ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (9)
  • Boundary currents
  • Eddies
  • Ocean dynamics
  • American Geophysical Union  (9)
  • MDPI Publishing
Collection
  • Articles  (9)
  • 1
    Publication Date: 2023-02-25
    Description: Author Posting. © American Geophysical Union, 2022. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 127(8),(2022): e2022JC018737, https://doi.org/10.1029/2022jc018737.
    Description: Gulf Stream Warm Core Rings (WCRs) have important influences on the New England Shelf and marine ecosystems. A 10-year (2011–2020) WCR dataset that tracks weekly WCR locations and surface areas is used here to identify the rings' path and characterize their movement between 55 and 75°W. The WCR dataset reveals a very narrow band between 66 and 71°W along which rings travel almost due west along ∼39°N across isobaths – the “Ring Corridor.” Then, west of the corridor, the mean path turns southwestward, paralleling the shelfbreak. The average ring translation speed along the mean path is 5.9 cm s−1. Long-lived rings (lifespan 〉150 days) tend to occupy the region west of the New England Seamount Chain (NESC) whereas short-lived rings (lifespan 〈150 days) tend to be more broadly distributed. WCR vertical structures, analyzed using available Argo float profiles indicate that rings that are formed to the west of the NESC have shallower thermoclines than those formed to the east. This tendency may be due to different WCR formation processes that are observed to occur along different sections of the Gulf Stream. WCRs formed to the east of the NESC tend to form from a pinch-off mechanism incorporating cores of Sargasso Sea water and a perimeter of Gulf Stream water. WCRs that form to the west of the NESC, form from a process called an aneurysm. WCRs formed through aneurysms comprise water mostly from the northern half of the Gulf Stream and are smaller than the classic pinch-off rings.
    Description: AS and AG are grateful for financial support from NOAA (NA11NOS0120038), NSF (OCE-1851242 and OCE-2123283), SMAST, and UMass Dartmouth. GG was supported by NSF under grant OCE-1657853. MA was supported by NSF under grant OCE-2122726 and by ONR under grant N00014-22-1-2112.
    Keywords: Gulf Stream ; Warm core rings ; Trajectories ; Eddies ; Aneurysm ; Ring formation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hawco, N. J., Barone, B., Church, M. J., Babcock-Adams, L., Repeta, D. J., Wear, E. K., Foreman, R. K., Bjorkman, K. M., Bent, S., Van Mooy, B. A. S., Sheyn, U., DeLong, E. F., Acker, M., Kelly, R. L., Nelson, A., Ranieri, J., Clemente, T. M., Karl, D. M., & John, S. G. Iron depletion in the deep chlorophyll maximum: mesoscale eddies as natural iron fertilization experiments. Global Biogeochemical Cycles, 35(12), (2021): e2021GB007112, https://doi.org/10.1029/2021GB007112.
    Description: In stratified oligotrophic waters, phytoplankton communities forming the deep chlorophyll maximum (DCM) are isolated from atmospheric iron sources above and remineralized iron sources below. Reduced supply leads to a minimum in dissolved iron (dFe) near 100 m, but it is unclear if iron limits growth at the DCM. Here, we propose that natural iron addition events occur regularly with the passage of mesoscale eddies, which alter the supply of dFe and other nutrients relative to the availability of light, and can be used to test for iron limitation at the DCM. This framework is applied to two eddies sampled in the North Pacific Subtropical Gyre. Observations in an anticyclonic eddy center indicated downwelling of iron-rich surface waters, leading to increased dFe at the DCM but no increase in productivity. In contrast, uplift of isopycnals within a cyclonic eddy center increased supply of both nitrate and dFe to the DCM, and led to dominance of picoeukaryotic phytoplankton. Iron addition experiments did not increase productivity in either eddy, but significant enhancement of leucine incorporation in the light was observed in the cyclonic eddy, a potential indicator of iron stress among Prochlorococcus. Rapid cycling of siderophores and low dFe:nitrate uptake ratios also indicate that a portion of the microbial community was stressed by low iron. However, near-complete nitrate drawdown in this eddy, which represents an extreme case in nutrient supply compared to nearby Hawaii Ocean Time-series observations, suggests that recycling of dFe in oligotrophic ecosystems is sufficient to avoid iron limitation in the DCM under typical conditions.
    Description: The expedition and analyses were supported by the Simons Foundation SCOPE Grant 329108 to S. G. John, M. J. Church, D. J. Repeta, B. Van Mooy, E. F. DeLong, and D. M. Karl. N. J. Hawco was supported by a Simons Foundation Marine Microbial Ecology and Evolution postdoctoral fellowship (602538) and Simons Foundation grant 823167.
    Keywords: Chlorophyll ; Photosynthesis ; Iron limitation ; Oligotrophic ; Prochlorococcus ; Eddies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Peña‐Molino, B., Sloyan, B., Nikurashin, M., Richet, O., & Wijffels, S. Revisiting the seasonal cycle of the Timor throughflow: impacts of winds, waves and eddies. Journal of Geophysical Research: Oceans, 127, (2022): e2021JC018133, https://doi.org/10.1029/2021jc018133.
    Description: The tropical Pacific and Indian Oceans are connected via a complex system of currents known as the Indonesian Throughflow (ITF). More than 30% of the variability in the ITF is linked to the seasonal cycle, influenced by the Monsoon winds. Despite previous efforts, a detailed knowledge of the ITF response to the components of the seasonal forcing is still lacking. Here, we describe the seasonal cycle of the ITF based on new observations of velocity and properties in Timor Passage, satellite altimetry and a high-resolution regional model. These new observations reveal a complex mean and seasonally varying flow field. The amplitude of the seasonal cycle in volume transport is approximately 6 Sv. The timing of the seasonal cycle, with semi-annual maxima (minima) in May and December (February and September), is controlled by the flow below 600 m associated with semi-annual Kelvin waves. The transport of thermocline waters (〈300 m) is less variable than the deep flow but larger in magnitude. This top layer is modulated remotely by cycles of divergence in the Banda Sea, and locally through Ekman transport, coastal upwelling, and non-linearities of the flow. The latter manifests through the formation of eddies that reduce the throughflow during the Southeast Monsoon, when is expected to be maximum. While the reduction in transport associated with the eddies is small, its impact on heat transport is large. These non-linear dynamics develop over small scales (〈10 km), and without high enough resolution, both observations and models will fail to capture them adequately.
    Description: B. Peña-Molino, B. M. Sloyan, M. Nikurashin, and O. Richet were supported by the Centre for Southern Hemisphere Oceans Research (CSHOR). CSHOR is a joint research Centre for Southern Hemisphere Ocean Research between QNLM and CSIRO. S. E. Wijffels was supported by the US National Science Foundation Grant No. OCE-1851333.
    Keywords: Indonesian Throughflow ; Timor Passage ; Seasonal cycle ; Moorings ; Transport ; Eddies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-12-16
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(4), (2021): e2020JC016757, https://doi.org/10.1029/2020JC016757.
    Description: The along-shelf circulation in the Northwest Atlantic (NWA) Ocean is characterized by an equatorward flow from Greenland's south coast to Cape Hatters. The mean flow is considered to be primarily forced by freshwater discharges from rivers and glaciers while its variability is driven by both freshwater fluxes and wind stress. In this study, we hypothesize and test that the wind stress is important for the mean along-shelf flow. A two-layer model with realistic topography when forced by wind stress alone simulates a circulation system on the NWA shelves that is broadly consistent with that derived from observations, including an equatorward flow from Greenland coast to the Mid-Atlantic Bight (MAB). The along-shelf sea-level gradient is close to a previous estimate based on observations. The along-shelf flows exhibit strong seasonal variations with along-shelf transports being strong in fall/winter and weak in spring/summer, consistent with available observations. It is found that the NWA shelf circulation is affected by both wind-driven gyres through their western boundary currents and wind-stress forcing on the shelf especially along the coasts of Newfoundland and Labrador. The local wind stress forcing has more direct impacts on flows in shallower waters along the coast while the open-ocean gyres tend to affect the circulations along the outer shelf. Our conclusion is that wind stress is an important forcing of the main along-shelf flows in the NWA. One objective of this study is to motivate further examination of whether wind stress is as important as freshwater forcing for the mean flow.
    Description: Both Yang and Chen are also supported by NOAA Climate Program Office's Climate Variability and Prediction Program under grant NA20OAR4310398. JY is supported by Woods Hole Oceanographic Institution (WHOI) W. V. A. Clark Chair for Excellence in Oceanography and NSF Ocean Science Division under grant OCE1634886. Chen is supported by WHOI Independent Research and Development award.
    Description: 2021-09-30
    Keywords: Cross-shelf interactions ; Northwest Atlantic Ocean ; Numerical models ; Ocean dynamics ; Shelf flows ; Wind stress forcing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(7), (2021): e2020JC016899, https://doi.org/10.1029/2020JC016899.
    Description: Circulation in the nearshore region, which is critical for material transport along the coast and between the surf zone and the inner shelf, includes strong vortical motions. The horizontal length scales and vertical structure associated with vortical motions are not well documented on alongshore-variable beaches. Here, a three-dimensional phase-resolving numerical model, Simulating WAves till SHore (SWASH), is compared with surfzone waves and flows on a barred beach, and is used to investigate surfzone eddies. Model simulations with measured bathymetry reproduce trends in the mean surfzone circulation patterns, including alongshore currents and rip current circulation cells observed for offshore wave heights from 0.5 to 2.0 m and incident wave directions from 0 to 15° relative to shore normal. The length scales of simulated eddies, quantified using the alongshore wavenumber spectra of vertical vorticity, suggest that increasing wave directional spread intensifies small-scale eddies ( (10) m). Simulations with bathymetric variability ranging from alongshore uniform to highly alongshore variable indicate that large-scale eddies ( (100) m) may be enhanced by surfzone bathymetric variability, whereas small-scale eddies ( (10) m) are less dependent on bathymetric variability. The simulated vertical dependence of the magnitude and mean length scale (centroid) of the alongshore wavenumber spectra of vertical vorticity and very low-frequency (f ≈ 0.005 Hz) currents is weak in the outer surf zone, and decreases toward the shoreline. The vertical dependence in the simulations may be affected by the vertical structure of turbulence, mean shear, and bottom boundary layer dynamics.
    Description: Support was provided by the University of Washington Royalty Research Fund, the National Science Foundation, the Office of Naval Research, a National Defense Science and Engineering Graduate Fellowship, a Vannevar Bush Faculty Fellowship, the United States Army Corps of Engineers, the United States Coastal Research Program, Sea Grant, and the WHOI Investment in Science Program.
    Description: 2021-12-26
    Keywords: Surf zone ; Eddies ; Circulation ; Vorticity ; Wave breaking ; Modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Oceans 124(4), (2019):2861-2875, doi: 10.1029/2018JC014175.
    Description: Strong variability in sea surface salinity (SSS) in the Eastern Tropical Pacific (ETPac) on intraseasonal to interannual timescales was studied using data from the Soil Moisture and Ocean Salinity, Soil Moisture Active Passive, and Aquarius satellite missions. A zonal wave number‐frequency spectral analysis of SSS reveals a dominant timescale of 50–180 days and spatial scale of 8°–20° of longitude with a distinct seasonal cycle and interannual variability. This intraseasonal SSS signal is detailed in the study of 19 individual ETPac eddies over 2010–2016 identified by their sea level anomalies, propagating westward at a speed of about 17 cm/s. ETPac eddies trap and advect water in their core westward up to 40° of longitude away from the coast. The SSS signatures of these eddies, with an average anomaly of 0.5‐pss magnitude difference from ambient values, enable the study of their dynamics and the mixing of their core waters with the surroundings. Three categories of eddies were identified according to the location where they were first tracked: (1) in the Gulf of Tehuantepec, (2) in the Gulf of Papagayo, and (3) in the open ocean near 100°W–12°N. They all traveled westward near 10°N latitude. Category 3 is of particular interest, as eddies seeded in the Gulf of Tehuantepec grew substantially in the vicinity of the Clipperton Fracture Zone rise and in a region where the mean zonal currents have anticyclonic shear. The evolution of the SSS signature associated with the eddies indicates the importance of mixing to their dissipation.
    Description: This research was carried out in part at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with NASA and part at LOCEAN (Sorbonne Université, CNRS, IRD, MNHN) under a CNES Postdoctoral fellowship. This work is supported by NASA Grants NNX11AE83G and NNX14AH38G and is a contribution to the TOSCA/SMOS‐Ocean proposal supported by CNES. We thank the reviewers for their thoughtfully comments that lead to a much‐improved manuscript. We benefited from numerous data sets made freely available and are listed here: The SMOS debias_v2 SSS have been produced by LOCEAN laboratory and ACRI‐st company that participate to the Ocean Salinity Expertise Center (CEC‐OS) of Centre Aval de Traitement des Donnees SMOS (CATDS). of CATDS at IFREMER, Plouzane, France (http://www.catds.fr/Products, see documentation: http://www.catds.fr/Products/Available‐products‐from‐CEC‐OS/L3‐Debiased‐Locean‐v2); the Aquarius/SAC‐D and SMAP data was produced by Remote Sensing Systems and distributed by PODAAC (https://podaac.jpl.nasa.gov/dataset/AQUARIUS_L3_SSS_SMI_7DAY_V4; https://podaac.jpl.nasa.gov/dataset/SMAP_RSS_L3_SSS_SMI_8DAY‐RUNNINGMEAN_V2); the SLA product is processed and distributed by CMEMS (http://marine.copernicus.eu); the global atlas of eddies is produced by AVISO (https://www.aviso.altimetry.fr/en/data/products/value‐added‐products/global‐mesoscale‐eddy‐trajectory‐product.html); the GPCP precipitation data set (http://eagle1.umd.edu/GPCP_CDR/Monthly_Data) is described in the project technical report (http://eagle1.umd.edu/GPCP_ICDR/GPCPmonthlyV2.3.pdf); Woods Hole Oceanographic Institution OAFlux evaporation data set (ftp://ftp.whoi.edu/pub/science/oaflux/data_v3); UCAR high‐resolution terrain data set (High res terrain data set https://rda.ucar.edu/datasets/ds759.2/#!description); Chelton et al. (1998) Global Atlas of the First‐Baroclinic Rossby Radius of Deformation and Gravity‐Wave Phase Speed (http://www‐po.coas.oregonstate.edu/research/po/research/rossby_radius/).
    Description: 2019-09-28
    Keywords: Eddies ; Mesoscale ; Salinity ; Pacific
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C03005, doi:10.1029/2008JC004762.
    Keywords: Nutrient transport ; Eddies ; Altimetry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C02002, doi:10.1029/2006JC003994.
    Description: Physical mechanisms for the summertime offshore detachment of the Changjiang Diluted Water (CDW) into the East China Sea are examined using the high-resolution, unstructured-grid, Finite-Volume Coastal Ocean Model (FVCOM). The model results suggest that isolated low salinity water lens detected west of Cheju Island can be formed by (1) a large-scale adjustment of the flow field to the Changjiang discharge and (2) the detachment of anticyclonic eddies as a result of baroclinic instability of the CDW front. Adding the Changjiang discharge intensifies the clockwise vorticity of the subsurface current (originating from the Taiwan Warm Current) flowing along the 50-m isobath and thus drives the low-salinity water in the northern coastal area of the Changjiang mouth offshore over a submerged plateau that extends toward Cheju Island. Given a model horizontal resolution of less than 1.0 km, the CDW front becomes baroclinically unstable and forms a chain of anticyclonic and cyclonic eddies. The offshore detachment of anticyclonic eddies can carry the CDW offshore. This process is enhanced under northward winds as a result of the spatially nonuniform interaction of wind-induced Ekman flow and eddy-generated frontal density currents. Characteristics of the model-predicted eddy field are consistent with previous theoretical studies of baroclinic instability of buoyancy-driven coastal density currents and existing satellite imagery. The plume stability is controlled by the horizontal Ekman number. In the Changjiang, this number is much smaller than the criterion suggested by a theoretical analysis.
    Description: The development of FVCOM is supported by the Massachusetts Fisheries Institute through NOAA grants DOC/ NOAA/NA04NMF4720332 and DOC/NOAA/NA05NMF4721131 and also the U.S. GLOBEC Northwest Atlantic/Georges Bank program through NSF grants OCE-0234545 and OCE-0227679, NOAA grant NA160P2323 and ONR subcontract grant from Woods Hole Oceanographic Institution. P. Ding is supported by the Chinese National Key Basic Research Project grant 2002CB412403. X. Mao is supported by the National Natural Science Foundation of China (NSFC) grant 40576079.
    Keywords: Unstructured grid model ; Eddies ; River plume baroclinic instability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): C07025, doi:10.1029/2006JC003788.
    Description: The current debate about the mechanisms and magnitude of new nutrient input to the euphotic zone in subtropical gyres calls for studies which consider large and mesoscale perspectives by combining in situ time series and remote observations. We carried out a first of its kind comparative analysis of hydrography and sea level anomaly (SLA) at the oligotrophic time series stations BATS (Bermuda Atlantic Time Series Study) and ESTOC (European Station for Time Series, Canary Islands) using concomitant 10-yr in situ and satellite altimetry data. The stations are located at about the same latitude in the western and eastern boundaries of the subtropical North Atlantic gyre, respectively, and provide the opportunity to study differences that may exist between both regions. Observed SLA was 0.25 m at BATS, compared with 0.12 m at ESTOC, a consequence of the higher eddy kinetic energy in the western compared with the eastern subtropical gyre. We quantified a detailed in situ nutrient budget for both time series stations; ESTOC received about 75% of the nutrients available for new production at BATS (in average 0.28 mol N m−2 yr−1 compared with 0.38 mol N m−2 yr−1, respectively), but the difference was not significant. However, significant differences in input mechanisms existed between both stations; eddy pumping constituted the main new nutrient source BATS, whereas wintertime convection was the main nutrient supply mechanism at ESTOC. In addition, the nutricline was significantly shallower at ESTOC compared with BATS, partly compensating for shallower mixed-layer depths and SLA variability at the western station. We found considerable interannual variability in both eddy pumping and wintertime convection which may be related to NAO-induced changes in the pattern of the subtropical gyre.
    Description: This work was supported by a NASA-EOS grant to Susanne Neuer.
    Keywords: Nutrient transport ; Eddies ; Altimetry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...