven aggregation, disaggregation rates, vertical sinking speeds, and dust input rates. We discuss applications of this lithogenic model to particle cycling in general, and to POC cycling specifically.
    Description: International and US GEOTRACES Offices (OCE-0850963 and OCE-1129603), and fellowship assistance from the Williams College Tyng Fellowship and MIT/WHOI Academic Programs Office to DCO.
    Keywords: Marine particles ; Lithogenic ; Particulate trace metals ; Aluminum ; Iron ; Titanium ; GEOTRACES ; Aeolian dust ; Aggregation ; Disaggregation ; Sinking speed ; Scavenging
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...