ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.01. Earth Interior  (2)
  • Piton de la Fournaise  (1)
  • Oxford University Press  (3)
  • 2020-2022  (3)
  • 1990-1994
  • 1
    Publication Date: 2021-02-10
    Description: The 2007 caldera-forming eruption of Piton de la Fournaise (PdF) erupted the largest volume of magma (210 Mm3)recorded at this volcano in at least three centuries. Major and trace element and Sr^Nd isotope data for bulk-rocks, groundmasses and olivine phenocrysts have been combined with melt inclusion data (major, trace and volatile elements) to track magma evolution over the whole eruptive sequence. We show that each eruptive phase had a distinctive geochemical and petrological signature and that caldera collapse on 5 April was preceded by a marked shift in bulk magma composition and crystal content and size. Aphyric basalt erupted at the beginning of the sequence (February 2007) had relatively high Sr isotope ratio (87Sr/86Sr ¼ 0·70420^0·704180) and low Nd isotopic ratio(143Nd/144Nd ¼ 0·51285^0·51286). Olivine-basalts extruded on2^5 April just before caldera collapse are less enriched in radiogenic Sr (87Sr/86Sr ¼ 0·70412^0·70416), but characterized by the same Nd isotopic composition. This magma is interpreted as a new deep input, which pressurized the shallow PdF plumbing system and triggered the 2007 activity. Post-collapse oceanite lavas represent the main volume of magma extruded in 2007. Their bulk-rocks and groundmasses have 87Sr/86Sr (0·70418) intermediate between those of February and 5 April, and similar to those of the March 2007 and 2001^2006 lavas.We show that the Steady State Basalts (SSB) commonly erupted at PdF are hybrid melts, which result from multistep mixing between ‘alkaline’and ‘transitional’end-members. Our results lead us to propose a new model of the PdF plumbing system to reconcile the petrological, geochemical and geophysical observations: (1) the shallow portion (above sea level) of the PdF plumbing system hosts several small sills, in which magma experiences variable degrees of degassing, cooling and crystallization; (2) oceanite lavas result from the withdrawal of shallow harrisitic mushes stored at low pressures (548 MPa; 51800^2400 m depth) below both the volcano summit and its eastern flank; (3) water degassing plays a major role in fast magma crystallization at shallow depths. Multistep ascent and periodic extrusion of the shallow magmas is promoted by injections of deeper and hotter basaltic magma, containing up to 1·3 wt % H2O and 1630 ppm S. In 2007, the new deep input was the ultimate source of the large excess in sulfur degassing detected by satellites. Lateral draining and intrusion of magma below the eastern flank of the volcano are the cause of major volcano deformation, flank sliding and summit caldera collapse.
    Description: Published
    Description: 1287-1315
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Piton de la Fournaise ; plumbing system ; magma reservoir ; caldera collapse ; melt inclusions ; volatile budget ; isotope geochemistry ; basalt
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-05-12
    Description: erratum paper
    Description: Published
    Description: 1090-1092
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Theoretical seismology ; Seismic attenuation ; Seismic noise ; Surface waves ; Free oscillations ; Seismic interferometry ; 04.06. Seismology ; 04.01. Earth Interior
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-12
    Description: We have constructed a 3-D shear wave velocity (Vs) model for the crust and uppermost mantle beneath the Middle East using Rayleigh wave records obtained from ambient-noise cross-correlations and regional earthquakes. We combined one decade of data collected from 852 permanent and temporary broad-band stations in the region to calculate group-velocity dispersion curves. A compilation of 〉54 000 ray paths provides reliable group-velocity measurements for periods between 2 and 150 s. Path-averaged group velocities calculated at different periods were inverted for 2-D group-velocity maps. To overcome the problem of heterogeneous ray coverage, we used an adaptive grid parametrization for the group-velocity tomographic inversion. We then sample the period-dependent group-velocity field at each cell of a predefined grid to generate 1-D group-velocity dispersion curves, which are subsequently inverted for 1-D Vs models beneath each cell and combined to approximate the 3-D Vs structure of the area. The Vs model shows low velocities at shallow depths (5–10 km) beneath the Mesopotamian foredeep, South Caspian Basin, eastern Mediterranean and the Black Sea, in coincidence with deep sedimentary basins. Shallow high-velocity anomalies are observed in regions such as the Arabian Shield, Anatolian Plateau and Central Iran, which are dominated by widespread magmatic exposures. In the 10–20 km depth range, we find evidence for a band of high velocities (〉4.0 km s–1) along the southern Red Sea and Arabian Shield, indicating the presence of upper mantle rocks. Our 3-D velocity model exhibits high velocities in the depth range of 30–50 km beneath western Arabia, eastern Mediterranean, Central Iranian Block, South Caspian Basin and the Black Sea, possibly indicating a relatively thin crust. In contrast, the Zagros mountain range, the Sanandaj-Sirjan metamorphic zone in western central Iran, the easternmost Anatolian plateau and Lesser Caucasus are characterized by low velocities at these depths. Some of these anomalies may be related to thick crustal roots that support the high topography of these regions. In the upper mantle depth range, high-velocity anomalies are obtained beneath the Arabian Platform, southern Zagros, Persian Gulf and the eastern Mediterranean, in contrast to low velocities beneath the Red Sea, Arabian Shield, Afar depression, eastern Turkey and Lut Block in eastern Iran. Our Vs model may be used as a new reference crustal model for the Middle East in a broad range of future studies.
    Description: Published
    Description: 1349-1365
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: 04.01. Earth Interior ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...