ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (43,055)
  • LUNAR AND PLANETARY EXPLORATION  (14,409)
  • AERODYNAMICS  (12,790)
  • FLUID MECHANICS AND HEAT TRANSFER  (8,825)
  • METEOROLOGY AND CLIMATOLOGY  (7,030)
  • Animals
Collection
Keywords
Language
Years
  • 1
    Publication Date: 2021-04-25
    Description: Niphargus is a speciose amphipod genus found in groundwater habitats across Europe. Three Niphargus species living in the sulphidic Frasassi caves in Italy harbour sulphur-oxidizing Thiothrix bacterial ectosymbionts. These three species are distantly related, implying that the ability to form ectosymbioses with Thiothrix may be common among Niphargus. Therefore, Niphargus-Thiothrix associations may also be found in sulphidic aquifers other than Frasassi. In this study, we examined this possibility by analysing niphargids of the genera Niphargus and Pontoniphargus collected from the partly sulphidic aquifers of the Southern Dobrogea region of Romania, which are accessible through springs, wells and Movile Cave. Molecular and morphological analyses revealed seven niphargid species in this region. Five of these species occurred occasionally or exclusively in sulphidic locations, whereas the remaining two were restricted to nonsulphidic areas. Thiothrix were detected by PCR on all seven Dobrogean niphargid species and observed using microscopy to be predominantly attached to their hosts' appendages. 16S rRNA gene sequences of the Thiothrix epibionts fell into two main clades, one of which (herein named T4) occurred solely on niphargids collected in sulphidic locations. The other Thiothrix clade was present on niphargids from both sulphidic and nonsulphidic areas and indistinguishable from the T3 ectosymbiont clade previously identified on Frasassi-dwelling Niphargus. Although niphargids from Frasassi and Southern Dobrogea are not closely related, the patterns of their association with Thiothrix are remarkably alike. The finding of similar Niphargus-Thiothrix associations in aquifers located 1200 km apart suggests that they may be widespread in European groundwater ecosystems.
    Keywords: amphipods; ecology; sulphide; symbiosis; systematics; taxonomy ; 551 ; Amphipoda ; Animals ; DNA, Bacterial ; Ecosystem ; Groundwater ; Molecular Sequence Data ; Phylogeny ; RNA, Ribosomal, 16S ; Romania ; Sequence Analysis, DNA ; Sulfur ; Symbiosis ; Thiothrix
    Language: English , English
    Type: article , publishedVersion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Wind tunnel tests have been conducted on an NACA 2412 airfoil section at Reynolds number of 2.2 x 10(exp 6) and Mach number of 0.13. Detailed measurements of flow fields associated with turbulent boundary layers have been obtained at angles of attack of 12.4 degrees, 14.4 degrees, and 16.4 degrees. Pre- and post-separated velocity and pressure survey results over the airfoil and in the associated wake are presented. Extensive force, pressure, tuft survey, hot-film survey, local skin friction, and boundary layer data are also included. Pressure distributions and separation point locations show good agreement with theory for the two layer angles of attack. Boundary layer displacement thickness, momentum thickness, and shape factor agree well with theory up to the point of separation. There is considerable disparity between extent of flow reversal in the wake as measured by pressure and hot-film probes. The difference is attributed to the intermittent nature of the flow reversal.
    Keywords: AERODYNAMICS
    Type: NASA-CR-197497 , NAS 1.26:197497 , AR77-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-20
    Description: We have investigated the interaction of Io, Jupiter's innermost Galilean satellite, with the Io plasma torus. The interaction of Io with the plasma surrounding it has been a subject of interest for almost 30 years, dating from the discovery by Bigg (1964) that radio emissions from the Jovian magnetosphere are controlled by Io's position. Since that time, both ground-based and spacecraft observations have shown that Io is a unique satellite that influences the Jovian magnetosphere in important ways. In particular, material from Io is a major source of plasma for the magnetosphere, and the energy that this plasma harnesses from Jupiter's co-rotating magnetic field is an important power source for the magnetosphere. It is apparent that the local interaction of the torus plasma with Io plays a key role in the formation, composition, and energetics of the Io torus; the interaction is also highly nonlinear. We have modeled this interaction using time-dependent three-dimensional magnetohydrodynamic (MHD) simulations. During this past year, we have used NASA support to develop a new MHD code to study the interaction. As part of the Galileo spacecraft's recent successful insertion into orbit around Jupiter, the spacecraft passed within 900 km of Io's surface. Our calculations have focused on using Galileo particles and fields data to examine a question that was not resolved by the Voyager observations: Does Io have an intrinsic magnetic field? In this progress summary, we describe our efforts on this problem to date.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA-CR-200134 , NAS 1.26:200134 , SAIC-95/1381:APPAT-174 , NIPS-96-07877
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The implementation of a two-equation k-omega turbulence model into the NPARC flow solver is described. Motivation for the selection of this model is given, major code modifications are outlined, new imputs to the code are described, and results are presented for several validation cases: an incompressible flow over a smooth flat plate, a subsonic diffuser flow, and a shock-induced separated flow. Comparison of results with the k-epsilon model indicate that the k-omega model predicts simple flows equally well whereas, for adverse pressure gradient flows, the k-omega model outperforms the other turbulence models in NPARC.
    Keywords: AERODYNAMICS
    Type: NASA-TM-107080 , NAS 1.15:107080 , E-9955 , AIAA PAPER 96-0383 , NIPS-96-08118 , Aerospace Sciences Meeting and Exhibit; Jan 15, 1996 - Jan 18, 1996; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The NPARC Alliance is a partnership between the NASA Lewis Research Center (LeRC) and the USAF Arnold Engineering Development Center (AEDC) dedicated to the establishment of a national CFD capability, centered on the NPARC Navier-Stokes computer program. The three main tasks of the Alliance are user support, code development, and validation. The present paper is a status report on the validation effort. It describes the validation approach being taken by the Alliance. Representative results are presented for laminar and turbulent flat plate boundary layers, a supersonic axisymmetric jet, and a glancing shock/turbulent boundary layer interaction. Cases scheduled to be run in the future are also listed. The archive of validation cases is described, including information on how to access it via the Internet.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TM-107134 , NAS 1.15:107134 , E-10064 , AIAA PAPER 96-0387 , NIPS-96-08124 , Aerospace Sciences Meeting and Exhibit; Jan 15, 1996 - Jan 18, 1996; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: An approach for solving the compressible Euler and Navier-Stokes equations upon meshes composed of nearly arbitrary polyhedra is described. Each polyhedron is constructed from an arbitrary number of triangular and quadrilateral face elements, allowing the unified treatment of tetrahedral, prismatic, pyramidal, and hexahedral cells, as well the general cut cells produced by Cartesian mesh approaches. The basics behind the numerical approach and the resulting data structures are described. The accuracy of the mixed volume grid approach is assessed by performing a grid refinement study upon a series of hexahedral, tetrahedral, prismatic, and Cartesian meshes for an analytic inviscid problem. A series of laminar validation cases are made, comparing the results upon differing grid topologies to each other, to theory, and experimental data. A computation upon a prismatic/tetrahedral mesh is made simulating the laminar flow over a wall/cylinder combination.
    Keywords: AERODYNAMICS
    Type: NASA-TM-107135 , NAS 1.15:107135 , AIAA PAPER 96-0762 , E-10065 , NIPS-96-07909 , Aerospace Sciences Meeting and Exhibit; Jan 15, 1996 - Jan 18, 1996; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: A preliminary comparison of the GEOS-1 (Goddard Earth Observing System) data assimilation system convective cloud mass fluxes with fluxes from a cloud-resolving model (the Goddard Cumulus Ensemble Model, GCE) is reported. A squall line case study (10-11 June 1985 Oklahoma PRESTORM episode) is the basis of the comparison. Regional (central U. S.) monthly total convective mass flux for June 1985 from GEOS-1 compares favorably with estimates from a statistical/dynamical approach using GCE simulations and satellite-derived cloud observations. The GEOS-1 convective mass fluxes produce reasonable estimates of monthly-averaged regional convective venting of CO from the boundary layer at least in an urban-influenced continental region, suggesting that they can be used in tracer transport simulations.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 9; p. 1089-1092
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: We study the onset of a pure Marangoni convection in a liquid layer with two deformable interfaces in the no-gravity environment. Both oscillatory and stationary instabilities are considered for a wide range of parameters. It is shown that only stationary instability is possible when surface tension at the colder interface is lower than that at the hotter one. Oscillatory instability tends to disappear and to be replaced by the stationary instability with increase of the Prandtl number and decrease of surface tension at the colder interface.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Advances in Space Research (ISSN 0273-1177); 16; 7; p. (7)83-(7)86
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Estimates of the mass of dust suspended in the Martian atmosphere are derived from global and regional 9-micrometer opacity maps produced from Viking Infrared Thermal Mapper data. During the peak of the 1977b storm, a total dust mass of approximately 4.3 x 10(exp 14) g was suspended, equivalent to 4.3 x 10(exp -4) g/sq cm, or a layer 1.4 micrometers thick. During a local dust storm near Solis Planum at L(sub s) 227 deg, approximately 1.3 x 10(exp 13) g of dust were lofted, equal to about a 6-micrometer layer in that vicinity.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; E4; p. 7509-7512
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: The U.S. upper Midwest was subjected to severe flooding during the summer of 1993. Heavy rainfall in the Mississippi River basin from April through July caused flooding on many Midwest rivers, including the Mississippi, Illinois, Missouri, and Kansas Rivers. The flood crest of 15.1 m at St. Louis, Missouri, on 1 August 1993 was the highest ever measured, surpassing the previous record of 13.2 m set on 28 April 1973. Damage estimates include at least 47 flood-related deaths and a total damage cost of $12 billion. Remotely sensed imagery of severe flooding in the U.S. Midwest was obtained under cloud-free skies on 29 July 1993 by the MODIS (Moderate Resolution Imaging Spectroradiometer) Airborne Simulator (MAS). The MAS is a newly developed scanning spectrometer with 50 spectral bands in the wavelength range 0.55-14.3 micrometers. Estimation of the total flooded area in the MAS scene acquired near St. Louis was accomplished by comparing the MAS scene to a Landsat-5 thematic mapper (TM) scene of the same area acquired on 14 April 1984 in nonflood conditions. For comparison, the MAS band centered at 0.94 micrometers and the TM band centered at 1.65 micrometers were selected because of the high contrast seen in these bands between land and water-covered surfaces. An estimate of the area covered by water in the MAS and TM scenes was obtained by developing land/water brightness thresholds from histograms of the MAS and TM digital image data. Afetr applying the thresholds, the difference between the area covered by water in the MAS and TM scenes, and hence the flooded area in the MAS scene, was found to be about 396 sq km, or about 153 square miles.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 76; 6; p. 933-943
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2011-08-24
    Description: Shortwave radiative fluxes that reach the earth's surface are key factors that influence atmospheric and oceanic circulations as well as surface climate. Yet, information on these fluxes is meager. Surface site data are generally available from only a limited number of observing stations over land. Much less is known about the large-scale variability of the shortwave radiative fluxes over the oceans, which cover most of the globe. Recognizing the need to produce global-scale fields of such fluxes for use in climate research, the World Climate Research Program has initiated activities that led to the establishment of the Surface Radiation Budget Climatology Project with the ultimate goal to determine various components of the surface radiation budget from satellite data. In this paper, the first global products that resulted from this activity are described. Monthly and daily data on a 280-km grid scale are available. Samples of climate parameters obtainable from the dataset are presented. Emphasis is given to validation and limitations of the results. For most of the globe, satellite estimates have bias values between +/- 20 W/sq m and root mean square (rms) values are around 25 W/sq m. There are specific regions with much larger uncertainties however.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 76; 6; p. 905-922
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2011-08-24
    Description: The deployment of a space-based Doppler lidar would provide information that is fundamental to advancing the understanding and prediction of weather and climate. This paper reviews the concepts of wind measurement by Doppler lidar, highlights the results of some observing system simulation experiments with lidar winds, and discusses the important advances in earth system science anticipated with lidar winds. Observing system simulation experiments, conducted using two different general circulation models, have shown (1) that there is a significant improvement in the forecast accuracy over the Southern Hemisphere and tropical oceans resulting from the assimilation of simulated satellite wind data, and (2) that wind data are significantly more effective than temperature or moisture data in controlling analysis error. Because accurate wind observations are currently almost entirely unavailable for the vast majority of tropical cyclones worldwide, lidar winds have the potential to substan- tially improve tropical cyclone forecasts. Similarly, to improve water vapor flux divergence calculations, a direct measure of the ageostrophic wind is needed since the present level of uncer- tainty cannot be reduced with better temperature and moisture soundings alone.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 76; 6; p. 869-888
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-08-24
    Description: We model an infrared outburst on Io as being due to a large, erupting lava flow which increased its area at a rate of 1.5 x 10(exp 5)/sq m and cooled from 1225 to 555 K over the 2.583-hr period of observation. The inferred effusion rate of 3 x 10(exp 5) cu m/sec for this eruption is very high, but is not unprece- dented on the Earth and is similar to the high eruption rates suggested for early lunar volcanism. Eruptions occur approxi- mately 6% of the time on Io. These eruptions provide ample resurfacing to explain Io's lack of impact craters. We suggest that the large total radiometric heat flow, 10(exp 14) W, and the size and temperature distribution of the thermal anomalies (McEwen et al. 1992; Veeder et al. 1994) can be accounted for by a series of silicate lava flows in various stages of cooling. We propose that the whole suite of Io's currently observed thermal anomalies was produced by multiple, high-eruptive-rate silicate flows within the past century.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 113; 1; p. 220-225
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2011-08-24
    Description: The 'satellite-gauge model' (SGM) technique is described for combining precipitation estimates from microwave satellite data, infrared satellite data, rain gauge analyses, and numerical weather prediction models into improved estimates of global precipitation. Throughout, monthly estimates on a 2.5 degrees x 2.5 degrees lat-long grid are employed. First, a multisatellite product is developed using a combination of low-orbit microwave and geosynchronous-orbit infrared data in the latitude range 40 degrees N - 40 degrees S (the adjusted geosynchronous precipitation index) and low-orbit microwave data alone at higher latitudes. Then the rain gauge analysis is brougth in, weighting each field by its inverse relative error variance to produce a nearly global, observationally based precipitation estimate. To produce a complete global estimate, the numerical model results are used to fill data voids in the combined satellite-gauge estimate. Our sequential approach to combining estimates allows a user to select the multisatellite estimate, the satellite-gauge estimate, or the full SGM estimate (observationally based estimates plus the model information). The primary limitation in the method is imperfections in the estimation of relative error for the individual fields. The SGM results for one year of data (July 1987 to June 1988) show important differences from the individual estimates, including model estimates as well as climatological estimates. In general, the SGM results are drier in the subtropics than the model and climatological results, reflecting the relatively dry microwave estimates that dominate the SGM in oceanic regions.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 8; 5, pt; p. 1284-1295
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-24
    Description: Measurements of wing buffeting, using root strain gages, were made in the NASA Langley 0.3 m cryogenic wind tunnel to refine techniques which will be used in larger cryogenic facilities such as the United States National Transonic Facility (NTF) and the European Transonic Wind Tunnel (ETW). The questions addressed included the relative importance variations in frequency parameter and Reynolds number, the choice of model material (considering both stiffness and damping) and the effects of static aeroelastic distortion. The main series of tests was made on three half models of slender 65 deg delta wings with a sharp leading edge. The three delta wings had the same planform but widely differing bending stiffnesses and frequencies (obtained by varying both the material and the thickness of the wings). It was known that the steady flow on this configuration would be insensitive to variations in Reynolds number. On this wing at vortex breakdown the spectrum of the unsteady excitation is unusual, having a sharp peak at particular frequency parameter. Additional tests were made on one unswept half-wing of aspect ratio 1.5 with an NPL 9510 aerofoil section, known to be sensitive to variations in Reynolds number at transonic speeds. The test Mach numbers were M = 0.21 and 0.35 for the delta wings and to M = 0.30 for the unswept wing. On this wing the unsteady excitation spectrum is fairly flat (as on most wings). Hence correct representation of the frequency parameter is not particularly important.
    Keywords: AERODYNAMICS
    Type: Aeronautical Journal (ISSN 0001-9240); 99; 981; p. 1-14
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-24
    Description: A consistent solution of the radiative transfer equation characterizing photon transport in a semi-infinite medium of refractive index greater than or equal to one is obtained following the method of Sobolev. Fresnel specular reflection, Snell's law and isotropic scattering are assumed. An algorithm is developed and its accuracy is demonstrated. A numerical Laplace transform inversion leads to an efficient evaluation for the interior flux and source function distributions.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Journal of Quantitative Spectroscopy & Radiative Transfer (ISSN 0022-4073); 53; 3; p. 257-267
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: We investigate the orbital dynamics of small dust particles generated via the continuous micrometeoroid bombardment of the Martian moons. In addition to Mar's oblateness, we also consider the radiation pressure perturbation that is complicated by the planet's eccentric orbit and tilted rotational axis. Considering the production rates and the lifetimes of dust grains, we show that particles from Deimos with radii of about 15 micrometers are expected to dominate the population of a permanently present and tilted dust torus. This torus has an estimated peak number density of approximately equals 5 x 10(exp -12)/cu cm and an optical depth of approximately equals 4 x 10(exp -8).
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; E2; p. 3277-3284
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-24
    Description: The lower stratospheric variability of equatorial water vapor, measured by the Microwave Limb Sounder (MLS), follows an annual cycle modulated by the quasi-biennial oscillation. At levels higher in the stratosphere, water vapor measurements exhibit a semi-annual oscillatory signal with the largest amplitudes at 2.2 and 1hPa. Zonal-mean cross sections of MLS water vapor are consistent with previous satellite measurements from the limb infrared monitor of the stratosphere (LIMS) and the stratospheric Aerosol and Gas Experiment 2 (SAGE 2) instruments in that they show water vapor increasing upwards and the polewards from a well defined minimum in the tropics. The minimum values vary in height between the retrieved 46 and 22hPa pressure levels.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 6; p. 691-694
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2011-08-24
    Description: The valley network channels on the heavily cratered ancient surface of Mars suggest the presence of liquid water approximately 3.8 Gyr ago. However, the implied warm climate is difficult to explain in the context of the standard solar model, even allowing for the maximum CO2 greenhouse heating. In this paper we investigate the astronomical and planetary implications of a nonstandard solar model in which the zero-age, main-sequence Sun had a mass of 1.05 +/- 0.02 Solar Mass. The excess mass was subsequently lost in a solar wind during the first 1.2(-0.2, +0.4) Gyr of the Sun's main sequence phase. The implied mass-loss rate of 4(+3, -2) x 10(exp -11) M/yr, or about 10(exp 3) x that of the current Sun, may be detectable in several nearby young solar type stars.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); p. 5457-5464
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-08-24
    Description: Hellas basin on Mars has been the site of volcanism, tectonism, and modification by fluvial, mass-wasting, and eolian processes over its more than 4-b.y. existence. Our detailed geologic mapping and related studies have resulted in the following new interpretations. The asymmetric distribution of highland massifs and other structures that define the uplifted basin rim suggest a formation of the basin by the impact of a low-angle bolide having a trajectory heading S60E. During the Late Noachian, the basin was infilled, perhaps by lava flows, that were sufficiently thick (greater than 1 km) to produce wrinkle ridges on the fill material and extensional faulting along the west rim of the basin. At about the same time, deposits buried northern Malea Planum, which are interpreted to be pyroclastic flows from Amphitrites and Peneus Paterae on the basis of their degraded morphology, topology, and the application of a previous model for pyroclastic volcanism on Mars. Peneus forms a distinctive caldera structure that indicates eruption of massive volumes of magma, whereas Amphitrites is a less distinct circular feature surrounded by a broad, low, dissected shield that suggests generally smaller volume eruptions. During the Early Hesperian, an approximately 1-to 2km-thick sequence of primarily fined-grained, eolian material was deposited on the floor of Hellas basin. Subsequently, the deposit was deeply eroded, except where armored by crater ejecta, and it retreated as much as 200-300 km along its western margin, leaving behind pedestal craters and knobby outliers of the deposit. Local debris flows within the deposit attest to concentrations of groundwater, perhaps in part brought in by outflow floods along the east rim of the basin. These floods may have deposited approximately 100-200m of sediment, subduing wrinkle ridges in the eastern part of the basin floor. During the Late Hesperian and Amazonian, eolian mantles were emplaced on the basin rim and floor and surrounding highlands. Their subsequent erosion resulted in pitted and etched plains and crater fill, irregular mesas, and pedestal craters. Local evidence occurs for the possible former presence of ground ice or ice sheets approximately 100 km across; however, we disagree with a hypothesis that suggest that the entire south rim and much of the floor of Hellas have been glaciated. Orientations of dune fields and yardangs in lower parts of Hellas basin follow directions of the strongest winds predicted by a recently published general circulation model (GCM). Transient frost and dust splotches in the region are, by contrast, related to the GCM prediction for the season in which the images they appear in were taken.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); p. 5407-5432
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2011-08-24
    Description: Visible and near-IR refectivity, Moessbauer, and X ray diffraction data were obtained on powders of impact melt rock from the Manicouagan Impact Crater located in Quebec, Canada. The iron mineralogy is dominated by pyroxene for the least oxidized samples and by hematite for the most oxidized samples. Phyllosilicate (smectite) contents up to approximately 15 wt % were found in some heavily oxidized samples. Nanophase hematite and/or paramagnetic ferric iron is observed in all samples. No hydrous ferric oxides (e.g., goethite, lepidocrocite, and ferrihydrite) were detected, which implies the alteration occurred above 250 C. Oxidative alteration is thought to have occurred predominantly during late-stage crystallization and subsolidus cooling of the impact melt by invasion of oxidizing vapors and/or solutions while the impact melt rocks were still hot. The near-IR band minimum correlated with the extent of aleration Fe(3+)/Fe(sub tot) and ranged from approximately 1000 nm (high-Ca pyroxene) to approximately 850 nm (bulk, well-crystalline hematite) for least and most oxidized samples, respectively. Intermediate band positions (900-920 nm) are attributed to low-Ca pyroxene and/or a composite band from hematite-pyroxene assemblages. Manicouagan data are consistent with previous assignments of hematite and pyroxene to the approximately 850 and approximately 1000nm bands observed in Martian reflectivity spectra. Manicouagan data also show that possible assignments for intermediate band positions (900-920 nm) in Martian spectra are pyroxene and/or hematite-pyroxene assemblages. By analogy with impact melt sheets and in agreement with observables for Mars, oxidative alteration of Martian impact melt sheets above 250 C and subsequent erosion could produce rocks and soils with variable proportions of hematite (both bulk and nanophase), pyroxene, and phyllosilicates as iron-bearing mineralogies. If this process is dominant, these phases on Mars were formed rapidly at relativly high temperatures on a sporadic basis throughout the history of the planet. The Manicouagan samples also show that this mineralogical diversity can be accomplished at constant chemical composition, which is also indicated for Mars from the analyses of soil at the two Viking landing sites.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); pp. 5319-5328
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2011-08-24
    Description: The absolute rate constant for the reaction O((3)P) + HOBr has been measured between T = 233K and 423K using the discharge-flow kinetic technique coupled to mass spectrometric detection. The value of the rate coefficient at room temperature is (2.5 +/- 0.6) x 10(exp -11)cu cm/molecule/s and the derived Arrhenius expression is (1.4 +/- 0.5) x 10(exp -10) exp((-430 +/- 260)/T)cu cm/molecule/s. From these rate data the atmospheric lifetime of HOBr with respect to reaction with O((3)P) is about 0.6h at z = 25 km which is comparable to the photolysis lifetime based on recent measurements of the UV cross section for HOBr. Implications for HOBr loss in the stratosphere have been tested using a 1D photochemical box model. With the inclusion of the rate parameters and products for the O + HOBr reaction, calculated concentration profiles of BrO increase by up to 33% around z = 35 km. This result indicates that the inclusion of the O + HOBr reaction in global atmospheric chemistry models may have an impact on bromine partitioning in the middle atmosphere.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 7; p. 827-830
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2011-08-24
    Description: Results are reported of the Surface Tension Driven Convection Experiment (STDCE) aboard USML-1 Spacelab. Steady and transient thermocapillary flows were investigated in a 10 cm dia. circular container filled with 10 Cs silicone oil. The velocity and temperature fields were studied in detail under various conditions. It is shown in this paper how the Marangoni number affects the velocity field. A numerical analysis of the flows was also conducted and its results were compared to the experimental data. Good agreement is shown.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Advances in Space Research (ISSN 0273-1177); 16; 7; p. (7)79-(7)82
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2011-08-24
    Description: A diagnostic analysis of the VVP (volume velocity processing) retrieval method is presented, with emphasis on understanding the technique as a linear, multivariate regression. Similarities and differences to the velocity-azimuth display and extended velocity-azimuth display retrieval techniques are discussed, using this framework. Conventional regression diagnostics are then employed to quantitatively determine situations in which the VVP technique is likely to fail. An algorithm for preparation and analysis of a robust VVP retrieval is developed and applied to synthetic and actual datasets with high temporal and spatial resolution. A fundamental (but quantifiable) limitation to some forms of VVP analysis is inadequate sampling dispersion in the n space of the multivariate regression, manifest as a collinearity between the basis functions of some fitted parameters. Such collinearity may be present either in the definition of these basis functions or in their realization in a given sampling configuration. This nonorthogonality may cause numerical instability, variance inflation (decrease in robustness), and increased sensitivity to bias from neglected wind components. It is shown that these effects prevent the application of VVP to small azimuthal sectors of data. The behavior of the VVP regression is further diagnosed over a wide range of sampling constraints, and reasonable sector limits are established.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Atmospheric and Oceanic Technology (ISSN 0739-0572); 12; 2; p. 230-248
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2011-08-24
    Description: Analysis of the version 16 Halogen Occultation Experiment (HALOE) CH4 data shows that this long-lived trace gas is well correlated with potential vorticity (PV) computed from National Meteorological Center balanced winds. Analyzing late September and October 1992 data, we show that very low CH4 values are confined to the interior of a vortex edge defined by the maximum gradient in PV. The CH4 and HF time tendency is used to estimate the descent rate in the Antarctic vortex. After removing a component of the trend correlated with the HALOE sampling pattern, we compute the lower stratosphere vertical descent rates and net heaing rates in the spring Antarctic vortex. Our computations of the spring Antarctic vortex heating rates give -0.5 to -0.1 K/day. Over the winter season, the overall lower stratospheric descent rate averages about 1.8-1.5 km/month. These computations are in line with radiative transfer estimates of the heating and descent rate. The HALOE data thus appear to be consistent with the picture of an isolated lower stratospheric Antarctic vortex.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; D3; p. 5159-5172
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-08-24
    Description: Using delta C-13 measurements in atmospheric CO2 from a cooperative global air sampling network, we determined the partitioning of the net uptake of CO2 between ocean and land as a function of latitude and time. The majority of delta C-13 measurements were made at the Institute of Arctic and Alpine Research (INSTAAR) of the University of Colorado. We perform an inverse deconvolution of both CO2 and delta C-13 observations, using a two-dimensional model of atmospheric transport. Also, the discrimination against C-13 by plant photosynthesis, as a function of latitude and time, is calculated from global runs of the simple biosphere (SiB) model. Uncertainty due to the longitudinal structure of the data, which is not represented by the model, is studied through a bootstrap analysis by adding and omitting measurement sites. The resulting error estimates for our inferred sources and sinks are of the order of 1 GTC (1 GTC = 10(exp 15) gC). Such error bars do not reflect potential systematic errors arising from our estimates of the isotopic disequilibria between the atmosphere and the oceans and biosphere, which are estimated in a separate sensitivity analysis. With respect to global totals for 1992 we found that 3.2 GTC of carbon dissolved into the ocean and that 1.5 GTC were sequestered by land ecosystems. Northern hemisphere ocean gyres north of 15 deg N absorbed 2.7 GTC. The equatorial oceans between 10 deg S and 10 deg N were a net source to the atmosphere of 0.9 GTC. We obtained a sink of 1.6 GTC in southern ocean gyres south of 20 deg S, although the deconvolution is poorly constrained by sparse data coverage at high southern latitudes. The seasonal uptake of CO2 in the northern gyres appears to be correlated with a bloom of phytoplankton in surface waters. On land, northern temperate and boreal ecosystems between 35 deg N and 65 deg N were found to be a major sink of CO2 in 1992, as large as 3.5 GTC. Northern tropical ecosystems (equator-30 deg N) appear to be a net source to the source to the atmosphere of 2 GTC which could reflect biomass burning. A small sink, 0.3 GTC, was inferred for southern tropical ecosystems (30 deg S-equator).
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; D3; p. 5051-5070
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-08-24
    Description: Global sets of surface radiation budget (SRB) have been obtained from satellite programs. These satellite-based estimates need validation with ground-truth observations. This study validates the estimates of monthly mean surface insolation contained in two satellite-based SRB datasets with the surface measurements made at worldwide radiation stations from the Global Energy Balance Archive (GEBA). One dataset was developed from the Earth Radiation Budget Experiment (ERBE) using the algorithm of Li et al. (ERBE/SRB), and the other from the International Satellite Cloud Climatology Project (ISCCP) using the algorithm of Pinker and Laszlo and that of Staylor (GEWEX/SRB). Since the ERBE/SRB data contain the surface net solar radiation only, the values of surface insolation were derived by making use of the surface albedo data contained GEWEX/SRB product. The resulting surface insolation has a bias error near zero and a root-mean-square error (RMSE) between 8 and 28 W/sq m. The RMSE is mainly associated with poor representation of surface observations within a grid cell. When the number of surface observations are sufficient, the random error is estimated to be about 5 W/sq m with present satellite-based estimates. In addition to demonstrating the strength of the retrieving method, the small random error demonstrates how well the ERBE derives from the monthly mean fluxes at the top of the atmosphere (TOA). A larger scatter is found for the comparison of transmissivity than for that of insolation. Month to month comparison of insolation reveals a weak seasonal trend in bias error with an amplitude of about 3 W/sq m. As for the insolation data from the GEWEX/SRB, larger bias errors of 5-10 W/sq m are evident with stronger seasonal trends and almost identical RMSEs.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 8; 2; p.315-328
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-08-24
    Description: Participants in this workshop, which convened in Venice, Italy, 6-8 May 1993, met to consider the current state of climate monitoring programs and instrumentation for the purpose of climatological prediction on short-term (seasonal to interannual) timescales. Data quality and coverage requirements for definition of oceanographic heat and momentum fluxes, scales of inter- and intra-annual variability, and land-ocean-atmosphere exchange processes were examined. Advantages and disadvantages of earth-based and spaceborne monitoring systems were considered, as were the structures for future monitoring networks, research programs, and modeling studies.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 76; 2; p. 241-249
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-08-24
    Description: The work described here makes it possible to identify anomalous wind behavior such as the nighttime meridional wind abatements that occur at F-region heights. A new analysis technique uses a simple empirical wind model to simulate measurements of 'normal' winds (as measured by the Neutral Atmosphere and Temperature Experiment (NATE) that flew on the Atmosphere Explorer-E (AE-E)) to highlight anomalous wind measurements made by the satellite while in circular orbits at 270-290 km altitude. Our approach is based on the recognition that the 'in orbit' wind variation must show the combined effects of the diurnal wind variation as seen from the ground with the latitude variation of the satellite orbit. For the data period 77250-78035 examined thus far, the wind abatement always occurred with a corresponding pressure or temperature maximum, and was detected on 12 out of the 36 nights with data. This study has revealed that the wind abatement occur only during or shortly after increases in solar extreme ultraviolet (EUV) flux, as indicated by daily radio flux measurements. In the past, nighttime wind reversals at mid-latitudes have been associated with increased geomagnetic activity. This study indicates that intensified solar EUV heating may be responsible for anomalous thermospheric nighttime winds at mid-latitudes.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geopysical Research Letters (ISSN 0094-8276); 22; 3; p. 271-274
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-08-24
    Description: An automated scheme to characterize precipitation echoes within small windows in the radar field is presented and applied to previously subjectively classified tropical rain cloud systems near Darwin, Australia. The classification parameters are (a) E(sub e), effective efficiency, as determined by cloud-top and cloud-base water vapor saturation mixing ratios; (b) BBF, brightband fraction, as determined by the fraction of the radar echo area in which the maximal reflectivity occurs within +/- 1.5 km of the 0 C isotherm level; and (c) del(sub r) Z, radial reflectivity gradients (dB/km). These classification criteria were applied to tropical rain cloud systems near Darwin, Australia, and to winter convective rain cloud systems in Israel. Both sets of measurements were made with nearly identical networks of C-band radars and rain gauge networks. The results of the application of these objective classification criteria to several independently predetermined rain regimes in Darwin have shown that better organized rain systems have smaller del(sub r) Z and larger BBF. Similarly, smaller del(sub r)Z and larger BBF were also observed from maritime rain cloud systems, as compared to continental rain cloud systems with the same degree of organization. Continental rain cloud system, regardless of their degree of organization, have larger depths, as expressed by E(sub e). The rainfall analyses presented in this study are based exclusively on rain gauge measurements, while radar information was used only to classify the individual gauge measurements.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Applied Meteorology (ISSN 0894-8763); 34; 1; p. 198-211
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-08-24
    Description: Results of a simulation study on the effects of optically thick stratospheric sulfate aerosol layers on the backscattered ultraviolet radiation (buv) in the range 256-340 nm are presented. In general, the increased Mie scattering produced by the aerosols results in an enhancement of the buv radiation. The increase is approximately linear with optical depth and strongly depends on solar zenith angle and aerosol layer altitude in relation to the ozone maximum. The effect is greatest at those wavelenghts whose contribution functions peak in the vicinity of the densest part of the aerosol layer. The aerosol induced perturbation of the buv field affects the ozone profile retrieval from space measurements by the Solar Backscatter Ultraviolet Experiment (SBUV) experiment. In the tropical stratosphere, the retrieved ozone between 25 and 45 km is underestimated as a result of increased Mie scattering. On the other hand, an algorithm related effect causes the retrieved ozone below 25 km to be overestimated by an amount similar to the stratospheric deficit.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geopysical Research Letters (ISSN 0094-8276); 22; 3; p. 235-238
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-08-24
    Description: Application of the window probability matching method to radar and rain gauge data that have been objectively classified into different rain types resulted in distinctly different Z(sub e)-R relationships for the various classifications. These classification parameters, in addition to the range from the radar, are (a) the horizontal radial reflectivity gradients (dB/km); (b) the cloud depth, as scaled by the effective efficiency; (c) the brightband fraction within the radar field window; and (d) the height of the freezing level. Combining physical parameters to identify the type of precipitation and statistical relations most appropriate to the precipitation types results in considerable improvement of both point and areal rainfall measurements. A limiting factor in the assessment of the improved accuracy is the inherent variance between the true rain intensity at the radar measured volume and the rain intensity at the mouth of the rain guage. Therefore, a very dense rain gauge network is required to validate most of the suggested realized improvement. A rather small sample size is required to achieve a stable Z(sub e)-R relationship (standard deviation of 15% of R for a given Z(sub e)) -- about 200 mm of rainfall accumulated in all guages combined for each classification.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Applied Meteorology (ISSN 0894-8763); 34; 1; p. 212-223
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2011-08-24
    Description: We have studied the implications of recent trends in the annual mean and the amplitude of the annual harmonic of ozone in the upper stratosphere from the 15 years of the combined data from the Nimbus-7 SBUV and the NOAA-11 SBUV/2 instruments. This was done in the context of the GSFC 2D model predictions of these trends which are based on plausible scenarios of anthropogenic Cly increase in the atmosphere. The comparison of the observed and model-estimated annual mean ozone trends show some similarity in their latitude and altitude characteristics. Both the model and data show a maximum ozone decrease of -6 to -10 % per decade at high latitudes in the upper stratosphere. However, there are also significant differences between the observed and computed trends which may be related to both the model uncertainty and the uncertainty in correcting for the long term instrument drift. The observations also suggest a decrease of 10-25 % per decade in the annual amplitude of ozone at 2 mb between 40 deg - 60 deg in both hemispheres, with a relatively larger interannual variability in the northern hemisphere. These values are in general agreement with the model predictions and thus provide additional support in favor of the chlorine induced changes in ozone in the upper stratosphere.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 7; p. 843-846
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2011-08-24
    Description: BrO measured from the NASA ER-2 during Airborne Arctic Stratospheric Expedition (AASE) II exhibited a mean value (for 20-minute averages) of 5.4 +/- 0.3 pptv, with a standard deviation of 3.1 pptv. Ratios of BrO to available inorganic bromine (Br(sub y)) show only slight increases in polar regions relative to midlatitudes. A comparison between observed latitudinal and diurnal variations of this same ratio and that calculated by photochemical models shows reasonable agreement in behavior, but significant discrepancies in magnitude. It is unclear whether this difference is due to errors in measurements, models or both.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 7; p. 831-834
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2011-08-24
    Description: Measurements of stratospheric hydrofluoric acid (HF) have been made by the JPL MkIV interferometer during high-altitude balloon flights. Infrared solar absorption spectra were acquired near 35 deg N at altitudes between local tropopause and 38 km. Volume mixing ratio profiles of HF derived from 4 flights (1990-93), in conjunction with simultaneously observed N2O profiles, indicate an average rate of HF increase of (5.5 +/- 0.3)% per year, in agreement with time-dependent, two-dimensional model simulations (6% per year) and ATMOS measurements.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 7; p. 835-838
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2011-08-24
    Description: Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) measurements of lower stratospheric ClO during 1992-93 and 1993-94 Arctic winters are presented. Enhanced ClO in the 1992-93 winter was first observed in early December, and extensively during February when temperatures were continually low enough for polar stratospheric cloud (PSCs). Sporadic episodes of enhanced ClO were observed for most of the 1993-94 winter as minimum temperatures hovered near the PSC threshold, with largest ClO amounts occurring in early March after a sudden deep cooling in late February.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 7; p. 823-826
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2011-08-24
    Description: The thermal-infrared (longwave) emission from a vegetated terrain is generally anisotropic, i.e., the emission temperature varies with the view direction. If a directional measurement of temperature is considered to be equal to the effective temperature of the hemispheric emission, then the estimate of the latter can be significantly in error. The view-direction (zenith angle theta(sub eq) at which the emission equivalence does hold is determined in our modeling study. In a two-temperature field-of-view (soil and plants), theta(sub eq) falls in a narrow range depending on plant density and canopy architecture. Theta(sub eq) does not depend on soil and (uniform) plant temperatures nor on their ratio, even though the pattern of emission vs. the view direction depends crucially on this ratio. For a sparse canopy represented as thin, vertical cylindrical stalks (or vertical blades uniformly distributed in azimuth) with horizontal facets, theta(sub eq) ranges from 48 to 53 deg depending on the optical density of the vertical elements alone. When plant elements are modeled as small spheres, theta(sub eq) lies between 53 to 57 deg (for the same values of the canopy optical density). Only for horizontal leaves (a truly planophile canopy) is the temperature measured from any direction equal to the temperature of the hemispheric emission. When the emission temperature changes with optical depth within the canopy at a specified rate, theta(sub eq) depends to some extent on that rate. For practically any sparsely vegetated surface, a directional measurement at the zenith angle of 50 deg offers an appropriate evaluation of the hemispheric emission, since the error in the estimate will, at most, only slightly exceed 1% (around 4 W/sq m). Estimates of the hemispheric emission through a nadir measurement, on the other hand, can be in error in some cases by about 10%, i.e., on the order of 40 W/sq m.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Boundary-Layer Meteorology (ISSN 0006-8314); 74; 1-2; p. 163-180
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2011-08-24
    Description: Based on the conservation of chemical elements in chemical reactions, a rule is proved that the number of boundary conditions given by densities and/or nonzero velocities should not be less than the number of chemical elements in the system, and the boundary conditions for species given by densities and velocities should include all elements in the system. Applications of this rule to Mars are considered. It is shown that the problem of the CO2-H2O chemistry in the lower and middle atmosphere of Mars, say, in the range of 0-80 km does not have a unique solution, if only CO2 and H2O densities are given at the lower boundary, and the remaining boundary conditions are fluxes. Two examples of models of this type are discussed. Two models of the photochemistry of the Martian atmosphere, with and without nitrogen chemistry, are considered. The oxygen nonthermal escape ratio of 1.2 x 10(exp 8)/cu cm/s is given at 240 km and is balanced with the total hydrogen escape rate within an uncertainty of 1% for both models. Both models fit the measured O2 and CO mixing ratios, the O3 abundance, and the O2 1.27-micrometer dayglow almost within the uncertainties of the measured values, though the model without nitrogen chemistry fits better. The importance of nitrogen chemistry in the lower and middle atmosphere of Mars depends on a fine balance between production of NO and N in the upper atmosphere which is not known within the required accuracy.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; E2; p. 3263-3276
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-08-24
    Description: Goethite-bearing samples with values of Mn(s) (Mn/(Mn+Fe) mole fraction) up to 0.206 were synthesized by precipitation from alkaline solution. Samples with Mn(s) less than or equal 0.061 were single-phase Mn-goethites: samples with higher Mn(s) values contained another Mn-bearing phase (probably jacobsite). Mn-hematites were prepared by dehydroxylation of corresponding Mn-goethites at 500 C. Orthorhombic a and b unit cell dimensions of Mn-goethites changed in a linear manner with Mn(s), but not at rates predicted by the Vegrad law. Hexagonal unit cell dimensions of Mn-hematites did not vary with Mn(s). Moessbauer parameters isomer shift (IS), quadrupole splitting (QS), and hyperfine field (B(sub hf)) were measured at 293 and 15 K. For all single-phase Mn-goethites and Mn-hematites (Mn(s) less than or equal 0.061), magnetic splitting was observed at both temperatures. At 293 K, small but systematic decreases in B(sub hf) were observed with increasing Mn substitution; IS and QS were not dependent on Mn(s). Mn substitution strongly lowered the Morin transition temperature of hematite. At 15 K, the Morin transition was not present for Mn(s) greater than 0.020(4). The saturation magnetization of Mn-goethites and Mn-hematites (Mn(s) less than or equal 0.061) was the expected zero (within error) for antiferromagnetic goethite and for hematites obtained from dehydroxylation of goethites. Mn-geothites with Mn(s) greater than 0.061 were magnetic because of the presence of strongly magnetic jacobsite. For reflectivity spectra, bands resulting from MN(3+) were centered near 454 and 596 nm for Mn-goethites and near 545 and 700 nm for Mn-hematites. There is evidence for a approximately 700 nm band in spectral data for Martian bright regions, but association of it with Mn(3+) is not a unique interpretation. Comparison of laboratory and Martian spectral data implies that Mn(s) less than 0.032 for the Mn(3+) content of Martian hematites.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; E2; p. 3285-3295
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-08-24
    Description: Ferric-iron-bearing materials play an important role in the interpretation of visible to near-IR Mars spectra, and they may play a similarly important role in the analysis of new mid-IR spacecraft spectral observations to be obtained over the next decade. We review exisiting data on mid-IR transmission spectra of ferric oxides/oxyhydroxides and present new transmission spectra for ferric-bearing materials spanning a wide range of mineralogy and crystallinity. These materials include 11 samples of well-crystallized ferric oxides (hematite, maghemite, and magnetite) and ferric oxyhydroxides (goethite, lepidocrocite). We also report the first transmission spectra for purely nanophase ferric oxide samples that have been shown to exhibit spectral similarities to Mars in the visible to near-IR and we compare these data to previous and new transmission spectra of terrestial palagonites. Most of these samples show numerous, diagnostic absorption features in the mid-IR due to Fe(3+) - 0(2-) vibrational transitions, structural and/or bound OH, and/or silicates. These data indicate that high spatial resolution, moderate spectral resolution mid-IR ground-based and spacecraft observations of Mars may be able to detect and uniquely discriminate among different ferric-iron-bearing phases on the Martian surface or in the airborne dust.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); p. 5297-5307
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-08-24
    Description: Numerical simulation experiments were conducted to delineate the influence of in situ deforestation data on episodic rainfall by comparing two ensembles of five 5-day integrations performed with a recent version of the Goddard Laboratory for Atmospheres General Circulation Model (GCM) that has a simple biosphere model (SiB). The first set, called control cases, used the standard SiB vegetation cover (comprising 12 biomes) and assumed a fully forested Amazonia, while the second set, called deforestation cases, distinguished the partially deforested regions of Amazonia as savanna. Except for this difference, all other initial and prescribed boundary conditions were kept identical in both sets of integrations. The differential analyses of these five cases show the following local effects of deforestation. (1) A discernible decrease in evapotranspiration of about 0.80 mm/d (roughly 18%) that is quite robust in the averages for 1-, 2-, and 5-day forecasts. (2) A decrease in precipitation of about 1.18 mm/d (roughly 8%) that begins to emerge even in 1-2 day averages and exhibits complex evolution that extends downstream with the winds. (3) A significant decrease in the surface drag force (as a consequence of reduced surface roughness of deforested regions) that, in turn, affects the dynamical structure of moisture convergence and circulation. The surface winds increase significantly during the first day, and thereafter the increase is well maintained even in the 2- and 5-day averages.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 76; 3; p. 346-361
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-08-24
    Description: A steady-state scheme for data assimilation in the context of a single, short period (relative to a day), sun-synchronous, polar-orbiting satellite is examined. If the satellite takes observations continuously, the gains, which are the weights for blending observations and predictions together, are steady in time. For a linear system forced by random noise, the optimal steady-state gains (Wiener gains) are equivalent to those of a Kalman filter. Computing the Kalman gains increases the computational cost of the model by a large factor, but computing the Wiener gains does not. The latter are computed by iteration using prior estimates of the gains to assimilate simulated observations of one run of the model, termed 'truth' into another run termed 'prediction'. At each stage, the prediction errors form the basis for the next estimate of the gains. Steady state is achieved after three or four iterations. Further simplification is achieved by making the gains depend on longitudinal distance from the observation point, not on absolute longitude. For a single-layer primitive equation model, the scheme works well even if only the mass field is observed but not the velocity field. Although the scheme was developed for Mars Observer, it should be applicable to data retrieved from Earth atmosphere satellites, for example, UARS.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of the Atmospheric Sciences (ISSN 0022-4928); 52; 6; p. 737-753
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-08-24
    Description: Brightness temperature difference (BTD) values are calculated for selected Geostationary Operational Environmental Satellite (GOES-6) channels (3.9, 12.7 micrometer) and Advanced Very High Resolution Radiometer channels (3.7, 12.0 micrometer). Daytime and nighttime discrimination of particle size information is possible given the infrared cloud extinction optical depth and the BTD value. BTD values are presented and compared for cirrus clouds composed of equivalent ice spheres (volume, surface area) versus randomly oriented hexagonal ice crystals. The effect of the hexagonal ice crystals is to increase the magnitude of the BTD values calculated relative to equivalent ice sphere (volume, surface area) BTDs. Equivalent spheres (volume or surface area) do not do a very good job of modeling hexagonal ice crystal effects on BTDs; however, the use of composite spheres improves the simulation and offers interesting prospects. Careful consideration of the number of Legendre polynomial coefficients used to fit the scattering phase functions is crucial to realistic modeling of cirrus BTDs. Surface and view-angle effects are incorporated to provide more realistic simulation.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Applied Meteorology (ISSN 0894-8763); 34; 2; p. 447-459
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-08-24
    Description: An examination and analysis of video images of lightning, captured by the payload bay TV cameras of the space shuttle, provided a variety of examples of lightning in the stratosphere above thunderstorms. These images were obtained on several recent shuttle flights while conducting the Mesoscale Lightning Experiment (MLE). The images of stratospheric lightning illustrate the variety of filamentary and broad vertical discharges in the stratosphere that may accompany a lightning flash. A typical event is imaged as a single or multiple filament extending 30 to 40 km above a thunderstorm that is illuminated by a series of lightning strokes. Examples are found in temperate and tropical areas, over the oceans, and over the land.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; D1; p. 1465-1475
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2011-07-22
    Description: Eleven tests were carried out in DLR's high enthalpy tunnel in Goettingen (HEG), Germany, for reservoir conditions ranging from 10 to 23 MJ/kg and a free stream Mach number of approximately 10. A blunted cone model with a cylindrical afterbody (sting) was investigated. To obtain information on the influence of defined parameters on the body back flow, especially of the reacting gas, the heat transfer rate along the body contour was measured with fast response surface thermocouples on the forebody and sensitive thin film heat transfer gauges on the base and sting of the model. Flow visualization with a holographic interferometry system was provided. Tests are described, and a preliminary interpretation of the observed flow effects are given.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: ESA, Proceedings of the 2nd European Symposium on Aerothermodynamics for Space Vehicles; p 383-38
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-08-31
    Description: Get Away Special (GAS) payload G-093, also called VORTEX (VOrtex Ring Transit EXperiment), is an investigation of the propagation of a vortex ring through a liquid-gas interface in microgravity. This process results in the formation of one or more liquid droplets similar to earth based liquid atomization systems. In the absence of gravity, surface tension effects dominate the drop formation process. The Shuttle's microgravity environment allows the study of the same fluid atomization processes as using a larger drop size than is possible on Earth. This enables detailed experimental studies of the complex flow processes encountered in liquid atomization systems. With VORTEX, deformations in both the vortex ring and the fluid surface will be measured closely for the first time in a parameters range that accurately resembles liquid atomization. The experimental apparatus will record images of the interactions for analysis after the payload has been returned to earth. The current design of the VORTEX payload consists of a fluid test cell with a vortex ring generator, digital imaging system, laser illumination system, computer based controller, batteries for payload power, and an array of housekeeping and payload monitoring sensors. It is a self-contained experiment and will be flown on board the Space Shuttle in a 5 cubic feet GAS canister. The VORTEX Project is entirely run by students at the University of Michigan but is overseen by a faculty advisor acting as the payload customer and the contact person with NASA. This paper summarizes both the technical and programmatic aspects of the VORTEX Project.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Goddard Space Flight Center, The 1995 Shuttle Small Payloads Symposium; p 221-229
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-08-31
    Description: This paper focuses on the flight results of the Cryogenic Two-Phase Flight Experiment (CRYOTP), which was a Hitchhiker based experiment that flew on the space shuttle Columbia in March of 1994 (STS-62). CRYOTP tested two new technologies for advanced cryogenic thermal control; the Space Heat Pipe (SHP), which was a constant conductance cryogenic heat pipe, and the Brilliant Eyes Thermal Storage Unit (BETSU), which was a cryogenic phase-change thermal storage device. These two devices were tested independently during the mission. Analysis of the flight data indicated that the SHP was unable to start in either of two attempts, for reasons related to the fluid charge, parasitic heat leaks, and cryocooler capacity. The BETSU test article was successfully operated with more than 250 hours of on-orbit testing including several cooldown cycles and 56 freeze/thaw cycles. Some degradation was observed with the five tactical cryocoolers used as thermal sinks, and one of the cryocoolers failed completely after 331 hours of operation. Post-flight analysis indicated that this problem was most likely due to failure of an electrical controller internal to the unit.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: The 1995 Shuttle Small Payloads Symposium; p 111-123
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-08-31
    Description: The Capillary Pumped Loop Flight Experiment (CAPL) employs a passive two-phase thermal control system that uses the latent heat of vaporization of ammonia to transfer heat over long distances. CAPL was designed as a prototype of the Earth Observing System (EOS) instrument thermal control systems. The purpose of the mission was to provide validation of the system performance in micro-gravity, prior to implementation on EOS. CAPL was flown on STS-60 in February, 1994, with some unexpected results related to gravitational effects on two-phase systems. Flight test results and post flight investigations will be addressed, along with a brief description of the experiment design.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: The 1995 Shuttle Small Payloads Symposium; p 1-19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-08-31
    Description: This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Goddard Space Flight Center, The 1995 Shuttle Small Payloads Symposium; p 21-30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-08-31
    Description: The Voyager 1 spacecraft flew by Jupiter on March 5, 1979. Spacecraft navigation was performed with radio tracking data from NASA's Deep Space Network. In the years since then, there has been a great deal of progress in the definition of celestial reference frames and in determining the orbit and orientation of the Earth. Using these improvements, the radio metric range and Doppler data acquired from the Voyager 1 spacecraft near its encounter with Jupiter have been reanalyzed to determine the plane-of-sky position of Jupiter with much greater accuracy than was possible at the time of the encounter. The position of Jupiter at the time of encounter has been determined with an accuracy of 40 nrad in right ascension and 140 nrad in declination with respect to the celestial reference frame defined by the International Earth Rotation Service. This position estimate has been done to improve the ephemeris of Jupiter prior to the upcoming encounter of the Galileo spacecraft with Jupiter.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: The Telecommunications and Data Acquisition Report; p 1-8
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-08-31
    Description: With the recent focus on the needs of design and applications CFD, research groups have begun to address the traditional bottlenecks of grid generation and surface modeling. Now, a host of emerging technologies promise to shortcut or dramatically simplify the simulation process. This paper discusses the current status of these emerging technologies. It will argue that some tools are already available which can have positive impact on portions of the design cycle. However, in most cases, these tools need to be integrated into specific engineering systems and process cycles to be used effectively. The rapidly maturing status of unstructured and Cartesian approaches for inviscid simulations makes suggests the possibility of highly automated Euler-boundary layer simulations with application to loads estimation and even preliminary design. Similarly, technology is available to link block structured mesh generation algorithms with topology libraries to avoid tedious re-meshing of topologically similar configurations. Work in algorithmic based auto-blocking suggests that domain decomposition and point placement operations in multi-block mesh generation may be properly posed as problems in Computational Geometry, and following this approach may lead to robust algorithmic processes for automatic mesh generation.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 359-384
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-08-31
    Description: The last decade has witnessed a vigorous and sustained research effort on unstructured methods for computational fluid dynamics. Unstructured mesh generators and flow solvers have evolved to the point where they are now in use for design purposes throughout the aerospace industry. In this paper we survey the various mesh types, structured as well as unstructured, and examine their relative strengths and weaknesses. We argue that unstructured methodology does offer the best prospect for the next generation of computational fluid dynamics algorithms.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 273-287
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-08-31
    Description: A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells are created using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded: A gradient-limited, linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces. Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are obtained and compared to theory, experiment and other accepted computational results for a series of low and moderate Reynolds number flows.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 207-224
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-08-31
    Description: Grid related issues of the Chimera overset grid method are discussed in the context of a method of solution and analysis of unsteady three-dimensional viscous flows. The state of maturity of the various pieces of support software required to use the approach is considered. Current limitations of the approach are identified.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 181-192
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-08-31
    Description: This paper presents 'A view from the trenches' on CFD grid generation from a Pratt & Whitney perspective. We anticipate that other organizations have similar views. We focus on customer expectations and the consequent requirements. We enunciate a vision for grid generation, discuss issues that developers must recognize.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 45-54
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-08-31
    Description: This paper presents a perspective on the requirements that Computational Fluid Dynamics (CFD) technology must meet for its effective use in aerospace design. General observations are made on current aerospace design practices and deficiencies are noted that must be rectified for the U.S. aerospace industry to maintain its leadership position in the global marketplace. In order to rectify deficiencies, industry is transitioning to an integrated product and process development (IPPD) environment and design processes are undergoing radical changes. The role of CFD in producing data that design teams need to support flight vehicle development is briefly discussed. An overview of the current state of the art in CFD is given to provide an assessment of strengths and weaknesses of the variety of methods currently available, or under development, to produce aerodynamic data. Effectiveness requirements are examined from a customer/supplier view point with design team as customer and CFD practitioner as supplier. Partnership between the design team and CFD team is identified as an essential requirement for effective use of CFD. Rapid turnaround, reliable accuracy, and affordability are offered as three key requirements that CFD community must address if CFD is to play its rightful role in supporting the IPPD design environment needed to produce high quality yet affordable designs.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 15-28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-08-31
    Description: The efforts in geometry modeling and grid generation at the NASA Lewis Research Center, as applied to the computational fluid dynamic (CFD) analysis of aeropropulsion systems, are presented. The efforts are mainly characterized by a focus on the analysis of components of an aeropropulsion system, which involve turbulent viscous flow with heat transfer and chemistry. Thus, this discussion will follow that characterization and will sequence through the components of typical propulsion systems consisting of inlets, compressors, combustors, turbines, and nozzles. For each component, some applications of CFD analysis will be presented to show how CFD is used to compute the desired performance information, how geometry modeling and grid generation are performed, and what issues have developed related to geometry modeling and grid generation. The discussion will illustrate the following needs related to geometry modeling and grid generation as observed in aeropropulsion analysis: (1) accurate and efficient resolution of turbulent viscous and chemically-reacting flowfields; (2) easy-to-use interfaces with CAD data for automated grid generation about complex geometries; and (3) automated batch grid generation software for use with design and optimization software.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 89-103
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-08-31
    Description: This viewgraph presentation discusses key features of current combustion system CFD modeling capabilities at GE Aircraft Engines provided by the CONCERT code; CONCERT development history; modeling applied for designing engine combustion systems; modeling applied to improve fundamental understanding; CONCERT3D results for current production combustors; CONCERT3D model of NASA/GE E3 combustor; HYBRID CONCERT CFD/Monte-Carlo modeling approach; and future modeling directions.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Industry-Wide Workshop on Computational Turbulence Modeling; p 87-97
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-08-31
    Description: Analytical investigation of dynamic stall on HAWT (horizontal-axis wind turbines) rotor loads was conducted. Dynamic stall was modeled using the Gormont approach on the MOD-2 rotor, treating the blade as a rigid body teetering about a fixed axis. Blade flapwise bending moments at station 370 were determined with and without dynamic stall for spatial variations in local wind speed due to wind shear and yaw. The predicted mean flapwise bending moments were found to be in good agreement with test results. Results obtained with and without dynamic stall showed no significant difference for the mean flapwise bending moment. The cyclic bending moments calculated with and without dynamic stall effects were substantially the same. None of the calculated cyclic loads reached the level of the cyclic loads measured on the MOD-2 using the Boeing five-minute-average technique.
    Keywords: AERODYNAMICS
    Type: DASCON Engineering, Collected Papers on Wind Turbine Technology; p 41-46
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-08-31
    Description: A procedure was developed to improve the turn-around time for computational fluid dynamics (CFD) simulations of an inlet-bleed problem involving oblique shock-wave/boundary-layer interactions on a flat plate with bleed into a plenum through one or more circular holes. This procedure is embodied in a preprocessor called AUTOMAT. With AUTOMAT, once data for the geometry and flow conditions have been specified (either interactively or via a namelist), it will automatically generate all input files needed to perform a three-dimensional Navier-Stokes simulation of the prescribed inlet-bleed problem by using the PEGASUS and OVERFLOW codes. The input files automatically generated by AUTOMAT include those for the grid system and those for the initial and boundary conditions. The grid systems automatically generated by AUTOMAT are multi-block structured grids of the overlapping type. Results obtained by using AUTOMAT are presented to illustrate its capability.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 731-749
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-08-31
    Description: The role of Computational Fluid Dynamics (CFD) at Ames Research Center has expanded to address a broad range of aeronautical problems, including wind tunnel support, flight test support, design, and analysis. Balancing the requirements of each new problem against the available resources - software, hardware, time, and expertise - is critical to the effective use of CFD. Several case studies of recent applications highlight the depth of CFD capability at Ames, the tradeoffs involved in various approaches, and lessons learned in the use of CFD as an engineering tool.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 57-67
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-08-31
    Description: When computing the flow around complex three dimensional configurations, the generation of the mesh is the most time consuming part of any calculation. With some meshing technologies this can take of the order of a man month or more. The requirement for a number of design iterations coupled with ever decreasing time allocated for design leads to the need for a significant acceleration of this process. Of the two competing approaches, block-structured and unstructured, only the unstructured approach will allow fully automatic mesh generation directly from a CAD model. Using this approach coupled with the techniques described in this paper, it is possible to reduce the mesh generation time from man months to a few hours on a workstation. The desire to closely couple a CFD code with a design or optimization algorithm requires that the changes to the geometry be performed quickly and in a smooth manner. This need for smoothness necessitates the use of Bezier polynomials in place of the more usual NURBS or cubic splines. A two dimensional Bezier polynomial based design system is described.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 29-43
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-08-31
    Description: The results of a first order perfect gas correction for the effects of the boundary layer formation within expansion tubes with nozzles are presented. The analytical model developed to describe the boundary layer formation within the expansion tube and an expansion nozzle located at the end of the acceleration tube is based on the Karman integral equations. The results of this analytical model are compared with experimental data from an expansion diffuser. The model provides a useful tool for the preliminary design of nozzles for such facilities.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Shock Tunnel Studies of Scramjet Phenomena 1994; 6 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-08-31
    Description: In this paper the capabilities of an automated CFD system which is currently available at NLR are demonstrated. Transonic flow around the AS28G wing/body configuration and hypersonic flow through a generic three-dimensional mixed-compression airbreathing inlet are simulated. An assessment of the level of automation of the current CFD-system is made. The problem-turnaround time lies within the order of a week for both applications.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 713-730
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-08-31
    Description: Detailed simulations of viscous flows in complicated geometries pose a significant challenge to current capabilities of Computational Fluid Dynamics (CFD). To enable routine application of CFD to this class of problems, advanced methodologies are required that employ (a) automated grid generation, (b) adaptivity, (c) accurate discretizations and efficient solvers, and (d) advanced software techniques. Each of these ingredients contributes to increased accuracy, efficiency (in terms of human effort and computer time), and/or reliability of CFD software. In the long run, methodologies employing structured grid systems will remain a viable choice for routine simulation of flows in complex geometries only if genuinely automatic grid generation techniques for structured grids can be developed and if adaptivity is employed more routinely. More research in both these areas is urgently needed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 697-710
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-08-31
    Description: A coordinated effort has been underway over the past four years to elevate unstructured-grid methodology to a mature level. The goal of this endeavor is to provide a validated capability to non-expert users for performing rapid aerodynamic analysis and design of complex configurations. The Euler component of the system is well developed, and is impacting a broad spectrum of engineering needs with capabilities such as rapid grid generation and inviscid flow analysis, inverse design, interactive boundary layers, and propulsion effects. Progress is also being made in the more tenuous Navier-Stokes component of the system. A robust grid generator is under development for constructing quality thin-layer tetrahedral grids, along with a companion Navier-Stokes flow solver. This paper presents an overview of this effort, along with a perspective on the present and future status of the methodology.
    Keywords: AERODYNAMICS
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 289-308
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2013-08-31
    Description: A discussion of the strengths and weaknesses of overset composite grid and solution technology is given, along with a sampling of current work in the area. Major trends are identified, and the observation is made that generalized and hybridized overset methods provide a natural framework for combining disparate mesh types and physics models. Because of this, the author concludes that overset methods will be the foundation for the general purpose computational fluid dynamics programs of the future.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 193-204
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-08-31
    Description: The status of CFD methods based on the use of block-structured grids for analyzing viscous flows over complex configurations is examined. The objective of the present study is to make a realistic assessment of the usability of such grids for routine computations typically encountered in the aerospace industry. It is recognized at the very outset that the total turnaround time, from the moment the configuration is identified until the computational results have been obtained and postprocessed, is more important than just the computational time. Pertinent examples will be cited to demonstrate the feasibility of solving flow over practical configurations of current interest on block-structured grids.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 163-177
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-08-31
    Description: This viewgraph presentation discusses turbulence modeling requirements, development philosophy, and approach; two major areas of concentration (high speed and low speed turbulence modeling); high speed turbulence modeling; compressibility effects; turbulence models adapted to USA code; M = 9.2 flat plate flow; Mach 7.05 flow over axisymmetric flare; Mach 8.6 flow over cold wall edge; low speed turbulence modeling; turbulence models being assessed; turbulence model deck structure and integration with Navier-Stokes solver; nonlinear algebraic-stress model; rotation modified k-epsilon model; and Reynolds stress model.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Industry-Wide Workshop on Computational Turbulence Modeling; p 107-117
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: This viewgraph presentation covers gas turbine combustor flow physics, turbulence model investigations, turbulent combustion modeling, and present status and future needs.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Industry-Wide Workshop on Computational Turbulence Modeling; p 79-85
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-08-31
    Description: This viewgraph presentation discusses geometry and flow configuration, effect of y+ on heat transfer computations, standard and extended k-epsilon turbulence model results with wall function, low-Re model results (the Lam-Bremhorst model without wall function), a criterion for flow reversal in a radially rotating square duct, and a summary.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Industry-Wide Workshop on Computational Turbulence Modeling; p 65-77
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-08-31
    Description: This viewgraph presentation demonstrates that computationally efficient k-l and k-kl turbulence models have been developed and implemented at Lockheed Fort Worth Company. Many years of experience have been gained applying two equation turbulence models to complex three-dimensional flows for design and analysis.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Industry-Wide Workshop on Computational Turbulence Modeling; p 29-37
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-08-31
    Description: The objective of this viewgraph presentation is to evaluate turbulence models for integrated aircraft components such as the forebody, wing, inlet, diffuser, nozzle, and afterbody. The one-equation models have replaced the algebraic models as the baseline turbulence models. The Spalart-Allmaras one-equation model consistently performs better than the Baldwin-Barth model, particularly in the log-layer and free shear layers. Also, the Sparlart-Allmaras model is not grid dependent like the Baldwin-Barth model. No general turbulence model exists for all engineering applications. The Spalart-Allmaras one-equation model and the Chien k-epsilon models are the preferred turbulence models. Although the two-equation models often better predict the flow field, they may take from two to five times the CPU time. Future directions are in further benchmarking the Menter blended k-w/k-epsilon and algorithmic improvements to reduce CPU time of the two-equation model.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Industry-Wide Workshop on Computational Turbulence Modeling; p 47-63
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-08-31
    Description: This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Industry-Wide Workshop on Computational Turbulence Modeling; p 39-46
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Program goals at the Center for Modeling of Turbulence and Transition (CMOTT), NASA Lewis Research Center, are (1) to develop reliable turbulence (including bypass transition) and combustion models for complex flows in propulsion systems and (2) to integrate developed models into deliverable CFD tools for propulsion systems in collaboration with industry. This viewgraph presentation covers the following topics: development of turbulence and combustion models; collaboration with industry and technology transfer; isotropic eddy viscosity models; algebraic Reynolds stress models; scalar turbulence models; second order closure models; multiple scale k-epsilon models; and PDF modeling of turbulent reacting flows.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Industry-Wide Workshop on Computational Turbulence Modeling; p 1-27
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-08-31
    Description: An assessment of two unstructured methods is presented in this paper. A tetrahedral unstructured method USM3D, developed at NASA Langley Research Center is compared to a Cartesian unstructured method, SPLITFLOW, developed at Lockheed Fort Worth Company. USM3D is an upwind finite volume solver that accepts grids generated primarily from the Vgrid grid generator. SPLITFLOW combines an unstructured grid generator with an implicit flow solver in one package. Both methods are exercised on three test cases, a wing, and a wing body, and a fully expanded nozzle. The results for the first two runs are included here and compared to the structured grid method TEAM and to available test data. On each test case, the set up procedure are described, including any difficulties that were encountered. Detailed descriptions of the solvers are not included in this paper.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 385-400
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-08-31
    Description: The past ten years have seen steady progress in surface modeling procedures, and wholesale changes in grid generation technology. Today, it seems fair to state that a satisfactory grid can be developed to model nearly any configuration of interest. The issues at present focus on operational concerns such as cost and quality. Continuing evolution of the engineering process is placing new demands on the technologies of surface modeling and grid generation. In the evolution toward a multidisciplinary analysis-bascd design environment, methods developed for Computational Fluid Dynamics are finding acceptance in many additional applications. These two trends, the normal evolution of the process and a watershed shift toward concurrent and multidisciplinary analysis, will be considered in assessing current capabilities and needed technological improvements.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions; p 3-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: This viewgraph presentation discusses what models are used in this package and what their advantages and disadvantages are, how the probability density function (PDF) model is implemented and the features of the program, and what can be expected in the future from the NASA Lewis PDF code.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Industry-Wide Workshop on Computational Turbulence Modeling; p 269-275
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-08-31
    Description: This viewgraph presentation discusses an extension of the probability density function (PDF) method to the modeling of spray flames to evaluate the limitations and capabilities of this method in the modeling of gas-turbine combustor flows. The comparisons show that the general features of the flowfield are correctly predicted by the present solution procedure. The present solution appears to provide a better representation of the temperature field, particularly, in the reverse-velocity zone. The overpredictions in the centerline velocity could be attributed to the following reasons: (1) the use of k-epsilon turbulence model is known to be less precise in highly swirling flows and (2) the swirl number used here is reported to be estimated rather than measured.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Industry-Wide Workshop on Computational Turbulence Modeling; p 259-268
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Viewgraphs are presented on computation of turbulent combustion, governing equations, closure problem, PDF modeling of turbulent reactive flows, validation cases, current projects, and collaboration with industry and technology transfer.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Industry-Wide Workshop on Computational Turbulence Modeling; p 247-257
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Industry-Wide Workshop on Computational Turbulence Modeling; p 219-230
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-08-31
    Description: This viewgraph presentation discusses project description, turbulence models, and computational engine and results for second-order closures for compressible turbulence.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Industry-Wide Workshop on Computational Turbulence Modeling; p 203-217
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-08-31
    Description: This viewgraph presentation gives a profile of Advanced Scientific Computing (ASC) Ltd., applications, clients and clients' needs, ASC's directions, and how the Center for Modeling of Turbulence and Transition (CMOTT) can help.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Industry-Wide Workshop on Computational Turbulence Modeling; p 193-202
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-08-31
    Description: This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Industry-Wide Workshop on Computational Turbulence Modeling; p 171-192
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-08-31
    Description: This viewgraph presentation provides a brief review of two-equation eddy-viscosity models (TEM's) from the perspective of applied CFD. It provides objective assessment of both well-known and newer models, compares model predictions from various TEM's with experiments, identifies sources of modeling error and gives historical perspective of their effects on model performance and assessment, and recommends directions for future research on TEM's.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Industry-Wide Workshop on Computational Turbulence Modeling; p 155-169
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-08-31
    Description: This viewgraph presentation discusses the following: introduction to CFD Research Corporation; experiences with two-equation models - models used, numerical difficulties, validation and applications, and strengths and weaknesses; and answers to three questions posed by the workshop organizing committee - what are your customers telling you, what are you doing in-house, and how can NASA-CMOTT (Center for Modeling of Turbulence and Transition) help.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Industry-Wide Workshop on Computational Turbulence Modeling; p 143-153
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-08-31
    Description: This viewgraph presentation concludes that a Monte Carlo probability density function (PDF) solution successfully couples with an existing finite volume code; PDF solution method applied to turbulent reacting flows shows good agreement with data; and PDF methods must be run on parallel machines for practical use.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Industry-Wide Workshop on Computational Turbulence Modeling; p 119-129
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-08-31
    Description: This viewgraph presentation discusses (1) turbulence modeling: challenges in turbulence modeling, desirable attributes of turbulence models, turbulence models in FLUENT, and examples using FLUENT; and (2) combustion modeling: turbulence-chemistry interaction and FLUENT equilibrium model. As of now, three turbulence models are provided: the conventional k-epsilon model, the renormalization group model, and the Reynolds-stress model. The renormalization group k-epsilon model has broadened the range of applicability of two-equation turbulence models. The Reynolds-stress model has proved useful for strongly anisotropic flows such as those encountered in cyclones, swirlers, and combustors. Issues remain, such as near-wall closure, with all classes of models.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Industry-Wide Workshop on Computational Turbulence Modeling; p 131-142
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-08-31
    Description: This viewgraph presentation discusses joint velocity-scalar PDF method; turbulent combustion modeling issues for gas turbine combustors; PDF calculations for a recirculating flow; stochastic dissipation model; joint PDF calculations for swirling flows; spray calculations; reduced kinetics/manifold methods; parallel processing; and joint PDF focus areas.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, Industry-Wide Workshop on Computational Turbulence Modeling; p 99-10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-08-31
    Description: The Tropical Rainfall Measuring Mission (TRMM) is an earth observing satellite that will be in a low earth orbit (350 kilometers) during the next period of maximum solar activity. The TRMM observatory is expected to experience an atomic oxygen fluence of 8.9 x 10(exp 22) atoms per square centimeter. This fluence is ten times higher than the atomic oxygen impingement incident to the Long Duration Exposure Facility (LDEF). Other environmental concerns on TRMM include: spacecraft glow, silicon oxide contaminant build-up, severe spacecraft material degradation, and contamination deposition resulting from molecular interactions with the dense ambient atmosphere. Because of TRMM's predicted harsh environment, TRMM faces many unique material concerns and subsystem design issues. The LDEF data has influenced the design of TRMM and the TRMM material selection process.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: NASA. Langley Research Center, LDEF: 69 Months in Space. Third Post-Retrieval Symposium, Part 3; p 1309-1318
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-08-31
    Description: An algorithm has been developed for time-dependent forced convective diffusion-reaction having convection by a recirculating flow field within the drop that is hydrodynamically coupled at the interface with a convective external flow field that at infinity becomes a uniform free-streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet, or reactions can take place in both phases. The algorithm has been implemented, and for comparison results are shown here for the case of no reaction in either phase and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, The Sixth Annual Thermal and Fluids Analysis Workshop; p 291-315
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-08-31
    Description: The application of spectral methods, using a Chebyshev collocation scheme, to solve hydrodynamic stability problems is demonstrated on the Benard problem. Implementation of the Chebyshev collocation formulation is described. The performance of the spectral scheme is compared with that of a 2nd order finite difference scheme. An exact solution to the Marangoni-Benard problem is used to evaluate the performance of both schemes. The error of the spectral scheme is at least seven orders of magnitude smaller than finite difference error for a grid resolution of N = 15 (number of points used). The performance of the spectral formulation far exceeded the performance of the finite difference formulation for this problem. The spectral scheme required only slightly more effort to set up than the 2nd order finite difference scheme. This suggests that the spectral scheme may actually be faster to implement than higher order finite difference schemes.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: The Sixth Annual Thermal and Fluids Analysis Workshop; p 275-290
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-08-31
    Description: The effects of different turbulence boundary conditions were examined for two classical flows: a turbulent plane free shear layer and a flat plate turbulent boundary layer with zero pressure gradient. The flow solver used was DTNS, an incompressible Reynolds averaged Navier-Stokes solver with k-epsilon turbulence modeling, developed at the U.S. Navy David Taylor Research Center. Six different combinations of turbulence boundary conditions at the inflow boundary were investigated: In case 1, 'exact' k and epsilon profiles were used; in case 2, the 'exact' k profile was used, and epsilon was extrapolated upstream; in case 3, both k and epsilon were extrapolated; in case 4, the turbulence intensity (I) was 1 percent, and the turbulent viscosity (mu(sub t)) was equal to the laminar viscosity; in case 5, the 'exact' k profile was used and mu(sub t) was equal to the laminar viscosity; in case 6, the I was 1 percent, and epsilon was extrapolated. Comparisons were made with experimental data, direct numerical simulation results, or theoretical predictions as applicable. Results obtained with DTNS showed that turbulence boundary conditions can have significant impacts on the solutions, especially for the free shear layer.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: The Sixth Annual Thermal and Fluids Analysis Workshop; p 247-262
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-08-31
    Description: The exchange of models is one of the most serious problems currently encountered in the practice of spacecraft thermal analysis. Essentially, the problem originates in the diversity of computing environments that are used across different sites, and the consequent proliferation of native tool formats. Furthermore, increasing pressure to reduce the development's life cycle time has originated a growing interest in the so-called spacecraft concurrent engineering. In this context, the realization of the interdependencies between different disciplines and the proper communication between them become critical issues. The use of a neutral format represents a step forward in addressing these problems. Such a means of communication is adopted by consensus. A neutral format is not directly tied to any specific tool and it is kept under stringent change control. Currently, most of the groups promoting exchange formats are contributing with their experience to STEP, the Standard for Exchange of Product Model Data, which is being developed under the auspices of the International Standards Organization (ISO 10303). This paper presents the different efforts made in Europe to provide the spacecraft thermal analysis community with a Thermal Neutral Format (TNF) based on STEP. Following an introduction with some background information, the paper presents the characteristics of the STEP standard. Later, the first efforts to produce a STEP Spacecraft Thermal Application Protocol are described. Finally, the paper presents the currently harmonized European activities that follow up and extend earlier work on the area.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, The Sixth Annual Thermal and Fluids Analysis Workshop; p 263-273
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-08-31
    Description: Using global interpolation functions (GIF's) boundary element solutions are obtained for two-dimensional laminar flows. Two schemes are proposed for handling the convective terms. The first treats convection as a forcing function, and converts the flow equations to pseudo-Poisson equations. In the second scheme, some convective effect is incorporated into the fundamental solution used in constructing the pertinent integral equations. The lid-driven cavity flow is selected as the benchmark problem.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: The Sixth Annual Thermal and Fluids Analysis Workshop; p 233-246
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-08-31
    Description: A two dimensional finite volume method is used to predict the film coefficients in the transitional flow region (laminar or turbulent) for the radiator panel tubes. The code used to perform this analysis is CAST (Computer Aided Simulation of Turbulent Flows). The information gathered from this code is then used to augment a Sinda85 model that predicts overall performance of the radiator. A final comparison is drawn between the results generated with a Sinda85 model using the Sinda85 provided transition region heat transfer correlations and the Sinda85 model using the CAST generated data.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, The Sixth Annual Thermal and Fluids Analysis Workshop; p 227-232
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-08-31
    Description: This paper presents a probabilistic one-dimensional finite element model for heat transfer processes in porous heat exchangers. The Galerkin approach is used to develop the finite element matrices. Some of the submatrices are asymmetric due to the presence of the flow term. The Neumann expansion is used to write the temperature distribution as a series of random variables, and the expectation operator is applied to obtain the mean and deviation statistics. To demonstrate the feasibility of the formulation, a one-dimensional model of heat transfer phenomenon in superfluid flow through a porous media is considered. Results of this formulation agree well with the Monte-Carlo simulations and the analytical solutions. Although the numerical experiments are confined to parametric random variables, a formulation is presented to account for the random spatial variations.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, The Sixth Annual Thermal and Fluids Analysis Workshop; p 215-226
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-08-31
    Description: This paper presents a numerical scheme, based on the finite element method, to solve strongly coupled fluid flow and heat transfer problems. The surface radiation effect for gray, diffuse and isothermal surfaces is considered. A procedure for obtaining the view factors between the radiating surfaces is discussed. The overall solution strategy is verified by comparing the available results with those obtained using this approach. An analysis of a thermosyphon is undertaken and the effect of considering the surface radiation is clearly explained.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, The Sixth Annual Thermal and Fluids Analysis Workshop; p 175-188
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-08-31
    Description: An algorithm has been developed for the forced convective diffusion-reaction problem for convection inside and outside a droplet by a recirculating flow field hydrodynamically coupled at the droplet interface with an external flow field that at infinity becomes a uniform streaming flow. The concentration field inside the droplet is likewise coupled with that outside by boundary conditions at the interface. A chemical reaction can take place either inside or outside the droplet or reactions can take place in both phases. The algorithm has been implemented and results are shown here for the case of no reaction and for the case of an external first order reaction, both for unsteady behavior. For pure interphase mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet concentrations have been obtained as a function of the physical properties and external flow field. For mass transfer enhanced by an external reaction, in addition to the above forms of results, we present the enhancement factor, with the results now also depending upon the (dimensionless) rate of reaction.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, The Sixth Annual Thermal and Fluids Analysis Workshop; p 189-213
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2013-08-31
    Description: The critical state of vortex cores downstream of vortex breakdown has been studied. Base vortical flows were computed using the Reynolds-averaged, axisymmetric Navier-Stokes equations. Standard K - epsilon, RNG and second-order Reynolds stress models were employed. Results indicate that the return to supercriticality is highly dependent on the turbulence model. The K - epsilon model predicted a rapid return of the vortex to supercritical conditions, the location of which showed little sensitivity to changes in the swirl ratio. The Reynolds stress model predicted that the vortex remains subcritical to the end of the domain for each of the swirl ratios employed, and provided results in qualitative agreement with experimental work. The RNG model produced intermediate results, with a downstream movement in the critical location with increasing swirl. Calculations for which area reductions were introduced at the exit in a subcritical flow were also performed using the Reynolds stress model. The structure of the resulting recirculation zone was altered significantly. However, when area reductions were employed within supercritical flows as predicted using the two-equation models, no significant influence on the recirculation zone was noted.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center, The Sixth Annual Thermal and Fluids Analysis Workshop; p 163-173
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...